
Technical debt in Model Transformation
specifications

K. Lano, S. Kolahdouz-Rahimi, M. Sharbaf

Dept. of Informatics, King’s College London
Email: kevin.lano@kcl.ac.uk

Dept. of Software Engineering
University of Isfahan, Iran

Email: { sh.rahimi, m.sharbaf }@eng.ui.ac.ir

Abstract. Model transformations, as with any other software artifact,
may contain quality flaws. Even if a transformation is functionally cor-
rect, such flaws will impair maintenance activities such as enhancement
and porting. The concept of technical debt (TD) models the impact of
such flaws as a burden carried by the software which must either be
settled in a ‘lump sum’ to eradicate the flaw, or paid in the ongoing
additional costs of maintaining the software with the flaw. In this paper
we investigate the characteristics of technical debt in model transforma-
tions (MT), analysing a range of MT cases in different MT languages,
and using appropriate measures of quality flaws or ‘bad smells’ for MT,
adapted from code measures.
We identify significant differences in the level and kinds of technical debt
in different MT languages, and we propose ways in which the TD level
can be reduced.

1 Introduction

This paper will investigate the issue of technical debt (TD) [24] in MT. Technical
debt refers to the short and long-term impact of software quality flaws such as
duplicated code. The principal cost of TD is incurred when refactoring or other
redesign is used to remove the TD from the software, whilst the interest is paid
in the additional cost due to the TD each time the software is maintained.

The concept of TD was initially applied to code artifacts, but can also be
extended to analysis and design models [3].

In the MDE context, model transformations are a key software resource,
which enable MDE processes such as the production of software and documen-
tation from models, the synchronisation of models, and model comparison. Thus
the quality and maintainability of MT are likely to be important factors in
the successful use of MDE. Our own experience with large code generators [20]
confirms this, and the issue of MT maintenance is also evident in some of the
industrial MT cases of [27].

The high-level goal of our research is to quantify, and characterise the na-
ture of, technical debt in model transformations development. We will adopt the



goal-question-metric (GQM) approach of [4] to decompose this goal into specific
questions and metrics. The goal leads to the following research questions:

RQ1: What is the extent of TD in MT cases?
RQ2: What are the most frequent forms of quality flaw in MT cases?
RQ3: Does the level and character of TD vary between MT languages and

between MT categories?
RQ4: Is there a difference between TD in MT languages and TD in traditional

programming languages?

The questions imply that a significant sample of transformations must be
surveyed, for a range of transformation languages and categories. We will use
published and machine-readable transformation cases, and public repositories
of transformations. Only cases where the complete code of the transformations
is available will be considered. We survey the ATL and QVT-R transformation
languages because these are the most widely-used MT languages by practition-
ers [?]. We also consider ETL and UML-RSDS, which are MT languages with
distinctive features whose impact on TD levels is of interest.

2 Metrics for technical debt

Following on from the research questions, we need to find concrete measures
which quantify the aspects (TD and categories of TD) which the questions refer
to. Measures of various ‘bad smells’ or quality flaws are typically used as metrics
of TD in code. However, these need adaption when used for declarative or hybrid
MT specification languages: MT specifications define their effect in a less proce-
dural manner than code, they are usually more concise, and do not usually have
a direct concept of class or association. Thus the threshold values for measures
of size will usually be lower than corresponding code measures [8].

Therefore we define measures specific to MT specifications, adapting TD
measures Excessive Class Length, Excessive Method Length, Excessive Parameter
Length, Duplicate Code, Cyclomatic Complexity, Coupling Between Objects, Too
Many Methods to the MT context.

Based on our experience of developing and maintaining MT specifications, we
considered that the following were the most significant factors in impeding the
understanding and maintenance of MT specifications: size; semantic complexity
(of expressions, rules and operations); complexity of relationships and depen-
dencies between rules/operations; redundancy. These impact the Analysability,
Changeability and Testability quality characteristics of software as defined in
the ISO/IEC 9126-1 quality model [9]. In practice they manifest as:

– Excessively large transformations, with many rules/operations and/or high
total length (MT size factor)

– Unclear rule precedence or execution order (MT rule dependency factor)
– Excessively complex expressions (MT semantic complexity factor)
– Excessive rule or operation length (MT size factor)



– Excessive numbers of parameters/auxiliary variables for a rule, transforma-
tion or operation (MT semantic complexity factor)

– Duplicated expressions or code (MT redundancy factor)

– Complex rule or code logic (MT semantic complexity factor)

– Complex calling relations between rules, especially cyclic relations (self or
mutual recursion). Inheritance of rules/operations is also counted as a depen-
dency of the generalised rule/operation upon the specialised rules/operations.
(MT rule dependency factor)

– Excessive numbers of rules/operations called from one rule or operation (MT
rule dependency factor).

The size of software artifacts is often measured in terms of lines of code
(LOC). However, LOC in different software languages are not comparable, be-
cause of the differing syntax and density of functionality in different languages.
Thus, typically, a line of a MT language such as ATL will contain more func-
tionality than a line of Java. We will investigate how LOC correlates with other
measures of size. In particular, a measure c(τ) of the semantic content of a
model transformation specification τ will be used, based on the complexity of
expressions/activities in the transformation: the total number of operators and
identifiers in OCL constraints or in activities/statements. Each of ATL, ETL,
QVT-R and UML-RSDS have similar expression languages based on OCL, and
ATL, ETL and UML-RSDS have similar activity languages. Table 1 summarises
the semantic size measure c(e) for OCL expressions e. c(e) can be considered
a count of the number of basic semantic elements in a specification (identifiers
plus operators). We also include a token count measure t(e), which is used for
clone detection.

Expression e Complexity c(e) Token count t(e)

Numeric, boolean or 0 1
String value

Identifier iden 1 1
Basic expression obj .f c(obj ) + c(f ) + 1 t(obj ) + t(f ) + 1

Operation call e(p1, ..., pn) c(e) + 1 +Σic(pi) t(e) + n + 1 +Σi t(pi)

Unary expression op e 1 + c(e) 1 + t(e)
e→op() 4 + t(e)

Binary expression e1 op e2 c(e1) + c(e2) + 1 t(e1) + t(e2) + 1
e1→op(e2) t(e1) + t(e2) + 4

Ternary expression op(e1, e2, e3) c(e1) + c(e2) + c(e3) + 1 t(e1) + t(e2) + t(e3) + 5
if e1 then e2 t(e1) + t(e2) + t(e3) + 4
else e3 endif

Set{e1, ..., en} 1 +Σic(ei) 2 + n +Σi t(ei)
Sequence{e1, ..., en}

Table 1. OCL expression complexity measures



The c(e) measure is related to the effort needed to comprehend an expression
[5]. For example, to understand the expression E→exists(P), a MT developer
needs to understand E , P and the effect/meaning of the quantifier operator. The
measure of rule size adopted in [26] is also based on the expression complexity:
they count nodes, edges and attributes in a graph pattern, corresponding to
objects, association navigations and attribute evaluations in OCL.

A similar measure can be given to activities (Table 2 shows the values for
UML-RSDS syntax, similar definitions can be given for the ATL and ETL state-
ment syntax).

Activity s Complexity c(s) Token count

return e 1 + c(e) 1 + t(e)

v := e c(v) + c(e) + 1 t(v) + t(e) + 1

s1; s2 c(s1) + c(s2) + 1 t(s1) + t(s2) + 1

Operation call e(p1, ..., pn) c(e) + 1 +Σic(pi) t(e) + n + 1 +Σi t(pi)

if e then s1 else s2 1 + c(e) + c(s1) + c(s2) 3 + t(e) + t(s1) + t(s2)

for v : e do s c(e) + c(s) + 1 3 + t(e) + t(v) + t(s)

while e do s c(e) + c(s) + 1 t(e) + t(s) + 2

break 1 1
continue 1 1

Table 2. Activity complexity measures

Using these measures, c(r) for a transformation rule r is taken as the sum of
the c measures of its parts (such as from, to and do clauses in ATL), likewise for
operation definitions. The semantic complexity c(τ) of a transformation is taken
as the sum of the complexities of its rules and operations. We also adopt the
metric of fan-out from [10], this is the number of different rules or operations
called from one rule or operation. This quantity has a direct impact on the
understandability of the calling rule/operation.

We also consider LOC measures of size because of the prevalence of this
measure in TD estimation. We will evaluate flaw density both wrt LOC and
complexity. Based on [10], we adopt 50 LOC per rule/operation and 500 LOC per
transformation as size thresholds, for size measured by LOC. These thresholds
apply to ATL, ETL and QVT-R. For UML-RSDS we adopt limits based on
expression complexity (100 and 1000 respectively) since UML-RSDS is based
on graphical use cases and class diagrams, and does not have a standard text
representation. These limits are based on our experience with maintenance of
UML-RSDS transformations.

Technical debt in MT developments will therefore be measured by identi-
fying the frequency of occurrence of the following specific ‘bad smells’ in MT
specifications:

ETS: Excessive transformation size (c(τ) > 1000, or length ¿ 500 LOC)
ENR: Excessive number of rules (nrules > 10)



ENO: Excessive number of helpers/operations (nops > 10)
UEX: Excessive use of undefined execution orders/priorities between rules (>

10 undefined orderings)
ERS: Excessive rule size (c(r) > 100 or length greater than 50 LOC)
EHS: Excessive helper size (c(h) > 100 or length > 50 LOC)
EPL: Excessive parameter list (for transformation, rules, and helpers): > 10

parameters including auxiliary rule/operation variables
DC: Duplicate expressions/code (duplicate expressions or statements x with

token count t(x ) > 10)
CC: Cyclomatic complexity (of rule logic or of procedural code) (> 10)
CBR: Coupling between rules (number of rule/operation explicit or implicit

calling relations > nrules + nops, or any cyclic dependencies exist in the
rule/operation call graph).

EFO: Excessive fan-out of a rule/operation (> 5 different rules/operations
called from one rule/operation).

Number of tokens is used for detecting clones, because in this case value
expressions should be counted as contributing to the clone. The lower limit for
clone size is set to avoid trivial clones. It could be reduced, at the cost of increased
processing time. In [26] clones of any size are considered. In [8], a lower bound
of 50 tokens is used for code clone detection. We experimented with using 25
tokens as the threshold, but this led to many significant clones being ignored,
and we adopted 10 tokens for our analysis.

Note that if a transformation has completely undefined rule orders, then it
cannot contain more than 5 rules without breaking the limit for undefined rule

orders (UEX = n∗(n−1)
2 in this case, where n is the number of rules).

At present, we limit our scope to considering individual transformations,
rather than transformations in a system of inter-operating transformations. The
coupling between different transformations in such a system could also be evalu-
ated, together with the number of transformations and their calling/dependency
relations. We also do not consider problematic issues in the use of OCL [6] – OCL
‘smells’ such as the use of chained implies, ‘magic literals’, chained forAll quan-
tifiers, long chained navigations in expressions, and other constructions which
impair the comprehensibility of the specification. To the issues of [6] we would
add problems such as the use of general iterate expressions, or explicit use of
the invalid value. OCL flaws are a semantic complexity factor for which specific
metrics could be devised.

3 Results

The measures of TD are computed on the abstract syntax representations of
ATL, ETL, QVT-R and UML-RSDS specifications, according to the respective
metamodels of these languages. The languages have many similarities at this
level (eg., top-level rules in QVT-R correspond to non-lazy rules in ETL and
to use case constraints in UML-RSDS). Hence the same general specification of
measures can be applied to each language, with some differences to account for
the different language styles and semantics.



3.1 ATL

For ATL we consider the cases of Table 3 from the ATL transformations Zoo,
which is widely used in surveys of model transformations. The cases are chosen
as being typical of medium to large sized ATL transformations. Size measures
are based on LOC, with 50 LOC being considered the threshold for operation
and rule size, and 500 lines for transformations. We show separately the LOC
measures rs of the transformation rules and os of the helper operations, after
their total. ENR is the number of rules in the case, ENO is the number of op-
erations. ERS is the number of rules with length over the threshold (50 LOC),
likewise EHS for operations. CC is the number of rules/operations over the CC
threshold (10). For CBR, N(M) is the number N of rule/operation dependencies
and the number M of rules/operations which occur in cycles of calling depen-
dencies. DC is the number of distinct cloned expressions (e with t(e) > 10)
in the case. UEX is n ∗ (n − 1)/2 where n is the number of concrete non-lazy,
non-called rules. Underlined measures identify where flaws occur.

Table 3 gives the measures for the ATL Zoo cases. For all of the examples
EPL and EFO are 0, so are omitted. Where a transformation consists of several
subtransformations, we list these as (i), (ii) etc below the main transformation
entry.

Table 4 gives a summary of the technical debt of these cases. To compute the
number of flaws in a transformation, we count 1 for each of ETS , ENR, ENO ,
UEX , CBR over the thresholds, plus ERS + EHS + CC + EPL + EFO + DC ,
plus the number of self-dependent rules/operations. For a transformation system,
we sum the number of flaws in each of its subtransformations. It is noticeable
that the number of flaws per LOC is quite similar across all of the cases, and the
s.d. is 0.0023. In addition, although ATL is well-known for emphasising helper
functions to perform transformations, in all of these cases the majority of code
is in rules.

The correlation between LOC and number of flaws is 0.915, which is signif-
icant at the 5% level [29], indicating a strong linear correlation between LOC
and number of flaws. It can be noted that the ratio of complexity to LOC is
1.71, reflecting the relatively low semantic density of typical ATL specifications.
The flaw rate per semantic element is 0.00931 (number of flaws divided by com-
plexity).

3.2 ETL

ETL has a similar rule and transformation structure to ATL, but with a more
general processing model and more complex semantics. For ETL we define UEX

as n∗(n−1)
2 where n is the number of concrete non-lazy rules. We identified ETL

cases to analyse from the Eclipse ETL repository (git.eclipse.org), and from other
published cases (github.com/epsilonlabs).

ETL has implicit invocation of rules by rules or operations, where the text of
the transformation does not contain an explicit reference to rules that may be
invoked due to equivalent/equivalents expressions. In calculating the call graph



Transformation ETS (rs, os) ENR ENO ERS EHS CC CBR DC UEX

MOF to UML 935 (746, 189) 11 11 5 0 0 27(0) 7 55

KM3 to DOT 451 (251,200) 7 18 1 0 0 33(0) 4 21

MySQL to KM3 995 (571, 424) 20 28 1 0 1 62(4) 7 71

(i) XML2XML 101 (87, 14) 4 1 0 0 0 2(0) 2 6
(ii) XML2MySQL 281 (137,144) 5 10 0 0 0 22(2) 2 10
(iii) MySQL2KM3 613 (347,266) 11 17 1 0 1 38(2) 3 55

Excel Injector 395 (231,164) 11 10 0 0 0 38(0) 3 55

Excel Extractor 311 (251,60) 13 5 0 0 0 6(1) 2 66

(i) SpreadsheetML 263 (246,17) 12 1 0 0 0 1(0) 2 66
Simplified2XML
(ii) XML2ExcelText 48 (5,43) 1 4 0 0 0 5(1) 0 0

PetriNet to/from 1267 (799,468) 23 32 2 1 0 88(2) 8 47
PathExpression

(i) PetriNet2PathExp 70 (70,0) 3 0 0 0 0 0(0) 1 3
(ii) XML2PetriNet 228 (136,92) 5 8 0 0 0 22(0) 2 10
(iii) PetriNet2XML 222 (189,33) 5 3 1 0 0 12(0) 4 10
(iv) PathExp2PetriNet 104 (87,17) 3 1 0 0 0 5(0) 0 3
(v) TextualPathExp2PathExp 643 (317,326) 7 20 1 1 0 49(2) 1 21

Make to Ant 368 (242,126) 13 11 0 0 0 13(2) 2 31

(i) XML2Make 147 (73,74) 5 7 0 0 0 7(1) 0 10
(ii) Ant2XML 177 (164,13) 7 1 0 0 0 2(0) 2 21
(iii) XML2Text 44 (5,39) 1 3 0 0 0 4(1) 0 0

Maven to Ant 1307 (1139,168) 90 18 0 0 0 80(0) 7 1326

(i) XML2Maven 575 (472,103) 36 13 0 0 0 74(0) 3 630
(ii) Maven2Ant 360 (308,52) 30 4 0 0 0 4(0) 1 420
(iii) Ant2XML 372 (359,13) 24 1 0 0 0 2(0) 3 276

Table 3. Technical debt measures for ATL

Transformation Category LOC c(τ) % in rules # flaws flaws/LOC

MOF to UML Migration 935 1002 79.7% 17 0.018

KM3 to DOT Refinement 451 926 55.6% 8 0.017

MySQL to KM3 Abstraction 995 1726 57.3% 19 0.019

Excel Injector Migration 395 601 58.5% 6 0.015

Excel Extractor Migration 311 528 81% 5 0.016

Petri Net from/to Semantic map 1267 1645 63% 20 0.016

Make to Ant Migration 368 808 65.7% 5 0.013

Maven to Ant Migration 1307 3075 87% 16 0.012

Average 753.6 1288.9 70.2% 12 0.016
Table 4. Results summary for ATL



and CBR metric, such implicit calls must be taken into account. In ETL, an
expression e.equivalent() may implicitly invoke any concrete lazy or non-lazy
rule which has an input variable v : T with T containing the actual value of e at
runtime. Thus the calling rule or operation implicitly depends upon all concrete
rules in the transformation, potentially leading to large values for fan-out and
call graph size. The abbreviated form v ::= e of v = e.equivalent() is considered
in the same manner.

Table 5 gives the measures for the selected ETL cases. CC is omitted be-
cause it is 0 for all the cases. EPL is the number of rules/operations with more
than 10 parameters, including local auxiliary variables. EFO is the number of
rules/operations which depend on more than 5 rules/operations.

Transformation ETS (rs, os) ENR ENO ERS EHS EPL EFO CBR DC UEX

Flowchart2HTML 163 (163, 0) 19 0 0 0 0 0 10(2) 0 21

(i) base 24 (24,0) 4 0 0 0 0 0 0(0) 0 6
(ii) equivalent 21 (21,0) 2 0 0 0 0 0 1(0) 0 1
(iii) greedy 7 (7,0) 1 0 0 0 0 0 0(0) 0 0
(iv) inheritance 14 (14,0) 2 0 0 0 0 0 1(0) 0 1
(v) lazy 31 (31,0) 4 0 0 0 0 0 4(1) 0 6
(vi) multipletargets 32 (32,0) 2 0 0 0 0 0 0(0) 0 1
(vii) primary 34 (34,0) 4 0 0 0 0 0 4(1) 0 6

CopyFlowchart 57 (57,0) 5 0 0 0 0 0 25(5) 1 10

CopyOO 110 (110, 0) 10 0 0 0 0 9 90(9) 3 45

In2out 19 (19,0) 1 0 0 0 0 0 1(1) 0 0

OO2DB 142 (121,21) 6 3 0 0 0 1 20(4) 0 6

RSS2ATOM 88 (74,14) 9 2 0 0 0 2 20(2) 0 36

Tree2Graph 15 (15,0) 1 0 0 0 0 0 1(1) 0 0

uml2xsd 17 (17,0) 2 0 0 0 0 0 2(1) 0 1

MDDTIF 145 (139,6) 18 1 0 0 0 9 61(12) 1 39

(i) Competition2TVPP 30 (30,0) 3 0 0 0 0 0 3(1) 0 3
(ii) CopyTVApp 48 (48,0) 7 0 0 0 0 4 28(7) 1 21
(iii) TVApp2Xml 67 (61,6) 8 1 0 0 0 5 30(4) 0 15

Argouml2ecore 96 (76,20) 7 2 0 0 0 6 37(4) 1 21

StateElimination 313 (155,158) 8 2 1 2 2 0 5(2) 0 4
(TTC 2017)

(i) MainTask 229 (126,103) 4 1 1 1 2 0 0(0) 0 1
(ii) Extension1 84 (29,55) 4 1 0 1 0 0 5(2) 0 3

TTC Live Case 2017 206 (163,43) 7 8 1 0 1 0 19(2) 0 2

(i) Ecore2SimpleCodeDOM 86 (50,36) 3 7 0 0 0 0 10(2) 0 0
(ii) Ecore2SimpleCodeDOMA 69 (69,0) 2 0 1 0 1 0 3(0) 0 1
(iii) Ecore2SimpleCodeDOMB 51 (44,7) 2 1 0 0 0 0 6(0) 0 1

uml2Simulink 148 (114,34) 7 6 0 0 0 5 39(4) 1 10
Table 5. Technical debt measures for ETL



Table 6 gives a summary of the technical debt of these cases. The same
computation of number of flaws is used as for ATL. It is noticeable that the
rate of flaws per LOC is higher than for ATL in general, and with a much wider
range of rates than for ATL (the s.d. is 0.06). This may be due to the wide
variety of styles supported by ETL, from the highly imperative transformations
of StateElimination, to the very implicit and declarative CopyOO . In the most
complex cases, such asMDDTIF , three forms of inter-rule/operation dependence
are used simultaneously: inheritance, explicit calls and implicit calls, leading to
high values for CBR and EFO .

Transformation Category LOC c(τ) % in rules # flaws flaws/LOC

Flowchart2HTML Code-generation 163 377 100% 2 0.012

CopyFlowchart Migration 57 153 100% 7 0.122

CopyOO Migration 110 438 100% 23 0.209

In2out Migration 19 53 100% 1 0.052

OO2DB Refinement 142 464 85.2% 6 0.042

RSS2ATOM Refinement 88 154 84% 6 0.068

Tree2Graph Refinement 15 37 100% 1 0.066

uml2xsd Migration 17 44 100% 1 0.058

MDDTIF Refinement 145 377 95.8% 26 0.179

Argouml2ecore Migration 96 321 79% 13 0.135

StateElimination Refactoring 313 1062 49.5% 7 0.022

TTC Live Case 2017 Refinement 206 573 79% 6 0.029

uml2Simulink Refinement 148 477 77% 11 0.074

Average 116.8 348.46 80.5% 8.46 0.072
Table 6. Results summary for ETL

From Table 6 we have that complexity/LOC for ETL is 2.9, indicating a
greater semantic density in ETL specifications than for ATL. The rate of flaws
per semantic element is 0.024.

3.3 QVT-R

For QVT-R transformations the CBR and UEX measures are of particular in-
terest, since QVT-R rules (termed ‘relations’) may be interdependent in several
different ways: a rule may refer to another in its when or where clause, and may
have a recursive dependency upon itself, and may override another rule. UEX

is taken in the worst case as n∗(n−1)
2 where n is the number of concrete top-

level rules in a transformation. A special feature of QVT-R is that relations may
define a large number of auxiliary variables to transfer data from one relation
domain to another, or to transfer data between relations. This may result in
high EPL values even for very small transformations. This can cause problems
in understanding the relations because the meaning and role of each variable
needs to be understood.



The OCL syntax used in QVT-R differs from that of the other MT lan-
guages. We evaluate complexity directly on this syntax, rather than upon its
OCL translation. Thus an object specification

obj : E1 { att = var, rel = obj2 : E2{} }

has complexity 11, versus 19 for its conventional OCL equivalent expression:

obj : E1 and obj .att = var and obj2 : E2 and obj .rel = obj2

We have selected published examples of QVT-R specifications from the Mod-
elMorf repository, from the QVT-R standard, and from published papers [23].
Table 7 gives the measures for the selected QVT-R cases.

Transformation ETS (rs, os) ENR ENO ERS EHS EPL EFO CBR DC UEX

HierarchicalStateMachine2 85 (79, 6) 3 1 0 0 1 0 3(0) 0 3
FlatStateMachine

AbstractToConcrete 47 (47,0) 1 0 0 0 0 0 0(0) 0 0

ClassModelToClassModel 85 (85,0) 3 0 0 0 0 0 4(1) 0 1

DNF 396 (396,0) 9 0 4 0 4 0 10(4) 3 6

DNF bbox 263 (263,0) 5 0 4 0 5 0 4(0) 3 6

SeqToStm 104 (104,0) 4 0 0 0 1 0 4(0) 0 6

seqtostmct 149 (149,0) 5 0 0 0 0 0 6(3) 0 0

UmlToRdbms 238 (226,12) 7 1 1 0 1 0 10(3) 0 3

UmlToRel 98 (65,33) 2 2 0 0 0 0 3(0) 0 1

RelToCore 2038 (1937, 101) 50 5 11 0 13 5 141(7) 3 15

Bpmn2UseCase 522 (522,0) 23 0 0 0 0 0 12(0) 4 55

hsm2nhdm (recursion) 48 (48,0) 5 0 0 0 0 0 5(2) 0 3
Table 7. Technical debt measures for QVT-R

Table 8 gives a summary of the technical debt of these cases. The same
computation of number of flaws is used as for ATL. There are 0.023 flaws/LOC
and 0.011 flaws per semantic element, figures intermediate between ATL and
ETL. There are 2.09 semantic elements/LOC, a density figure again intermediate
between ATL and ETL.

3.4 UML-RSDS

For UML-RSDS transformations we consider three substantial case studies: two
parts of the UML2C code generator [20] and the class diagram modulariser cra
from [17]. We also consider a small specification of a bidirectional transformation
(bx), the family2person transformation and its inverse [21], the correlation cal-
culator calc, computationally complex financial applications CDO , Monte-Carlo
simulation [18] and a Nelson-Siegal yield-curve estimator [22], and the Transfor-
mation Tool Contest refactoring case solutions pn2sc [12] and movies [13]. The



Transformation Category LOC c(τ) % in rules # flaws flaws/LOC

HSM2FlatSM Abstraction 85 137 93% 1 0.011

AbstractToConcrete Refactoring 47 57 100% 0 0

ClassModelToClassModel Migration 85 85 100% 2 0.023

DNF Refactoring 396 665 100% 16 0.04

DNF bbox Refactoring 263 470 100% 12 0.045

SeqToStm Refinement 104 175 100% 1 0.009

seqtostmct Refinement 149 162 100% 4 0.027

UmlToRdbms Refinement 238 314 95% 6 0.025

UmlToRel Refinement 98 75 95% 0 0

RelToCore Refinement 2038 5415 95% 43 0.021

Bpmn2UseCase Migration 522 877 100% 7 0.013

hsm2nhdm (recursion) Abstraction 48 105 100% 2 0.041

Average 339.4 711.25 96% 7.83 0.023
Table 8. Results summary for QVT-R

transformation source files are available at https://nms.kcl.ac.uk/kevin.lano/uml2web/zoo.
In total there are 36 individual transformations and 10 transformation systems.
Table 9 shows the measures for these transformations and their individual sub-
transformations. UEX is not shown because this is always 0 in UML-RSDS
transformations. EPL and ERS are omitted as they are 0 for all the considered
cases. For ETS , ERS and EHS we use c() measures and thresholds of 1000 for
transformations and 100 for rules and operations.

Unlike ATL, ETL and QVT-R, UML-RSDS rules cannot call other rules, but
only operations of the transformation or of metamodel classes. This simplifies
the call graph within the transformation, however at the operation level self-
recursive and mutually-recursive calling relations can exist.

Table 10 summarises the results for UML-RSDS. We estimated LOC by print-
ing the specification files and counting lines of operation and use case code,
omitting class, generalisation and association declarations.

It can be noted that the c(τ) measure is around 2.76 times the LOC, a similar
level of semantic density to ETL.

An interesting aspect of the results is the balance of functionality between
helpers and rules. Excessive use of helpers produces transformations which are
akin to programs in a functional programming language. In the largest trans-
formations (uml2Ca, uml2Cb) there is an imbalance of functionality towards
helpers, whilst smaller transformations such as movies are more balanced.

4 Analysis

We consider the results for each language with respect to the research questions.
For ATL, for RQ1, all of the 19 individual transformations had flaws (100%),
and 8 of 8 transformation systems contained transformations with flaws (100%).



Transformation ETS (rs, os) ENR ENO EHS EFO CC CBR DC

uml2Ca 1272 (884, 388) 51 31 0 0 0 37(8) 11

(i) types2C 177 (177,0) 11 0 0 0 0 0(0) 4
(ii) program2C 313 (274, 39) 6 2 0 0 0 3(1) 3
(iii) printcode 782 (433, 349) 34 29 0 0 0 34(7) 4

uml2Cb 5621 (904, 4717) 43 124 13 5 32 206(24) 39

(i) exp2C 4036 (107, 3929) 8 94 13 5 30 171(18) 38
(ii) printcode 1585 (797, 788) 35 30 0 0 2 35(6) 1

cra 1360 (438, 922) 34 56 0 0 6 85(0) 0

(i) createClasses 89 (89, 0) 5 0 0 0 0 0(0) 0
(ii) refactor 49 (49, 0) 2 0 0 0 0 0(0) 0
(iii) cleanup 11 (11, 0) 2 0 0 0 0 0(0) 0
(iv) measures 206 (32, 174) 4 6 0 0 2 11(0) 0
(v) evolve 374 (50, 324) 4 21 0 0 2 29(0) 0
(vi) nextgeneration 293 (82, 211) 10 14 0 0 2 23(0) 0
(vii) initialise 286 (84, 202) 5 14 0 0 0 21(0) 0
(viii) postprocess 18 (18, 0) 1 0 0 0 0 0(0) 0
(ix) createClasses1 34 (23, 11) 1 1 0 0 0 1(0) 0

family2person 45 (45, 0) 3 0 0 0 0 0(0) 2

person2family 113 (91, 22) 5 2 0 0 0 4(0) 1

calc 83 (83, 0) 4 0 0 0 0 0(0) 0

movies 432 (174, 258) 11 8 0 0 2 10(0) 1

(i) task2 28 (28, 0) 1 0 0 0 0 0(0) 0
(ii) task3 8 (8, 0) 0 0 0 0 0 0(0) 0
(iii) exttask1 23 (22, 1) 2 1 0 0 0 2(0) 0
(iv) exttask2 39 (39, 0) 2 0 0 0 0 0(0) 1
(v) exttask3 8 (8, 0) 1 0 0 0 0 0(0) 0
(vi) exttask4 27 (26, 1) 2 1 0 0 0 2(0) 0
(vii) task1 263 (7, 256) 1 6 0 0 2 6(0) 0
(viii) couple2clique 11 (11, 0) 1 0 0 0 0 0(0) 0
(ix) nextcliques 25 (25, 0) 1 0 0 0 0 0(0) 0

Monte-Carlo 90 (61, 29) 6 3 0 0 0 3(0) 0
simulation

Nelson-Seigal 1219 (817, 402) 26 24 0 0 0 51(0) 13

(i) evolve 202 (68, 134) 5 7 0 0 0 8(0) 0
(ii) nextgeneration 134 (84, 50) 9 3 0 0 0 5(0) 1
(iii) initialise 768 (591, 177) 10 11 0 0 0 34(0) 12
(iv) test 115 (74, 41) 2 3 0 0 0 4(0) 0

CDO 182 (31, 151) 4 9 0 0 0 11(2) 0

(i) calculateRisk 170 (19, 151) 3 9 0 0 0 11(2) 0
(ii) deriveSectorLoss 12 (12, 0) 1 0 0 0 0 0(0) 0

PetriNet to 174 (174, 0) 7 0 0 0 0 0(0) 0
Statemachine

(i) initialise 23 (23, 0) 3 0 0 0 0 0(0) 0
(ii) pn2sc 120 (120, 0) 2 0 0 0 0 0(0) 0
(iii) cleanup 31 (31, 0) 2 0 0 0 0 0(0) 0

Table 9. Technical debt measures for UML-RSDS



Transformation Category LOC c(τ) % in rules # flaws flaws/LOC

uml2Ca Code generation 874 1272 69% 22 0.025

uml2Cb Code generation 1576 5621 16% 119 0.075

cra Refactoring 490 1360 32% 12 0.024

f2p/p2f Bidirectional 58 158 86% 3 0.052

calc Analysis 15 83 100% 0 0

movies Analysis 156 432 40% 3 0.019

Monte-Carlo sim Analysis 51 90 68% 0 0

Nelson-Seigal Refinement 458 1219 67% 15 0.032

CDO Analysis 94 182 17% 2 0.02

PetriNet to SM Refactoring 66 174 100% 0 0

Average 383.8 1059.1 34.9% 17.6 0.0458
Table 10. Results summary for UML-RSDS

ForRQ2, the most common flaws were DC (15/19), CBR (13/19), UEX (10/19),
ENR (7/19) and ENO (5/19).

A particular issue in ATL is the use of resolveTemp expressions in rules to
look up target model elements produced by another rule, during transformation
processing. This is considered a semantic complexity factor in [2] because it
introduces a syntactic and semantic dependency of the rule calling resolveTemp
upon the rule identified by the call. We include the rule-to-rule dependencies
induced by resolveTemp in the CBR measure. Even without this mechanism,
other forms of coupling between rules and operations are already a significant
quality issue for ATL based on the considered cases.

For ETL, the critical factor in the considered transformations is the implicit
CBR due to usage of equivalent and related operators. For RQ1, 19 of the 24
individual transformations contained flaws (79%), and all of the 13 transforma-
tion systems contained transformations with flaws (100%). For RQ2 the most
common flaws were CBR (18/24), EFO (7/24) and DC and UEX (both 5/24).
Excessive size of rules/helpers or transformations was not a significant problem.

For QVT-R, for RQ1, out of 12 transformations, 10 had flaws (83%). For
RQ2, EPL and CBR both occur in 6 of 12 transformations, whilst DC and ERS
occur in 4. High values of EPL arise because of the use of many local variables
within QVT-R relations, to facilitate bidirectional use of the relations. CBR
flaws arise from the unstructured nature of QVT-R transformations in which
rules may be closely inter-dependent. In the largest transformation, relToCore,
there is informal stratification of the transformation into groups of rules, but this
would be clearer if the transformation were explicitly decomposed into client and
supplier sub-transformations.

For UML-RSDS, for RQ1, out of 36 transformations, 16 had some flaws
(44%), whilst 7 of 10 transformation systems contained some transformations
with flaws (70%). The uml2Cb case somewhat distorts the flaw density data:
without this case the flaws per LOC would be the same as for QVT-R.



For RQ2, excessive CBR occurs in 9 transformations (5 involving cycles and
5 excessive numbers of dependencies). DC also occurs in 9 cases. ENO occurs in
7 cases. CC occurs in 6 cases. In all cases, the coupling issues concern complex
dependencies between helpers, rather than between rules. The prevalence of CBR
and ENO flaws suggest overuse of helpers/operations. Poor structure and high
numbers of flaws were apparent in the largest transformations. Based on Table
10 the correlation of LOC with number of flaws is *0.873*, this is significant
at the 5% level using the t-test with 8 degrees of freedom, indicating a strong
positive effect of size on the number of flaws, whilst the correlation of number
of flaws with the percentage of code in transformation rules is *-0.543* (not
statistically significant), indicating that the number of flaws may increase as the
proportion of code in rules decreases.

For RQ3, Table 11 summarises the different prevalence of TD types in dif-
ferent MT languages, counting the number of transformations which have flaws
of each kind. Unusual patterns of TD are emphasised.

TD category ATL ETL QVT-R UML-RSDS Overall

CBR 13/19 18/24 6/12 9/36 46/91
DC 15/19 5/24 4/12 9/36 33/91
UEX 10/19 5/24 2/12 0/36 17/91
ENR 7/19 0/24 2/12 3/36 12/91
ENO 5/19 0/24 0/12 7/36 12/91
ERS 5/19 2/24 4/12 0/36 11/91
EFO 0/19 7/24 1/12 1/36 9/91
EPL 0/19 2/24 6/12 0/36 8/91
ETS 4/19 0/24 2/12 2/36 8/91
CC 1/19 0/24 0/12 6/36 7/91
EHS 1/19 2/24 0/12 1/36 4/91

Table 11. Technical debt prevalence in different MT languages

In summary, it seems that excessive CBR and DC are the most significant
design flaws which arise across all MT languages, although there are significant
variations in the kinds of TD problem between different languages. These find-
ings suggest that an important factor in understanding and maintaining model
transformations are the dependencies between rules. In particular, rules can be
inter-related by mechanisms which lookup or implicitly enact source-target bind-
ings. In ATL, an assignment of objects g ← s.f cannot be understood without
referring to the source metamodel (to identify the type of s.f ) and in addition,
the specification reader then needs to examine any concrete rule in the transfor-
mation that accepts this input type, to identify where and how the target object
corresponding to s.f has been created from s.f . However the semantics of ATL
execution ensures that this rule-to-rule dependency can be statically determined
and understood. In ETL the assignment t .g ::= s.f may in addition lead to
(possibly recursive) invocations of rules to convert s.f to a target element to



assign to t .g , the rules executed may depend on the runtime values of the data
of s.f .

In contrast, QVT-R specifications explicitly state the rules responsible for
source-target bindings that are used in such assignments: rules either already
executed (the when clause) or to be executed (the where clause). Rules can
however be involved in recursive loops of rule dependencies.

In UML-RSDS, an assignment t .g = TEnt [f .sId ] makes explicit the source-
target correspondence of f and TEnt [f .sId ]. This correspondence must have been
established by a preceding rule in the sequential control flow.

CBR could be reduced by the stratification and modularisation of transfor-
mations into smaller units. Currently MT languages offer such external compo-
sition [28] of transformations by the sequencing of individual transformations:
a facility heavily used in the UML-RSDS examples in particular. However it
seems what is needed is a modularisation mechanism to support a hierarchical
client-supplier relationship between transformations, with the internal details of
the supplier module independent of its clients. This would enable, for example,
a transformation mapping OCL expressions to be called as a ‘black box’ from
a transformation mapping UML activities. The combination of these two trans-
formation processes into the single UML-RSDS exp2C case is a significant cause
of flaws in uml2Cb.

Table 12 shows the overall figures for LOC, c, and flaws, for each language.

Language LOC c c/LOC Flaws Flaws/LOC Flaws/c

ATL 6029 10311 1.71 96 0.018 0.009
ETL 1519 4530 2.98 110 0.072 0.024
QVT-R 4073 8535 2.09 94 0.023 0.011
UML-RSDS 3838 10591 2.76 176 0.046 0.017

Overall 15459 33967 2.19 476 0.031 0.014
Table 12. Overall size and TD results

We can also compare the levels of TD in different categories of transforma-
tion, across languages. Table 13 shows the TD frequency for the main categories
of transformations in our survey. Although the sample numbers are too small for
statistical significance, the difference in flaw levels between the main categories
is in accord with expectations that more complex MT tasks such as refactoring
will result in transformations with higher numbers of flaws compared to simpler
tasks such as migration.

For RQ4, TD densities in developer-coded Eclipse projects have been mea-
sured in [8], with values ranging from 0.005 to 0.04 flaws per LOC, with an
average around 0.015. We also evaluated manually coded versions of a UML to
C++ translator (18,100 lines of Java), and of the CDO case study (200 lines
of C++) using the PMD code size library (https://pmd.github.io). These had
similar levels of TD (0.009/LOC and 0.021/LOC, respectively) to the MT lan-
guage cases. The TD levels of ETL and UML-RSDS are high in comparison with



Category LOC Flaws Flaws/LOC

Code generation 2613 143 0.055
Bidirectional 58 3 0.052
Refinement 4280 133 0.031
Refactoring 1575 47 0.029
Migration 4222 103 0.024
Abstraction 1128 22 0.019
Analysis 316 5 0.016
Semantic map 1267 20 0.016

Table 13. TD for MT categories

these code TD results, whilst ATL and QVT-R exhibit TD levels more typical
of executable code.

5 Reducing technical debt in MT

The technical debt measures help to identify problem areas in particular trans-
formations, such as rules which exceed the thresholds in terms of size, inter-
dependencies, etc. Such rules can then be refactored, as can identified cases of
large duplicated expressions.

In general, if a rule r exceeds the size threshold of ERS , c(r) > 100, the
specifier should identify a subpart P of r which can be factored out as a separate
called rule or operation r1. The complexity of r1 is c(P), whilst c(r) is reduced
by c(P)−x where x is the complexity of a call to r1. c(P) should be significantly
larger than x , and sufficiently so to ensure that c(r) − c(P) + x < 100, whilst
c(P) < 100. The same refactoring applies to called rules and operations that
exceed size thresholds (EHS ).

The operationsmapAttributeExpression andmapRoleExpression from uml2Cb
are examples of this situation: both have complexities over 200 (the worst ex-
amples in this transformation). They are also the source of some of the largest
cases of duplicate code in the transformation. The operations can each be refac-
tored into four new subordinate operations to handle the separate cases of at-
tribute/role basic expressions.

Such a refactoring can also reduce DC and CC measures, but does not nec-
essarily reduce the overall size of a transformation, indeed it may increase it,
and it may increase the measures ENR or ENO of number of rules/operations,
and the number of dependencies CBR in the call graph.

To reduce the overall size of a large transformation, it can be factored into
a sequential composition of smaller transformations (the Transformation Chain
MT pattern [19]). Decomposition into sequenced subtransformations is a tech-
nique for introducing transformation ‘phases’ [7], and can reduce the UEX metric
and CBR. More powerful composition mechanisms, such as using one transfor-
mation as a supplier module to another, may need to be introduced into MT
languages.



Cyclic dependencies in CBR can be caused by recursively-defined opera-
tions based upon self-associations in the source metamodel, as with uml2Ca and
uml2Cb. These can be restructured to avoid recursion, by instead pre-computing
the transitive closure of the self-association.

6 Threats to validity

The conclusions we have drawn may be challenged on the basis that (a) the
measures chosen are not appropriate for evaluating TD; (b) the selection of
transformation cases was unrepresentative; (c) the basis of TD measurement of
different MT languages are not equivalent.

Regarding (a), we have adopted established TD measures which have been
used extensively for TD evaluation of programs. In practice, the UML-RSDS
transformations considered have all been the subject of maintenance activities,
and the problem areas located by measures of excessive rule/operation size,
call-graph complexity and code duplication accord with our experience of the
most time-consuming parts for maintenance. Excessive size and calling com-
plexity hinders location of elements to modify, and understanding of the impact
of modifications. Duplication leads to duplication of modifications. These factors
should apply also to other MT languages. We have used 500 LOC as a threshold
for transformation size, and 50 LOC as a threshold for rule/operation size. This
is partly justified by the fact that overall the ratio of complexity to LOC is close
to 2, and thus the 50/500 LOC limits correspond, on average, to the 100/1000
limits for syntactic complexity. In addition, out of 74 cases where both transfor-
mation LOC and c(τ) were available, in 69 cases (93%) the thresholds were in
agreement: both c(τ) > 1000 and LOC > 500 in 9 cases, or both c(τ) ≤ 1000
and LOC ≤ 500 in 60 cases. Two cases were over 500 LOC but below 1000 c(τ)
whilst 3 had the converse.

Regarding (b), we have considered public repositories of cases and published
examples of MT specifications for each language, and the selection of cases has
been on the same basis for each language. For each language, we have endeav-
oured to obtain a wide range of transformation examples, spanning in size from
small cases to the largest cases available, and across the range of all available cat-
egories of transformation. It can be noted that the ETL cases are significantly
smaller (average complexity size 348) than the ATL, QVT-R or UML-RSDS
cases (average sizes 1289, 711 and 1059). There are few large publicly-available
ETL cases, which restricted our choice for analysis.

Regarding (c), some distortion is introduced by the analysis of cases where
one MT language feature is used to express another concept in the source speci-
fication. For example, in the KM32DOT ATL transformation, the first 9 helper
operations DiagramType(), Mode(), etc are used to represent the parameters of
the transformation. These operations are also represented as helper operations in
the abstract syntax representation of KM32DOT, which is semantically correct,
but not consistent with the intent of the original ATL helpers. Such cases would
require manual correction in the analysis, but we consider that it is preferable to



analyse the transformations on the basis of their actual text, not on the basis of
how the specifier intended the text to be interpreted (since this knowledge may
not be available in some cases, leading to inconsistency in the analysis).

There is a close abstract syntax correspondence between ATL, QVT-R, ETL
and UML-RSDS, with similar concepts of top-level rules, called (non-top) rules,
and auxiliary operations/helpers. However there are significant differences in the
semantics of the languages, and mappings from the source text to some common
semantic representation of the languages, as described in [15], would substan-
tially alter the measures of the transformation specifications. Thus we have per-
formed measurement on the abstract syntax, using variations on measures (eg.,
for CBR and UEX ) to take account of different language semantics.

7 Related work

One of the first works to consider metrics for MT was [10]. They define mea-
sures for the size and complexity of QVT-R transformations, including lines
of code, number of relations (corresponding to number of rules), and specific
measures for the size and inter-relationship of QVT-R rules. Their analysis is
limited to QVT-R and does not consider clone detection or detailed analysis of
the rule dependency graph. They evaluated one large (auto-generated) QVT-R
transformation and three moderate/small transformations. Undefined execution
order between rules is a significant problem in the large transformation. In [1],
measures of ATL and QVT-R and QVT-O are computed for versions of two
transformations in each language. Since the transformations are small-scale, no
design flaws are detected from the measures, although these help to illustrate
differences in the structure of the three versions. As expected, the size (complex-
ity) of the QVT-O version is larger than for QVT-R or ATL due to the more
procedural nature of QVT-O. In [2], seven ATL transformations are evaluated by
metrics and by expert analysis, in order to identify correlations between metric
values and expert evaluation of quality characteristics. Wimmer et al [30] use
quality measures to evaluate the effect of MT refactorings. They adopt ERS, DC
and EFO as quality criteria for ATL transformations. They also consider that
OCL expressions with complexity greater than 10 are a potential quality flaw.

Clone detection in transformations is considered by [26], and they evaluate al-
ternative tools for clone detection in graph transformations. Duplicate sequences
of actions in use cases are detected in the approach of [25], and their technique
could potentially be applied to transformations abstracted as use cases.

There have been several studies comparing different MT languages. The an-
nual Transformation Tool Contest compares different languages on a variety of
case studies. In [11] we compare UML-RSDS, QVT-R and ATL on a refactoring
case using several quality measures. It was found that the call-graph complexity
of the ATL and QVT-R solutions were significantly higher than for the UML-
RSDS solution, and the ratio of complexity to size for ATL and QVT-R were
1.77 and 2.13, similar to those we have found in this paper.



Conclusion

We have shown that technical debt can be evaluated for different MT languages.
We have evaluated 91 transformations in four transformation languages, and
identified significant differences between these in their frequency and kind of
TD. The identification of design flaws can help MT specifiers to improve their
transformations and to prioritise refactoring or other quality improvement work
on their transformations.

References

1. M. van Amstel, S. Bosems, I. Kurtev, L. Pires, Performance in model transfor-
mations: experiments with ATL and QVT, ICMT 2011, LNCS 6707, pp. 198–212,
2011.

2. M. van Amstel, M. van den Brand, Using metrics for assessing the quality of ATL
model transformations, MtATL 2011.

3. T. Arendt, G. Taentzer, UML model smells and model refactorings in early software
development phases, Technical report FB 12, Philipps Universitat, Marburg, 2010.

4. V. Basili, Software modeling and measurement: the goal/question/metric paradigm,
1992.

5. J. Cabot, E. Teniente, A metric for measuring the complexity of OCL expressions,
Workshop on model size metrics, MODELS ’06, 2006.

6. A. Correa, C. Werner, Refactoring OCL specifications, SoSyM 6: 113–138, 2007.
7. J. Cuadrado, J. Molina,Modularisation of model transformations through a phasing

mechanism, SoSyM vol. 8, no. 3, 2009, pp. 325–345.
8. X. He, P. Avgeriou, P. Liang, Z. Li, Technical debt in MDE: A case study on

GMF/EMF-based projects, MODELS 2016.
9. IEC/ISO, 9126 Software engineering – Product quality – Part 1: Quality model,

2001.
10. L. Kapova, T. Goldschmidt, S. Becker, J. Henss, Evaluating maintainability with

code metrics for model-to-model transformations, Research into Practice – Reality
and Gaps, Springer, 2010.

11. S. Kolahdouz-Rahimi et al., Evaluation of MT approaches for model refactoring,
Sci. Comp. Prog., vol. 85, 2014.

12. K. Lano, S. Kolahdouz-Rahimi, K. Maroukian, Solving the Petri-Nets to State-
charts Transformation Case with UML-RSDS, TTC 2013, EPTCS, 2013.

13. K. Lano, S. Yassipour-Tehrani, Solving the TTC 2014 Movie Database Case with
UML-RSDS, TTC 2014.

14. K. Lano, S. Kolahdouz-Rahimi, Model-transformation Design Patterns, IEEE
Transactions in Software Engineering, vol 40, 2014.

15. K. Lano, S. Kolahdouz-Rahimi, S. Yassipour-Tehrani, Analysis of hybrid MT lan-
guage specifications, FSEN 2015.

16. K. Lano, S. Kolahdouz-Rahimi, S. Yassipour-Tehrani, Model transformation se-
mantic analysis by transformation, VOLT 2015.

17. K. Lano, S. Kolahdouz-Rahimi, S. Yassipour-Tehrani, Solving the CRA case using
UML-RSDS, TTC 2016.

18. K. Lano, Agile model-based development using UML-RSDS, CRC Press, 2016.
19. K. Lano, S. Kolahdouz-Rahimi, S. Yassipour-Tehrani, M. Sharbaf, A survey of

model transformation design pattern usage, ICMT 2017.



20. K. Lano et al., Translating from UML-RSDS OCL to ANSI C, OCL 2017.
21. Kevin Lano, Shekoufeh Kolahdouz-Rahimi, Families to Persons Case with UML-

RSDS, TTC 2017.
22. K. Lano, H. Haughton, et al. Agile model-driven engineering of financial applica-

tions, FlexMDE, MODELS 2017.
23. N. Macedo, A. Cunha, Least-change bidirectional model transformation with QVT-

R and ATL, SoSyM (2016) 15: 783–810.
24. R. Marinescu, Assessing technical debt by identifying design flaws in software sys-

tems, IBM Journal of Research and Development, 56(5), 2012.
25. A. Rago, C. Marcos, J. Diaz-Pace, Identifying duplicate functionality in textual use

cases by aligning semantic actions, SoSym vol. 15, no. 2, 2016.
26. D. Struber, J. Ploger, V. Acretoaie, Clone detection for graph-based MT languages,

ICMT 2016.
27. S. Yassipour-Tehrani, S. Zschaler, K. Lano, Requirements Engineering in Model-

transformation Development: an interview-based study, ICMT 2016.
28. D. Wagelaar, Composition techniques for rule-based MT languages, ICMT 2008.
29. G. B. Weatherill, Elementary statistical methods, Chapman and Hall, 1978.
30. M. Wimmer, et al., A Catalogue of Refactorings for model-to-model transforma-

tions, Journal of Object Technology, vol. 11, no. 2, 2012.


