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Abstract. Let P = GOH be the cartesian product of graphs G, H. We
relate the cover time COV[P] of P to the cover times of its factors.
When one of the factors is in some sense larger than the other, its cover
time dominates, and can become of the same order as the cover time of
the product as a whole. Our main theorem effectively gives conditions for
when this holds. The probabilistic technique which we introduce, based
on the blanket time, is more general and may be of independent interest,
as might some of our lemmas.
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1 Introduction

For a connected graph Let G, denote by V(G) and E(G) the vertex and edge
set respectively. The vertex cover time COVIG| of G is defined as the expected
time it takes a random walk to visit all vertices of the graph, maximised over
all possible starting vertices. This quantity is a fundamental area in the study
of random walks has been extensively studied giving rise to a large body of
theory and application. Let n = |V(G)| and m = |E(G)|. It is a classic result
of Aleliunas, Karp, Lipton, Lovdsz and Rackoff [1] that COV[G] < 2m(n —
1). It was shown by Feige [7], [8], that for any connected graph G, the cover
time satisfies (1 — o(1))nlogn < COVI[G] < (1 + o(1))5n®. Between these
two extremal examples, the cover time, both exact and asymptotic, has been
determined for a number of different classes of graphs.

In this work, we study the cover time of the cartesian product P of two graphs
G, H defined as follows:

Definition 1. The cartesian product P = GUH of finite connected graphs
G, H, is the graph such that

= V(P)=V(G) x V(H)

— ((a,2),(b,y)) € E(P) if and only if either
a, ) ( ) G/I'Ld r =y, or

a="band (z,y) € E(H)

For a natural number d, we denote by G? the d’th cartesian power, that is,
G¢ = G when d = 1 and G* = G '0OG when d > 1. We can think of P = GOH
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in terms of the following construction: We make a copy of one of the graphs,
say G, once for each vertex of the other, H. For the copy of G corresponding to
vertex ¢ € V(H), G, and a vertex a € V(G), we add an edge from a € G, to
a € G for all vertices y € V(H) such that (z,y) € E(H).

In the following, if z is a parameter, let zg represent that parameter for
a graph G. We have the following : n the number of vertices; m the number
of edges; § the minimum degree; 6 average degree; A the maximum degree; D
diameter.

In this paper we prove the following

Theorem 1. Let P = GOH where G, H are any connected, finite graphs. We
have

max { (Zf; + 1) COV/[H], (ZZ + 1) COV[G]} <cov[p] (1)

and

COV/[P] < K min { (1 + AG) COVI[H] +

OH
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e
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COV[G|Dy

Where M = |E(P)|, l =1log Dg log(ngDg) and K is a universal constant.

This extends much work done on the particular case of the two-dimensional
toroid on n? vertices, i.e., Z,0Z,, where Z, is the n-vertex cycle, and on powers
G? done by [9]. To prove Theorem 1, we present a framework to analyse the
cover time of a random walk on a graph which works by dividing the graph up
into (possibly overlapping) regions, analysing the behaviour of the walk when
locally observed on those regions, and then composing the analyses of all the
regions over the whole graph. The technique facilitates the analysis of the local
observation on a region by relating it to a walk on a graph derived from that
region. Thus the analysis of the whole graph is reduced to analysis of outcomes
on local regions and subsequent compositions of those outcomes. This framework
can be applied more generally than cartesian products. Some of the lemmas we
use may be of independent interest. In particular, Lemmas 7 and 8 provided
bounds on effective resistances of graph products that extend well-known and
commonly used bounds for the n x n lattice graph.

Our paper uses the very recently proved conjecture that the blanket time
of a graph is within a universal constant factor of the cover time. The blanket
time B[G] of a graph G, introduced in [12], is the expected time of the random
walk on G not only to visit every vertex, but to visit all vertices more-less
uniformly (the exact definition given in 2.2). Our analysis is an example of how
to exploit the relation B[G] = O(COV][G]). The lower bound in Theorem 1
implies that COV[GOH| > COV|[H], and the upper bound can be viewed as
providing conditions sufficient for COV[GOH] = O(COV|[H]). For example,
COV[z,0Z,] = O(COV|Z,]) = 6(¢?) subject to the condition plog® p = O(q).
Thus for this example, the lower and upper bounds in Theorem 1 are within a
constant factor
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2 Preliminaries

2.1 Some notation

We make use of the following notation: For a graph G let V(G) and E(G) denote
the vertex and edge set of G respectively. For a random variable A representing
a function of a walk, and a vertex u € V(Q) let E,[A] represent the expectation
of A when the walk starts at w. Let 7(u) be a random variable representing
the first time that u is visited by the walk and x(G) the first time every vertex
in G has been visited by the walk. H[u,v] = E,[7(v)] is the hitting time from
u to v, COM|u,v] = H[u,v] + H[v,u] is the commute time between u and wv.
COV([G] = max,ecv(c) Eu[k(G)] is the cover time of a graph G. Let HT[G] =
max, , H[u,v]. The function d(u) gives the degree of vertex u. For clarity, and
because a vertex u may be considered in two different graphs, we may use dg(u)
to explicitly denote the degree of u in graph G.

L,, denotes the n’th harmonic number, that is, L, = Z?zl 1/i. Note L,, =
logn + v+ O(1/n) Where v ~ 0.577. In this paper all logarithms are base-e.

2.2 Blanket time

Definition 2 ([12]). For a graph G, and ¢ € [0,1) define the random variable
Bs(G) = min{t : (Vo)N,(t) > dm,t} where N,(t) is the number of times v has
been visited by time t and w, is the stationary probability of verter v. The blanket
time B;[G] = max,cv (q) Ey[Bs(G)].

The following was very recently proved.

Theorem 2 ([5]). For any graph G, and any 6 € (0,1), we have
Bs[G] < ¢(6)COVI[G] (3)
Where the constant c(8) depend only on 6.

As stated in [12], this is equivalent to saying that the expected time until each
vertex v is visited 7, COV[G] times - which we shall refer to as the blanket-cover
criterion - is O(COVIQG]).

2.3 Random walks and electrical networks

We give some key facts and ideas relevant to this work, drawing on [10], which
discusses electrical network theory in the wider context of Markov chains. [6]
is the classical treatment. Consider a finite, connected graph G = (V, E) with
edge weights {c(e) : e € E}. For a vertex u, let c(u) = >, (, »)ep ¢(u, v) with
each loop counted once, and let ¢(G) = >, -y, c(u). In the language of electrical
network theory, the weight c(u,v) is known as the conductance of the edge
(u,v), and the resistance r(u,v) = 1/c(u,v). The random walk on G defined by
the transition matrix P(u,v) = c(u,v)/c(u) defines a reversible Markov chain
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with the vertices of G as states and the transition matrix P. The stationary
distribution is 7(u) = ¢(u)/c(G). Conversely, every reversible Markov chain can
be shown to be a network. Thus the two are equivalent. A flow f is an asymmetric
function on oriented edges, i.e., for (u,v) € E(G), f(u,v) = —f(v,u) and net
flow f(u) at avertex uis >, , ,ep@ f(u,v). Wenote -, () f(u) = 0. For
vertices a, z, a flow from a to z f is a flow with the additional properties that
(i) f(u) = 0 for all u € V(G)\{a, z} and (ii)the strength of the flow f(a) > 0.
The energy £(f) of a flow from a to z, f is defined as E(f) = > cp f(e)r(e)
where the sum is over unoriented edges (i.e., each edge is considered once). We
have the following

Lemma 1 (Thomson’s principle). For any finite connected graph, the effec-
tive resistance R(a, z) between a and z is such that

R(a,z) = min{&(f) : f is a unit flow from a to z}. (4)
There is unique minimiser in the above known as the current flow.

This allows us to say that the energy of any unit flow we contruct is an
upperbound on effective resistance. The following facts are useful. Series law
Edges (a,b), (b,c¢) with can be replaced by a single edge (a,c) with r(a,c) =
r(a,b) + r(b,c) if there are no other edge incident on b. Parallel law Paral-
lel edges (a,b)1, (a,b)2 can be replaced by a single edge (a,b) with c(a,b) =
c((a,b)1) + ¢((a,b)2). Shorting law Adding an edge of zero resistance between
two vertices is equivalent to merging them into one vertex, and cannot increase
effective resistance anywhere in the network. Cutting law Removing an edge
with positive conductance cannot decrease effective resistance anywhere in the
network. Monotonicity law The effective resistance between two given vertices
is monotonic in the resistances of the edges in the whole network.

The k x k lattice graph P?, where Py is the k-path, plays an important role
in our work. We shall analyse random walks on subgraphs isomorphic to this
structure. It is well known in the literature (see, e.g. [10]) that for any pair of
vertices u,v € V(P?), we have R(u,v) < Clogk where C is some universal
constant. We shall quote part of [9] Lemma 3.1 in our notation and refer the
reader to the proof there.

Lemma 2 ([9], Lemma 3.1). (a) Let u and v be any two vertices of PZ. Then
R(u,v) < 8Ly, where Ly, is the k’th harmonic number.

The following important lemmas are widely used in the field
Lemma 3 ([3]). For vertices u,v € V(G)
COM]u, v] = ¢(G)R(u,v) (5)

Lemma 4 ([11]). For a finite connected graph G, (a) COV[G] < HY[G]L,,.
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3 Related work

A d-demensional torus on N = n? vertices is the d’th power of an n-cycle, ZZ.
The behaviour of random walks on this structure is well studied. It is well-known
(see, e.g., [10]) that COV][ZL] = O(N(log N)?) when d = 2 and COV[Z%] =
O(N log N) when d > 3. [4] gives COV([Z2] ~ L N(log N)?. [9] extends the study
of graph powers giving the following theorem

Theorem 3 ([9], Theorem 1.2). Let G = (V, E) be any connected graph on
n vertices with O = 2|E|/n. Let d > 2 be an integer and let N = n®. Ford = 2,
COV[G? = O(8gN (log N)?) and for d > 3, COV[GY] = O(0gN log N). These
bounds are tight.

[2] gives a number of theorems related to random walks and effective resis-
tance between pairs of vertices in graph products. To give the reader a flavour
we quote Theorem 1 of that paper, which is useful as a lemma implicitly in
this paper and in the proof of [9] Theorem 1.2 to justify the intuition that the
effective resistance is maximised between opposite corners of the square lattice.

Lemma 5 ([2], Theorem 1). Let P, be an n-vertex path with endpoints x and
y. Let G be a graph and let a and b be any two distinct vertices of G. Consider the
graph G x P,,. The effective resistance R((a,z),(b,v)) is mazimised over vertices
v of P, atv=y.

For P? this is used twice: R((0,0), (r,s)) < R((0,0),(n — 1,5)) < R((0,0), (n —
1,n—1)).

4 Locally observed random walk

Let G = (V, E) be a connected, unweighted (equiv., uniformly weighted) graph.
Let S C V and let G[S] be the subgraph of G induced by S. Let B = {v €
S 3z & S, (v,z) € E}. Call B the boundary of S, and the vertices of V\S
exterior vertices. If v € S then dg(v) (the degree of v in G) is partitioned into
d(v,in) = |N(v,in)| = |[N(v)NS| and d(v, out) = |N (v, out)| = |[N(v)N(V —S5)],
(inside and outside degree). Here N(v) denotes the neighbour set of v.

Let w,v € B. Say that u,v are exterior-connected if there is a (u,v)-path
U, &1, ...k, v where z; € V\S,k > 1. Thus all vertices of the path except u, v are
exterior, and the path contains at least one exterior vertex. Let A(B) = {(u,v) :
u, v are exterior-connected }. Note A(B) may include self-loops.

Call edges of G[S] interior, edges of A(B) exterior. We say that a walk
w = (u,x1,...x%,v) on G is an exterior walk if u,v € S and z; ¢ S, 1 <i < k.

We derive a weighted multi-graph H from G and S as follows: V(H) = S,
E(H) = E(G[S])UA(B). Note if u,v € B and (u,v) € F then (u,v) € E(G[S]),
and if, furthermore, u,v are exterior connected, then (u,v) € A(B) and these
edges are distinct, hence, H may not only have self-loops but also parallel edges,
ie., E(H) is a multiset.



6 Mohammed Abdullah, Colin Cooper, and Tomasz Radzik

Associate with an orientation (u,wv) of an edge (u,v) € A(B) the set of
all exterior walks w = (u,x1,...2k,v), k& > 1 that start at v and end at v,
and associate with each such a walk the value p(w) = 1/(dg(u)dg(x1)...da(xk))
(note, the d(x;) is not ambiguous, since x; ¢ E(H), but we leave the ‘G’ subscript
in for clarity). This is precisely the probability that the walk w is taken by a
simple random walk on G starting at u. Let

pr(u,v) =3 > pw), (6)

k>1w=(u,z1...2k,v)

where the sum is over all exterior walks w.
We set the edge conductances (weights) of H as follows: If e is an interior
edge, c(e) = 1. If it is an exterior edge e = (u,v) define c(e) as

o) = doupn(uv) =YY g = do(0pa(v )
7)

Thus the edge weight is consistent. A weighted random walk on H is thus a
finite reversible Markov chain with all the associated properties that this entails.

k>1w=(u,z1...2%,v)

Definition 3. The weighted graph H derived from (G,S) is termed the local
observation of G at S, or G locally observed at S. We shall denote it as H =
Loc(G, S).

The intuition in the above is that we wish to observe a random walk W(G)
on a subset S of the vertices. When W(G) makes an external transition at the
border B, we cease observing and resume observing if/when it returns to the
border. It will thus appear to have transitioned a virtual edge between the vertex
it left off and the one it returned on. It will therefore appear to be a weighted
random walk on H. This equivalence is formalised thus

Definition 4. Let G be a graph and S C V(G). For a (unweighted) random walk
W(G) on G starting at xog € S, derive the Markov chain M(G,S) on the states
of S as follows: (i) M(G, S) starts on xqg (ii) If W(G) makes a transition through
an internal edge (u,v) then so does M(G, S) (11t)If W(G) takes an exterior walk
w = (u,x1...x,v) then M(G,S) remains at u until the walk is complete and
subsequently transitions to v. We call M(G,S) the local observation of W(G)
at S, or W(G) locally observed at S.

Lemma 6. For a walk W(G) and a set S C V(G), the local observation of
W(G) at S, M(G,S) is equivalent to the weighted random walk W(H) where
H = Loc(G, S).

Proof. See Appendix.
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5 A general bound

We give COV[P] bounds in terms of H, and by symmetry, Theorem 1 can
be inferred. The lower bound is easy: It is clear that the H dimension needs
to be covered - that is, each copy of G needs to be visited at least once. The
probability of moving through the H dimension is at least ﬁ, and the lower
bound follows.

For the upper bound, we first require the following lemmas. Denote by
Ripaz(G) the maximum effective resistance between any pair of vertices in a
graph G.

Lemma 7. For a graph G and tree T, Rpa.(GOT) < 4Ry (GOP,.) where
[V(T)| <r <2|V(T)| and P, is the path on r vertices.

Proof. Note first the following: (i) By the parallel law, an edge (a,b) of unit
resistance can be replaced with two parallel edges between a, b, each of resis-
tance 2. (ii) By the shorting law, a vertex a can be replaced with two vetices
a1, as with a zero-resistance edge between them and the ends of edges incident
on a disributed arbitrarily between a; and as. These transformations preserve
electrical properties of a network.

Let FF = GOT. Starting from some vertex v in T, perform a depth-first search
(DFS) of T stopping when all vertices in T have been visited. Each edge of T
is traversed at most twice; once in each orientation (though a particular vertex
x will be visited up to d(z) times). Let (e;) be the sequence of oriented edges
generated by the search. The idea is to use (e;) to construct a transformation
from F = GOT to GOP,. From (e;), we derive another sequence (a;), which
is generated by following (e;) and if we have edges e;,e;41 with e; = (a,b),
e;i+1 = (b,c) such that it is neither the first time nor the last time b is visited
in the DF'S, then we replace e;, e;41 with (a,c). We term such an operation an
aggregation. Consider F; by (i) above we can replace each unit-resistance edge
by a pair of parallel edges each of resistance 2. For a pair of parallel edges in
the T dimension, arbitrarily label one of them with an orientation, and label
the other with the opposite orientation. Note, orientations are only an aid to the
proof, and are not a flow restriction. We therefore see that (e;) can be interpreted
as a sequence of these parallel oriented edges. Now we modify F' using (a;): If
(a,b), (b,c) was aggregated to (a,c), then replace each pair of oriented edges
((z.a), (x,b)) and ((z,b)(z,c)) in F with an oriented edge ((z,a),(x,c)) and
set the resistance of it the sum of the resistances of the replaced edges. This
operation is the same as restricting flow through ((z.a), (x,b)) and ((z,b)(x, c))
to only going from one to the other at vertex (z, b), without the possiblity of going
through other edges, The infimum of this subset of flows is at least the infimum
of the previous set and so by Thomson’s principle, the effective resistance cannot
be decreased by this operation.

For each copy of G in F' excluding those that do not correspond to a leaf
of T, by(ii), we can do the following: Create a “twin” copy by associating with
each vertex x € V(F) (except those excluded) a twin vertex z’, putting a zero-
resistance edge between z and z’. We then (a) redistribute the parallel edges in
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the G dimension so as to preserve structural isomorphism between each copy and
G and (b) redistribibute edges in the T" dimension so as to respect the sequence
(a;). This means that when we trace (a;) via any vertex x € V(G), then if we
have (a,b), (b, ¢) in (a;), we must have the corresponding path of oriented edges
((z,a), (z,b)), ((x,b), (z,c)). We then remove the zero-resistance edges between
each pair of twin vertices, and by Rayleigh’s cutting law, this cannot decrease
the effective resistance. Using the sequence (a;) to trace a path of copies of
G along the T dimension, we see that the resulting structure is isomorphic to
GOP,. Since the aggregation process only aggregates edges that pass through a
previously seen vertex, r is at least k. Also, because each edge is traversed at
most once in each direction, r is at most 2k. Each edge has resistance at most
4, and so the theorem follows.

Lemma 8. For graphs G, H with with Dg = k andk < ng < Rk, Ry (GOH) <
32(3+ R)Ly, < (Rlog D¢ where Ly, is the k’th harmonic number and ¢ is some
universal constant.

Proof. Let (a,z),(b,y) be any two vertices in GOH. Let D be some diametric
path of G. Let (a, D) represent the shortest path from a to D in G (which may
trivially be a if it is on D). Similarly with (b, D). Let Tp = D U {a, D) U (b, D).
Note k < |V(Tp)| < 3k. Now let Ty be any spanning tree of H. Applying
Lemma 7 twice we have

Ronae(TpOTH) < ARmae(TpOP,) < 16 Rimas (P.OP;) (8)

where k < r < 6k and k < s < 2Rk. Considering a series of connected P,f
subgraphs and using the triangle inequality for effective resistance, we have
Rinaz(P-OP;) < 32(34 R)Lj, and the theorem follows.

Lemma 8 gives us an upperbound of (log D¢ for the effective resistance in a
block (definition below), which in turn allows us to bound the maximum hitting
time within a block, and therefore the cover time via Matthews’ technique.

The following proves the upperbound in Theorem 1.

Theorem 4. Let P = GOH where G, H are any connected, finite graphs. We

have

Ag

COV[P| < K ((1 + ) COVI[H] + (9)

Mmeamgngl?
Om

COV[H]|Dg

where | =log D¢ log(ngDg) and K is some universal constant.

Proof. We group the vertices of H into sets such that for any set S and the
subgraph of H induced by S, H[S]: (i)|S| > D¢, (ii)H[S] is connected, (iii)
The diameter of H[S] is at most 4D¢. We demonstrate this grouping is possible
through the following algorithm on H: Choose some arbitrary vertex v as the
root, and using a breadth-first search (BFS), descend from v at most distance
D¢. The resulting tree T'(v) will have diameter at most 2D¢. For each leaf I of
T(v), continue the BFS using ! as a root. If T'(I) has fewer than D¢ vertices,
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append it to T'(v). If not, recurse on the leaves of T'(l). Each tree then forms a
group that satisfies the three conditions above. The root is part of a new group,
unless it has been appended to another tree.

In the product P we refer to copies of G as columns. In P we have a natural
association of each column with the set S C V(H) defined above. We denote
by Block[S] the set of columns in P associated with S union with all edges
incident on vertices in those columns. Therefore Block[S] = (GOH[S])U{(u,v) €
E(P):u e V(GOHIS])} (note, this is not a graph since it contains edges with
free ends). For any two vertices (.a), (.,b) € Block[S] we can find a connected
subgraph T'(a,b) of the tree T' that generated S such that a and b are connected
in T(a,b) and Dg < |V(T(a,b))| < 4Dg. Then using Lemma 8, we can bound
the effective resistance R((.a),(.,b)) < 4¢log Dg.

Hence

Ryyaz(Block]S]) < 4¢log Dg (10)

Similarly, GHH[S]| C Loc(P,V (Block[S])), and so

Rz (Loc(P, V(Block[S]))) < 4¢log D¢ (11)

It is envisaged that the following is used with the idea in mind that G is small
relative to H, and so the cover time of the product is essentially dominated by
the cover time of H.

We use the following two-phase approach

Phase 1 Perform a random walk on W(P) until the blanket-cover criterion is
satisfied for the H dimension.

Phase 2 Starting from the end of phase 1, perform a random walk on P until
all vertices of P not visited in phase 1 are visited.

Phase 1 can be thought of in the following way: We couple W(P) with a walk
W(H) such that (1)if W(P) starts at (., z), then W(H) starts at x, and (ii) W(H)
moves to a new vertex y from a vertex x when and only when W(P) moves from
(.,x) to (.,y) for the first time. This coupled process runs until W(H) satisfies
the blanket-cover criteria for H, ie, when each vertex u € V(H) has been visited
at least m(u)COV/[H] times.

Having grouped P into blocks, we analyse the outcome of phase 1 by relating
W(P) to the local observation on each block. A particular block B will have
some vertices unvisited by W(P) if and only if W(P) locally observed on B fails
to visit all vertices. We refer to such a block as failed. Consider the weighted
random walk W(B’) on B’ = Loc(P,V(B)). This has the same law as W(P)
locally observed on B. Hence, we bound the probability of W(P) failing to cover
B by bounding the probability that W(B’) fails to cover B’. Done for all blocks,
we can bound the expected time it takes phase 2 to cover the failed blocks. We
think of phase 1 as doing most of the “work”, and phase 2 as a “mopping up”
phase. Mopping up a block in phase 2 is costly, but if there are few of them, the
overall cost is within a small factor of phase 1.

We bound Pr(W(B’) fails) by exploiting the fact that W(B’) will have
made some minimal number of transitions ¢. This is guaranteed because phase
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1 terminates only when W(H) has statisfied the blanket-cover criterion on
H, that is, each vertex u € V(H) has been visited at least m(u)COV[H]
times, so each column G, in P will have been visited at least that many times.
If k counts the number of steps of a walk W(B’) until B’ is covered, then
Pr(W(B') fails to coverB’) = Pr(x > t) < E[]/t by Markov’s inequality.

Definition 5. For graphs I = JOK, and S C I, denote by S.J the projection
of S on to J, that is, S.J ={ue€ J: (u,.) € S}.

For a weighted graph G recall ¢(G) is the total conductance (weight) of all
edges of G.

Let B be a block and let B’ = Loc(P,V(B)). By Section 4 ¢(B’) = ¢(B),
given by the following

o(B) <mgl{u € V(B).H} +na Y du) (12)
w€V(B).H

Using 11 and Lemma 3 we therefore have for any u,v € V(B’), COM][u, v] <
Kc(B')log D¢ for some universal constant K. (In what follows K will change,
but we shall keep the same symbol, with an understanding that what we finish
with is a univeral constant). Hence, by Lemma 4

COV|[B']| < Ke¢(B')log D log(|V(B')|) = Ke(B)lg (13)

where I = log D¢ log(|V(B)|)

For a block B, the number of transitions on the H dimension - and therefore
the number of transitions on B - as demanded by the blanket-cover criterion is
at least

Z COV[H]|n(u) = %[H] Z d(u) (14)
weV(B).H " wevm)H
Now
Pr(W(P) fails on B) = Pr(W(B’) fails on B') (15)
< Ke(B)lp %}IH] >oodw) | . (16)
weV(B).H

The second equality by Markov’s inequality.

Phase 2 consists of two components: movement between failed blocks, and
covering a failed block it has arrived at. The total block-to-block movement is
upperbounded by the time is takes to cover the H dimension of P (in other
words, for each column to have been visited at least once). We denote this
by COV p[P.H]. Denoting the covertime of a block B by the walk W(P) by
COVP [B]a
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E[Ph2] < COVp[P.H]+ Y Pr(W(P) fails on B)COVp[B]  (17)
BeP

For W(H), the r.v. fg = min{t : (Vo)N,(t) > 7(v)COV[H]} counts the
time it takes to satisfy the blanket-cover criterion on H.

The expected number of movements on P per movement on the H dimension
is at most %. Therefore E[Phl] < A%iJfHE[BH]. Similarly, COV p[P.H| <
2¢Hn COVI[H].

Using 10 and Lemmas 3 and 4 again, we have COV p[B] < K'¢(P)lp where
¢(P) = |E(P)| = M. Theorem 2 gives us Efyg < KCOV|[H], for some universal
constant K and so

COV/[P] < E[Phl] + E[Ph2)] (18)
A
< KL‘SHCOV + ) Pr(W(P) fails on B)COV p[B](19)
O BeP

We have, using 16

2
Z Pr(W(P) fails on B)COVp[B] < K Mmp o(B)lg
Bep COV[ ] BeP ZueV(B).H d(“)

and

(20)

3 ) <Z< mG|{uev<B>.H}|>l% 1)

Bep ZueV(B) ud Bepr ZuGV(B).H d(u)

Since Y, ey (p).i d(uw) = [{u € V(B).H}|, we have

3" Pr(W(P) fails on B)COVp[B] < gMmems § 12 (22)
K-Govia]
BeP BeP
MmeHTLHZ
_r - C 2
COV[H] D (23)

where | = log D¢ log(ngDeg)
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A Appendix

A.1 Proof of Lemma 6

The states are clearly the same so it remains to show that the transition prob-
ability Paq(u,v) from u to v in M(G, S) is the same as Py (g (u,v) in W(H)
. Recall that B is the border of the induced subgraph G[S]. If u ¢ B then an
edge (u,v) € E(H) is internal and so has unit conductance in H, as it does in
G. Furthermore, for an internal edge e, e € E(H) if and only if e € E(G), thus
di(u) = dg(u) when u ¢ B. Therefore Py py(u,v) = 1/dg(u) = 1/da(u) =
PM (u, ’U).

Now suppose u € B. Let E(u) denote the set of all edges incident with u
in H and recall A(B) above is the set of exterior edges. The total conductance
(weight) of the exterior edges at w is

Z cu(e) = Z Z Pr(walk from x returns to B at v)

e€E(u)NA(B) z€N (u,out) vEB

o1

z€N (u,out)
= d(u, out).

(Note the ‘H' subscript in ¢y (e) above is redundant since exterior edges are only
defined for H, but we leave it for clarity).
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Thus for u € B

cy(u) = Z cul(e) = Z 1+ Z cu(e)

e€E(u) e€E(u)NG[S] e€E(u)NA(B)
= d(u,in) + d(u, out)
= dg(u)

Now

1 1
Pule) =Yomeaon ooy ¥ 2 2 it da) )

k>1w=(u,x1...05,v)

where the sum is over all exterior walks w. Thus

1
PM(U7’I)) = 1{(u,v)€G[S]}m +pH(1J,u) (25)
1
Py (u,v) = on (@) [Li(uvyecis) + L{wmeacs)ycn (u,v)] (26)
1

= [Liwvyecis) + Lwmeas)yde(Wpm(v,u)]  (27)
c(u)

1
= 1{(u,v)EG[S]}m + Li(uvyea(s)ypu (v, u) (28)
= Pp(u,v) (29)



