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Abstract

Visual quality (VisQ) representation is a fundamental
step in the learning of a VisQ prediction model for photos.
It not only reflects how we understand VisQ but also deter-
mines the label type. Existing studies apply a scalar value
(i.e., a categorical label or a score) to represent VisQ. As
VisQ is a subjective property, only a scalar value is insuffi-
cient to represent human’s perceived VisQ of a photo. This
study represents VisQ by a distribution on pre-defined ordi-
nal basic ratings in order to capture the subjectivity of VisQ
better. When using the new representation, the label type
is structural instead of scalar. Conventional learning algo-
rithms cannot be directly applied in model learning. Mean-
while, for many photos, the numbers of users involved in the
evaluation are limited, making some labels unreliable. In
this study, a new algorithm called support vector distribu-
tion regression (SVDR) is presented to deal with the struc-
tural output learning. Two independent learning strategies
(reliability-sensitive learning and label refinement) are pro-
posed to alleviate the difficulty of insufficient involved users
for rating. Combining SVDR with the two learning strate-
gies, two separate structural-output regression algorithms
(i.e., reliability-sensitive SVDR and label refinement-based
SVDR) are produced. Experimental results demonstrate
the effectiveness of our introduced learning strategies and
learning algorithms.

1. Introduction
Visual quality (VisQ) evaluation for photos has received

increasing attention recently [1, 2, 7, 10, 12]. Automated
evaluation VisQ of photos can facilitate the management
of ever-increasing large amounts of online photos [1, 3, 9]
and next-generation image retrieval [3]. For example, in
Web image search, a photo’s VisQ can be incorporated into
ranking so that most relevant and best looking photos can
be returned [7]. A photo management system can select
high-quality images to show and eliminate low-quality ones
under space constraints [3]. Automated VisQ evaluation re-
quires learning of a VisQ prediction model. Existing studies

Figure 1. Two photos with their associated user ratings. The his-
tograms show the numbers of users rated for each basic rating.

on the model learning can be summarized into two classes:
• Extraction of more advanced features. This category fo-

cuses on the understanding of the underlying mech-
anism of how people perceive the aesthetics of pho-
tos. Plenty of domain knowledge in photography is
brought in to light on the extraction of discriminative
features. Most existing studies fall into this category
[1, 2, 8, 10, 12].

• Utilization of more sophisticated learning algorithms.
This category focuses on the application of effective
learning algorithms for VisQ classifiers or regression
functions over the features of photos. A representative
work can be found in [3].

In most of the above studies, training data are collected
from online photo sharing communities such as photo.net
and dpchallenge.com. In these communities, users rate a
photo by choosing one of the predefined ordinal basic rat-
ings, which are consecutive integers with a higher integer
indicating better rating. Consequently, a photo is associ-
ated with a set of multiple ratings by different users. Figure
1 shows two photos and their associated user ratings over
five ordinal basic ratings (“1-5”). In learning a prediction
model, each photo’s associated user ratings are transformed
into a scalar value (e.g., “+1” or “-1”), which is taken as
the photo’s label. However, VisQ is a subjective property,
as different users may perceive inconsistent or even oppo-
site VisQs of the same photo (e.g., the right photo in Fig.
1). A scalar value is insufficient to capture the true na-
ture of the subjectivity of VisQ. Although the two photos
in Fig. 1 have equal average rating scores and thus equal



VisQ labels by existing representations, humans do not per-
ceive them equally. Some published studies have noted the
limitations of existing VisQ representations. For example,
Wu et al.[13] claimed that existing studies ignore the truth
that people tend to assign inconsistent labels to the same
photo. The statistic in [7] reveals that there is ambiguity
in the perceived quality of photos. However, they do not
provide corresponding solutions.

1.1. Our work
Unlike previous representation strategies, this study ap-

plies a distribution vector on predefined ordinal basic rat-
ings to represent the perceived VisQ of a photo. This new
representation is based on a simple viewpoint: given two
photos, their perceived VisQs by humans differ in the pro-
portions of human choices on predefined ordinal basic rat-
ings, not of a specific basic rating. For example, the Fig. 1
photos, although they both receive user ratings on “4”, also
earn different user ratings on other basic ratings. Our new
representation is in accord with the truth that most photos
have inconsistent user ratings. As will be detailed in Sec-
tion 2, a distribution representation has several advantages.

According to the new representation, each training and
test photo’s label type is a distribution vector. Consequently,
conventional classification and regression algorithms are
unable to be directly used. In addition, as the training data
are from online resources, learning about VisQ distribution
prediction involves the challenge that the numbers of users
that rate some photos are insufficient. Insufficient involved
users cause some labels to become unreliable. This study
introduces a novel structural regression algorithm (SVDR)
to deal with the new label type, and two independent learn-
ing strategies (reliability-sensitive learning and label refine-
ment) to deal with unreliable labels.

Besides the theoretical value of this study, VisQ distri-
bution prediction has also practical capabilities. An VisQ
distribution prediction algorithm can facilitate professional
photographers to obtain detailed information about how the
public evaluate their photos. The prediction of VisQ distri-
bution offers several new ways of image ranking for search
engines. For instance, images can be ordered according
to subjectivity (distribution’s variance), the median instead
of mean of user ratings1, or other numerical characteristics
such as a specific quantile.

Our contributions can be summarized as follows:
1. A new representation strategy is presented based on the

analysis of the representation of the perceived VisQs of
photos. This new representation can capture the sub-
jectivity nature of the perceived VisQs of photos better.

2. A new structural regression algorithm (i.e., SVDR) is
proposed to handle the challenge that the label type

1For skewed distributions, the median is better than mean. We will in
the following section that most typical VisQ distributions are skewed.

is a (distribution) vector.
3. Two independent learning strategies (reliability-sensitive

learning and label refinement) are introduced to cope
with the difficulty brought by insufficient involved
users for some photos. Respectively combining SVDR
with reliability-sensitive learning and label refinement,
two separate learning algorithms are generated.

The rest of the paper is organized as follows. Section 2
discusses the proposed distribution representation and the
challenges in learning. Section 3 describes SVDR. Section
4 introduces two independent learning strategies regarding
unreliable labels and then two concrete learning algorithms.
Section 5 reports the experimental results. Finally, conclu-
sions are given in Section 6.

2. Distribution Representation and Challenges
in Prediction Model Learning

VisQ representation is a fundamental step in VisQ pre-
diction. It determines label type and subsequent model
learning. This section defines our representation strategy
and analyzes the challenges in model learning.

Basically, given a photo and its associated users rat-
ings, the representation relies on the transformation from
user ratings to a label. Assuming that there are Z ordi-
nal basic ratings and the set of basic ratings is denoted as
BRS (= {BR1, · · · , BRZ}). The user ratings for a photo
can be described by Sk = (Sk(1), · · · , Sk(Lk)), where
Sk(i) ∈ BRS is given by the i-th user and Lk is the number
of users who have rated the photo (rating users). Existing
studies usually employ a categorical label [2, 8] or a score
[3] to represent the VisQ. Take photos in Fig. 1 as an exam-
ple. The left photo’s user ratings are (0, 0, 0, 11, 0), while
the right photo’s are (0, 4, 3, 7, 11). Both their average
rating scores are “4” (the calculation of the right photo is
(2× 4 + 3× 3 + 4× 7 + 5× 11)/(4 + 3 + 7 + 11) = 4).
According to representation strategies in [2, 8], both their
categorical labels are “+1” and both their VisQ scores are
4. A binary classification or regression algorithm can be
applied to learning a VisQ classification or scoring model.

As presented earlier, a categorical label or a score is
insufficient to represent the perceived VisQ of a photo.
We make a statistical analysis on photo numbers (from
photo.net) according to average ratings (avgr) and standard
deviation of their user ratings (sdr). The value of sdr in-
dicates the inconsistence of a photo’s user ratings, with a
higher value meaning higher inconsistence. The histogram
is shown in Fig. 2. Num denotes the photo number located
in each avgr and sdr interval. Most photos’ avgr values
are located in [4.5, 5.5]. Photos in this interval are difficult
to handle by the categorical representation. Most photos’
sdr values are larger than 0.5, denoting that most photos
have inconsistent ratings. Hence, a more appropriate VisQ
representation strategy is required. We define a new repre-



Figure 2. The histogram of numbers of photos located in different
intervals.

sentation as follows:

yk = (pk1, · · · , pki, · · · , pkZ)T , (1)

where pki is defined as the proportion that the i-th basic
rating is chosen by users. Let δ() be the indication function.
pki is calculated as:

pki =
∑Lk

j=1
δ(Sk(j) = BRi)/Lk. (2)

When Lk → +∞, yk in Eq. (1) becomes the stable distri-
bution of the perceived VisQ for a photo. Based on Eqs.
(1) and (2), the VisQ labels of the two Fig. 1 photos
are (0, 0, 0, 1, 0)T and (0, 0.16, 0.12, 0.28, 0.44)T , respec-
tively. This representation captures the subjective nature of
VisQ better in three folds. (a) It carries more original infor-
mation about user ratings than a scalar value. (b) It is con-
sistent with the subjectivity of VisQ that a photo could be
perceived inconsistently. A distribution’s standard indicates
how subjective a photo’s VisQ is. The larger the standard
deviation, the more subjective the VisQ is. (c) A distribu-
tion can be transformed to a categorical label and a score in
classification or ranking photos according to VisQ.

A clustering analysis based on K-means for the VisQ dis-
tributions is performed on the data from photo.net. Figure
3 shows the cluster centers (typical rating distributions) of
users’ VisQ distributions over basic ratings (“3-7”) when
the number of clusters is set to 5. In Fig. 3, a curve in-
dicates a VisQ distribution where X-axis denotes the index
of basic ratings and Y-axis denotes the proportion of user
ratings. It can be observed that most representative distri-
butions are skewed. For skewed distributions, the median
value appears to be more appropriate to describe the distri-
butions than the mean value. The proposed distribution pre-
sentation can yield the median values, while existing pre-
sentations cannot.

Under the distribution presentation, the label type is a
(distribution) vector. The learning for this new label type
with online resources encounters two challenges:

i. Structural output. Predicting a VisQ distribution label is
a type of structural output learning problem. The out-
put label should satisfy: each entry is located in [0, 1]

Figure 3. Five cluster centers (VisQ distributions) over basic rat-
ings “3-7”. User ratings on “1-2” are rare.

and the sum of all entries is equal to 1. Therefore, con-
ventional classification (e.g., support vector machine)
and regression (e.g., neural networks) algorithms are
not directly applicable.

ii. Unreliable VisQ distribution labels. When constructing
the training set, a reliable VisQ distribution label of
a photo is crucial. Naturally, the larger the Lk, the
more reliable the distribution by Eq. (1) and Eq. (2) is.
However, some photos’ rating user numbers (Lk) are
limited. For instance, the numbers of rating users for
photos in Fig. 1 are 11 and 25, respectively, so their
distribution labels obtained by Eq. (1) are not very
reliable. As a result, the learned model is likely to be
unreliable and biased.

A new support vector distribution regression algorithm
(SVDR) is presented toward (i). Two independent learning
strategies are proposed toward (ii) and detailed in Section 4.

3. SVDR
Let f represent the pursued prediction function (model)

from the feature space X and the distribution label space
Y . Let P (x, y) denote the joint distribution and l(y, f(x))
denote the prediction loss. Then the learning of f is to min-
imize the following expected loss

R(f) =

∫
X×Y

l(y, f(x))dP (x, y) (3)

based on training samples {(x1, y1), · · · , (xN , yN )} ⊂
X × Y , where xi is a feature vector and yi is a distribution
vector calculated by Eq. (1). We propose a new algorithm
called SVDR to cope with the learning. SVDR is based on
a structural support vector machine [11], which provides a
natural way to address structural output learning.

Specifically, SVDR aims to learn a discriminate function
Φ : X × Y → R over the input feature and output dis-
tribution label pairs. With Φ, the prediction model f (or
distribution regression function) is

f(x) = argmax
y∈Y

Φ(x, y). (4)

Φ(x, ·) can be considered as a matching function. Ideally,
the maximum of Φ(x, ·) is found at the desired distribution



Figure 4. The correlation coefficients of user ratings on different
basic ratings.

label for an input x. Φ is assumed to be linear in some com-
bined features (denoted by (Ψ(x, y))) of inputs and outputs.

Φ(x, y) =< w,Ψ(x, y) >, (5)

where w denotes the parameter vector to be learned. Once
Ψ(x, y) and the loss function l(y, f(x)) are defined, the op-
timization for SVDR can be summarized as follows.

min
w,ξ

1
2∥w∥2 + C

N

N∑
i=1

ξi

s.t.∀i ∈ [1, N ], ξi ≥ 0
∀i ∈ [1, N ],∀y ∈ Y/yi :< w,∆Ψi(y) > ≥ l(y, yi)− ξi

(6)
where ∆Ψi(y) = Ψ(xi, yi)−Ψ(xi, y), ξ is a slack variable.
and C controls the model complexity. The following parts
discuss the definition of Ψ(x, y), the loss function l(, ), and
the mathematical solution details for Eq. (6).

3.1. The definition of Ψ(x, y)

The specific form of Ψ depends on the nature of the prob-
lem. In our study, Ψ is divided into two parts. (1) The
first part reflects the interactions between input features and
output distribution labels. (2) The second part captures the
correlations among the entries of output distribution labels.

Let D be the feature dimension. Motivated by multi-
class learning [11], the first part is defined as:

Ψ1(x, y) = x⊗ y = (x(1)y(1), ..., x(D)y(Z))T , (7)

where ⊗ is the tensor product.
To explore the correlations among entries of distribution

labels, we calculate the correlation of user ratings on dif-
ferent basic ratings using data from photo.net and dpchal-
lenge.net2. Their correlation efficiency maps are shown in
Figs. 4 (a) and (b), respectively. User ratings on most pairs
of basic ratings are correlated, especially the adjacent basic
ratings on the data from dpchallenge.net. To capture the de-
pendency between basic ratings, the second part of Ψ(x, y)
is defined as follows:

Ψ2(x, y) = (y(1)y(2), · · · , y(1)y(Z), y(2)y(3),
· · · , y(2)y(Z), y(3)y(4), · · · , y(Z − 1)y(Z))T

(8)

Hence, the definition of Ψ(x, y) is

Ψ(x, y) = [Ψ1(x, y)
T ,Ψ2(x, y)

T ]T . (9)
2The number of basic ratings in photo.net is seven. However, the first

two basic ratings receive few users’ ratings. Only the remaining five basic
ratings are considered and still named “1-5” in this study. The number of
basic ratings in dpchallenge.net is ten.

Figure 5. The cumulative distribution functions of y, y1 and y2.

3.2. The definition of loss function (l(, ))
A common loss function is:

l(1)(y,
⌢
y ) =

∥∥∥y − ⌢
y
∥∥∥2

2
. (10)

This loss function ignores that the pre-defined basic rat-
ings are ordinal. Therefore, it is inappropriate and be-
yond our intuition when calculating losses. Let us con-
sider the following exemplar distribution labels (five ordi-
nal basic ratings): y = (1, 0, 0, 0, 0)T , y′ = (0, 1, 0, 0, 0)T ,
y′′ = (0, 0, 0, 0, 1)T . According to Eq. (10), we have
l(1)(y, y′) = l(1)(y, y′′) = 2. These results are inconsis-
tent with our intuition that y′ is closer to y than y′′ because
the basic ratings are ordinal.

Assume that two distribution labels over BRS are de-
noted as ya and yb, respectively. At first, the cumulative
distribution functions (cda and cdb) of these two labels (dis-
tributions) are calculated by

cda(i) =

i∑
j=1

ya(j) and cdb(i) =

i∑
j=1

yb(j). (11)

where i = 1, · · · , Z. Then a new loss is defined as:

l(2)(ya, yb) =

Z−1∑
i=1

[cda(i)− cdb(i)]
2 (12)

With this new loss, the losses between the three exemplar
distributions are: l(2)(y, y′) = 1 < l(2)(y, y′′) = 4.

Another example is: y = (0.5, 0, 0.25, 0.25, 0)T , y1 =
(0, 0.5, 0.25, 0.25, 0)T , and y2 = (0, 0, 0.5, 0.25, 0.25)T .
y1 is closer to y than y2. If Eq. (10) is used, l(1)(y, y1) =
0.5 > l(1)(y, y2) = 0.375; if our proposed loss Eq. (12)
is used, l(2)(y, y1) = 0.25 < l(2)(y, y2) = 0.75. The re-
sults indicate the reasonableness of the proposed loss func-
tion. Their cumulative distribution functions (cdy , cdy1, and
cdy2) are shown in Fig. 5.

3.3. The solution of Eq. (6)
As y is continuous, the second class of constraints for

each yi in Eq. (6) is infinite. To handle this problem, for
each yi, a small working set storing most active constraints
is constructed to replace the complete infinite constraints.
Following the method proposed by [11], the construction
of the working set for a training sample (xi, yi) is given in
Algorithm 1. The maximum optimization problem in Algo-



Algorithm 1 Update the working set (WS) for (xi, yi) in
the t-th iteration
Input: (xi, yi), ε, wt−1, working set WSt−1(i).
Output: working set WSt(i).
Steps:
1. Compute ȳ = argmaxy∈Y Q(y), where Q(y) = l(yi, y)− <
wt−1,∆Ψi(y) >.

2. Compute ηi = max{0,maxy∈WSt−1(i)
Q(y)}.

3. If Q(ȳ) > ηi + ε, then WSt = WSt−1 ∪ ȳ, else, WSt = WSt−1.

rithm 1 is denoted as follows:

max
y

D∑
d=1

Z∑
ς=1

wt−1(Z · (d− 1) + ς)xi(d)y(ς)+

Z∑
ς=1

Z∑
η=ς+1

wt−1(Z(D + ς − 1)− ς(ς+1)
2

+ η)y(ς)y(η) + l(yi, y)

s.t.
Z∑

ς=1

y(ς)= 1, y(ς) ≥ 0, ς = 1, · · · , Z

(13)
The above problem can be solved via conventional opti-

mization techniques such as quadratic programming. Once
all the working sets are obtained, the second class of con-
straints of Eq. (6) becomes:

∀i ∈ [1, N ], ∀y ∈WSt−1(i) : < w,∆Ψi(y) >≥ l(yi, y)− ξi.
(14)

Then w is updated by solving the dual form of Eq. (6) using
the cutting-plane algorithm [6]. The algorithm stops if each
sample’s working set remains unchanged.

4. Learning Regarding Unreliable Labels
SVDR does not consider that some training samples’ la-

bels (distributions) are relatively unreliable. Two indepen-
dent strategies are proposed to alleviate the problem of un-
reliable labels.

At first, a reliability factor (rk) is introduced to measure
the reliability of a distribution label (yk) which is calculated
by Eq. (1) and Eq. (2) from the user ratings (Sk) of a photo.
The reliability factor depends on the number of rating users
Lk (= |Sk|). The larger the Lk, the larger the reliability
factor r3. The relationship between Lk and rk is:

rk = µ(Lk). (15)

where µ is required to be a non-decreasing function. As
rk should be set to 0 if Lk is 0 and to 1 if Lk is sufficiently
large, and each additional label should have marginal utility,
the function used in this study is:

µ(Lk) =

{
ln(Lk+1)

ln(Lk+1)+1
if Lk <= τ

1 otherwise
, (16)

where τ is a threshold. With the defined function above, two
independent learning strategies are introduced as follows.

3Lk reflects a photo’s popularity, importance, or interestingness. In a
statistical viewpoint, if each rating is taken as a random event, Lk reflects
the sample size. The larger the sample size, the larger the confidence level.

4.1. Reliabilitysensitive learning (RSL)
Intuitively, incorrect prediction losses of reliable photos

should be higher than those of less reliable ones. To this
end, the expected loss defined in Eq. (3) is modified to

R(f) =

∫
X×Y

r(y)l(y, f(x))dP (x, y), (17)

where r(y) is defined by Eq. (15). Eq. (17) places higher
punishments upon more reliable samples with inaccurate
predictions. When all labels are reliable, Eq. (17) is equal
to Eq. (3). In this study, learning under the risk of Eq. (17)
is called reliability-sensitive learning (RSL). RSL is similar
to the cost-sensitive learning [5]. A simple learning strategy
toward Eq. (17) is to define a new loss:

l′(y, f(x)) = r(y)l(y, f(x)). (18)

With the above loss, RSL can be solved directly using the
learning algorithms designed for Eq. (3).

4.2. Label refinement (LR)
Unlike RSL, this strategy aims at refining unreliable dis-

tribution labels. Motivated by the label propagation in semi-
supervised learning [14], the lower-reliable labels are iter-
ated refined via the propagation of information regarding
more reliable labels to less reliable labels.

Given N training data (xi, yi, ri), i = 1, · · · , N , which
are divided into two subsets: V , containing the data with
r = 1, and U , containing the data with r < 1. First, a
transformation matrix M is calculated and represented by:

M =

[
MV V MV U

MUV MUU

]
, (19)

where each entry is the normalized similarity of two cor-
responding training data for the sum of each row equal-
ing 1; MV V is the submatrix that describes the similari-
ties between samples in V ; likewise, MV U , MUV , MUU

also describe similarities of samples in corresponding sub-
sets V and U . Let YV =

[
y1, . . . , y|V|

]T and YU =[
y|V|+1, . . . , y|V|+|U|

]T
. The refinement rule is defined as:[

YV
T , YU

T
]
← r

[
YV (0)T , YU (0)

T
]
+ (1− r)M

[
YV

T , YU
T

]
,

(20)
where YV (0) and YU (0) are the samples’ initial distribution
labels, and

r =

 r1 0 0

0
. . . 0

0 0 rN

 =

[
rV 0
0 rU

]
=

[
1 0
0 rU

]
.

(21)
Then the following theorem is obtained.

Theorem 1 YV and YU in Eq. (20) are converged to

YV = YV (0)
YU = (1− (1− rU )MUU )

−1rUYU (0)
+ (1− (1− rU )MUU )

−1(1− rU )MUV YV (0)
. (22)



Algorithm 2 Label refinement
Input: (x1, S1), · · · , (xN , SN ), ε, t = 1.
Output: New distribution labels (Y ).
Steps:

1. Compute the distribution label (yi) and reliability factor (ri) of
each sample.

2. Calculate M and r.

3. Calculate new distribution labels using Eq. (20).

4. If ∥YU (t)− YU (t− 1)∥1 < ε, return [YV (0)T , YU (t)
T ]T ;

otherwise t = t+ 1 and goto Step 3.

The proof is omitted and is similar to the proof in [14].
In Eq. (22), YU consists of two components: values from

their initial labels YU (0), and values from reliable labels
YV (0). The higher the rU , the larger determinant of YU (0).
rU = 0, Eq. (22) becomes a common form of label propa-
gation; when rU = 1, YU = YU (0). When the number of
samples is large, an iterative LR is shown in Algorithm 2.

4.3. SVDR within the two learning strategies

4.3.1 Reliability-sensitive SVDR (R-SVDR)
Section 4.1 suggests that RSL learning can be solved by
conventional learning algorithms after reshaping the loss
function (see Eq. (18)). Hence, the loss function in Eq.
(12) is re-formulated as: l(3)(y, f(x)) = r(y)·l(2)(y, f(x)).
Then a reliability-sensitive SVDR (R-SVDR) can be ob-
tained by replacing the loss functions in Eq. (6), Eq. (13)
and Eq. (14) with l(3). Algorithm 3 shows the steps.

Algorithm 3 R-SVDR
Input: samples (x1, S1), · · · , (xN , SN ), ε, w0 = null, working

set WS0(i) = null, i = 1, · · · , N , Maxnum, t = 1.
Output: w.
Steps:

1. Compute the distribution (yi) and reliability factor (ri) of each
training sample.

2. Update the working set for each sample using Algorithm 1
based on l(3); if all working sets remain unchanged, return cur-
rent w and exit.

3. Replace the second class of constraints of Eq. (6) using Eq.
(14) based on the updated working sets.

4. Solve the dual form of Eq. (6) with the replaced constraints by
Eq. (14) and l(3) to obtain a new w.

5. t = t+ 1, if t > Maxnum, return w; otherwise goto Step 2.

4.3.2 Label refinement-based SVDR (L-SVDR)
Label refinement (LR) is first used to update unreliable dis-
tribution labels. Then SVDR is performed on refined labels.
The integrated algorithm is called L-SVDR, as shown in Al-
gorithm 4.

Algorithm 4 L-SVDR
Input: samples (x1, S1), · · · , (xN , SN ), ε, w0 = null, working

set WS0(i) = null, i = 1, · · · , N , Maxnum, t = 1.
Output: w.
Steps:

1. Compute the distribution (yi) and reliability factor (ri) of each
training sample.

2. Refine distribution labels using Algorithm 2.

3. Update the working set for each sample using Algorithm 1
based on l(2); If all working sets remain unchanged, return w
and exit.

4-5 are as the same as Steps 4-5 in Algorithm 3, where the loss
function is replaced by l(2).

In the experiments, to test the performances of L-SVDR,
the LR algorithm is performed on the training set and test
set independently.

5. Evaluations
This section verifies the effectiveness of the proposed

learning algorithms for the prediction of perceived VisQ
distributions of photos. The proposed algorithms will be
compared with methods that are slightly modified from
classical algorithms such as support vector machine (SVM).
In addition, the performance of the proposed algorithms us-
ing for classification and scoring is also evaluated.

5.1. Experimental data and setup
Two photo sets were constructed as the experimental

data. One called DS1 is collected from photo.net. The other,
called DS2, is collected from dpchallenge.net and based on
the data compiled by Datta [4]. DS1 contains 1224 images
and each image has 56 dimensional features described by
[2]. DS2 contains 9000 images, and the features are also
those described by [2]. The average of the number of rat-
ing users per photo on DS1 is approximately 28, while the
average is about 189 on DS2. Both sets are randomly di-
vided into two equal parts: one for training and the other
for testing. This division is repeated five times and the av-
erage results are recorded. In calculating reliability factors,
τ is set to 200. When running R-SVDR and L-SVDR, the
radial basis kernel is chosen. The parameters C and g are
searched via 5-cross validation in {0.1, 1, 10, 50, 100} and
{0.01, 0.1, 1, 10}, respectively.

Baseline methods: support vector regression (SVR) and
back propagation neural networks (BP) are used as compet-
ing methods. To make the presentation clear, SVR is still
named SVM in the following part. When applying SVR,
each dimension of distribution outputs is separately learned
and predicted. The parameters of SVM are searched simi-
lar to SVDR. For BP, the hidden neurons’ number is deter-
mined from {50, 100, 150, 200, 250}.

Three different losses are calculated: l(2), l(3), and the



Table 1. Competing algorithms on each loss.

Loss type Algorithms

l(2) SVM, BP, SVDR
l(3) SVM, BP, R-SVDR
l(4) SVM, BP, L-SVDR

Figure 6. Results on DS1.

Figure 7. Results on DS2.

l(2) on the refined distributions by LR are also calculated,
which is called l(4). The reason for using three different
losses is that there is no reliable ground-truth (note that
some distribution labels are unreliable), so only a single
measuring criterion appears to be unfair. Yet the foci of each
loss are different. The main goal of using l(2) is to compare
SVDR with classical algorithms. The goal of using l(3) is
to evaluate the performances of R-SVDR. The goal of us-
ing l(4) is to evaluate the performances of L-SVDR. Con-
sequently, when different losses are measured, the results
of different algorithms are reported. To clarify the com-
parisons, Table 1 lists each loss’s corresponding competing
algorithms. As introduced in Section 4.3.2, LR is indepen-
dently run on the test set.

5.2. Results on the DS1 set
On DS1, most samples’ reliability factors range from

[0.65, 0.85]. Figure 6 (a) shows the loss values of the
compared methods. Overall, the SVDR-series (SVDR, R-
SVDR, L-SVDR) achieves better results against the rest al-
gorithms. SVM and BP’s results are similar and inferior to
others.

What a user usually cares about is the proportion of rat-
ing distributions on “high”, “mediocre”, and “low” for a
photo’s VisQ. We repeated all of the above experimental
steps after transforming the BRS {1, 2, 3, 4, 5, 6, 7} to
a new BRS {1, 2, 3} by mapping the ratings “1-4” to “1”
(There is no user ratings on “1-2”), mapping “5” to “2”, and

Table 2. Results on different features for original BRS.
DS1 DS2

All Subset All Subset

SVDR (l(2)) 0.3017 0.2798 0.3500 0.3401
R-SVDR (l(3)) 0.2113 0.2056 0.2511 0.2524
L-SVDR (l(4)) 0.2509 0.2430 0.2871 0.2620

Table 3. Results on different features for transformed BRS.
DS1 DS2

All Subset All Subset

SVDR (l(2)) 0.2687 0.2590 0.1248 0.1203
R-SVDR (l(3)) 0.2550 0.2325 0.1207 0.1076
L-SVDR (l(4)) 0.2506 0.2470 0.1098 0.1061

mapping “6-7” to “3”. The results are shown in Fig. 6 (b).
SVDR-series obtains the lowest loss values.

5.3. Results on the DS2 set
On DS2, most samples’ reliability factors range in [0.8,

1]. Figure 7 (a) shows the overall loss values of the compet-
ing methods. It can be observed that SVDR-series achieves
similar results with BP and SVM. The underlying reason
is that: the number of ordinal basic ratings is ten, so the
dimension of Ψ(x, y) is high (56*10+9*10/2). Hence the
optimizations in SVDR-series are quite challenging and the
learned model may be underfitting. A larger number of
training samples and more complicated optimization algo-
rithms may be helpful to alleviate the underfitting.

We also repeated all of the above experimental steps after
transforming the BRS {1, 2,· · · , 10} to a new BRS {1, 2,
3} by mapping the ratings “1-5” (User ratings on ”1-2” are
few.) to “1”, and “6-7” to “2”, and “8-10” to “3”. The
results are shown in Fig. 7 (b). Similar observations to Fig.
6 are obtained.

5.4. Results on different features

Now we investigate how the performances of the pro-
posed algorithms vary with respect to feature selection. In
[2], fifteen image features (e.g., lightness, texture, etc) are
revealed to be more discriminative. Hence, all the compet-
ing algorithms are run with the fifteen features on DS1 and
DS2. Tables 2 and 3 show the results on the original BRS
and the transformed BRS as used in Sections 5.2 and 5.3,
respectively (‘All’ denotes all the original features, while
‘Subset’ denotes the fifteen ones). The comparison indi-
cates that only using partial more discriminative features
can lead to better results.

5.5. Results on VisQ scoring

As presented earlier, a VisQ distribution can also be ap-
plied to classifying and scoring a photo based on the dis-
tribution’s mean. We take the VisQ scoring as an example
to compare the proposed algorithms with existing regres-
sion methods. In VisQ scoring or regression, the residual
sum-of-squares error (RSSE) is reported. On DS1 (with



Table 4. Results of SVDR-series on reliable samples.
Data set R-SVDR L-SVDR SVDR

DS2 (10 basic ratings) 0.1459 0.1496 0.1685
DS2 (3 basic ratings) 0.0556 0.0561 0.0582

original BRS), the RSSEs of BP, SVR (support vector re-
gression), SVDR, R-SVDR, L-SVDR are 0.7123, 0.6909,
0.6812, 0.6917, 0.6687, respectively. On DS2 (with origi-
nal basic ratings), the RSSEs of BP, SVR, SVDR, R-SVDR,
L-SVDR are 0.7527, 0.7312, 0.7456, 0.7301, 0.7263, re-
spectively. The results show that our algorithms can achieve
slightly better performances than methods used in previous
work. Results for transformed BRS also indicate the similar
conclusion and are omitted due to lack of space.

5.6. Discussions
We have considered three losses (l(2), l(3), and l(4)) to

measure performances. In terms of l(2), SVDR is superior
to other methods. In terms of l(3), R-SVDR achieves the
best results. In terms of l(4), L-SVDR achieves the best
results. The comparison reveals that the SVDR-series cap-
tures the nature of the learning problem better, especially
the relationships between input features (X) and output dis-
tribution labels (Y ). Meanwhile, the experiments reveal that
only a subset of more discriminative features can improve
performances, and our algorithms can also be used to score
photos’ VisQs.

As there is no reliable ground truth, it is hard to com-
pare R-SVDR with L-SVDR. They are based on different
loss measurements (l(3) and l(4)). We note that the losses
of reliable samples under different loss functions are iden-
tical. Hence, only the reliable samples on the test sets are
selected to compare R-SVDR with L-SVDR. As the number
of reliable samples on the DS1 set is limited, only reliable
samples from DS2 are tested. The results are shown in Ta-
ble 4 (SVDR is also compared). R-SVDR is slightly better
than L-SVDR. This holds partly because R-SVDR directly
imposes high punishments to reliable samples in learning.
In addition, R-SVDR has lower computational complexity
than L-SVDR. Consequently, R-SVDR appears to be supe-
rior to L-SVDR. We note that the loss values on reliable
samples are lower than the average loss values on all the
test samples (see Figs. 6 and 7). SVDR is inferior to both
R-SVDR and L-SVDR on the reliable samples. These ob-
servations indicate that the proposed learning strategies are
effective.

6. Conclusions
Aesthetics is usually considered as subjective. In our

point of view, subjectivity should not be ignored in VisQ
research. This paper has reviewed VisQ representations
in previous literature. To capture the subjective nature of
VisQ better, a new representation that leverages a distribu-
tion vector over predefined ordinal basic ratings has been
provided. To cope with the difficulties in learning of a VisQ

distribution prediction model, a structural regression algo-
rithm (SVDR) and two separate learning strategies (RSL
and LR) are proposed. Their combinations yield two con-
crete algorithms: R-SVDR and L-SVDR. The experimen-
tal results demonstrate the better performances of the in-
troduced learning algorithms over several classical methods
(SVM and BP). Additionally, our algorithms achieve com-
parable results to existing work on scoring. In terms of the
performances on reliable samples, R-SVDR is better than
L-SVDR.

Future work will adapt the proposed distribution repre-
sentation and learning algorithms to other kinds of emotion
distribution prediction as discussed in [4].
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