- 1. Take $\eta_{ctrl} := \Delta Y_{ctrl}$ from the control experiment.
- 2. Determine i_{max} as the last *i* before the plateau $\sigma_i \approx 0$.
- 3. Define

$$z := || [\boldsymbol{u}_{i_{max}+1} \bullet \boldsymbol{\Delta} \boldsymbol{Y}, ..., \boldsymbol{u}_{M-1} \bullet \boldsymbol{\Delta} \boldsymbol{Y}]^T ||,$$

$$z_{ctrl} := || [\boldsymbol{u}_{i_{max}+1} \bullet \boldsymbol{\eta}_{ctrl}, ..., \boldsymbol{u}_{M-1} \bullet \boldsymbol{\eta}_{ctrl}]^T ||.$$

m

Set

$$\boldsymbol{\eta}' := rac{z}{z_{ctrl}} \ \boldsymbol{\eta}_{ctrl}$$
 (spectral similarity assumption).

4. Set $\delta := ||\eta'||$, solve Eq. (22) for λ , and obtain q_{λ} from Eq. (20).

5. Compute $\chi(t)$ from Eq. (12).

This is the final result except a monotonicity should be accounted for. In that case the algorithm proceeds as follows:

6. Check if the resulting $\chi(t)$ decays monotonically to zero. If so, we are done. Else, enhance the low-frequency noise level by setting

$$\boldsymbol{\eta}_{new} := c \sum_{i=0}^{i_{max}} \boldsymbol{u}_i ullet \boldsymbol{\eta}' \boldsymbol{u}_i + \sum_{i=i_{max}+1}^{M-1} \boldsymbol{u}_i ullet \boldsymbol{\eta}' \boldsymbol{u}_i,$$

where c is some value larger than 1. Then set $\eta' := \eta_{new}$ and repeat calculations starting from step 4.