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3DBodyNet: Fast Reconstruction of 3D Animatable
Human Body Shape from a Single Commodity

Depth Camera
Pengpeng Hu, Edmond S. L Ho, and Adrian Munteanu

Abstract—Knowledge about individual body shape has numer-
ous applications in various domains such as healthcare, fashion
and personalized entertainment. Most of the depth based whole
body scanners need multiple cameras surrounding the user and
requiring the user to keep a canonical pose strictly during
capturing depth images. These scanning devices are expensive
and need professional knowledge for operation. In order to make
3D scanning as easy-to-use and fast as possible, there is a great
demand to simplify the process and to reduce the hardware
requirements. In this paper, we propose a deep learning algo-
rithm, dubbed 3DBodyNet, to rapidly reconstruct the 3D shape
of human bodies using a single commodity depth camera. As
easy-to-use as taking a photo using a mobile phone, our algorithm
only needs two depth images of the front-facing and back-facing
bodies. The proposed algorithm has strong operability since it is
insensitive to the pose and the pose variations between the two
depth images. It can also reconstruct an accurate body shape
for users under tight/loose clothing. Another advantage of our
method is the ability to generate an animatable human body
model. Extensive experimental results show that the proposed
method enables robust and easy-to-use animatable human body
reconstruction, and outperforms the state-of-the-art methods
with respect to running time and accuracy.

Index Terms—Human body shape, Body shape under clothing,
depth camera, 3D Scanning, deep learning on point clouds

I. INTRODUCTION

IN order to create an accurate 3D shape of the human
body in fashion industry or healthcare applications, one

either relies on the manual entry of body measurements
or on scanning the body using a professional 3D scanner.
The measurement-based methods, however, need hundreds
of different measures to ensure an accurate body shape
reconstruction [1]. Manually extracting such a large number
of measurements is a tedious operation that requires
professional intervention. Using 3D scanning technologies
based on laser or structured light, detailed human models
can be created. However, these devices are expensive and
require expert knowledge for operation [2]. Multi-view stereo
is another solution for human modeling [3], but such methods
are very slow due to computational complexity, and often
fail due to depth ambiguities or complex occlusions among
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different views [4].

Commodity depth cameras, such as the Microsoft Kinect or
Intel Realsense, have become increasingly popular 3D devices
in recent years and have been recently integrated on mobile
phones like iPhone X. The depth image provides range
information of the object of interest based on which a 3D
reconstruction can be generated. Commodity depth cameras
have been used widely in various applications [5][6][7],
among which several scanning systems were proposed for
body shape reconstruction [8][9][10].
3D body shape reconstruction methods can be classified
mainly into three categories: non-parametric, parametric, and
template-based methods. Non-parametric methods correspond
to the traditional 3D scanning techniques which require point
clouds captured by depth cameras from different views in
order to reconstruct the overall shape. The point clouds must
be registered into a complete shape using rigid [11] and
non-rigid [12] registration techniques typically employed
for static and dynamic body scans respectively. Parametric
methods rely on a parametric body model, e.g. the SCAPE
model [13] or the SMPL model [14]. Parametric models
factors out the body model using parameters that control
the shape and the pose. In practice, in order to obtain the
optimal parameters, the parametric body model is fitted to the
input data, which usually includes 3D point clouds, 2D RGB
images or silhouettes. As opposed to non-parametric methods,
parametric modelling can directly generate a watertight,
clean body mesh. This enables downstream applications such
as virtual try-on, virtual reality and computer animation.
Template-based methods deform a specific body template to
fit the input body point cloud by non-rigid registration; this
enables filling missing areas in the point cloud [15] or finding
correspondences [16]. The template can be chosen from the
parametric model or handcrafted [16].

In this paper, we propose a novel parametric method for rapidly
reconstructing the animatable body shape using a single depth
camera. We employ an SMPL parametric model and train an
end-to-end network, that (i) takes only two depth images of the
front-facing and back-facing human body, captured by a single
handheld depth camera, and (ii) regresses the shape parameters
of the model. Users do not need to strictly maintain a canonical
pose, on the contrary, they are allowed to have an arbitrary
pose and even change their pose with large variations when
they are captured by the handheld depth camera. The lack of
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constraints on freezing the pose makes the 3D scanning closer
to a snapshot, becoming more of a user-friendly experience.
The main contributions in this paper can be summarized as
follows:
• We propose a novel deep learning framework, termed

3DBodyNet, that reconstructs the body model using a
single commodity depth camera, by only taking two front-
and back-facing depth images as input without the as-
sumption of view alignment. To our best knowledge, it is
the first deep learning method that reconstructs the body
shape from only two depth images and at the same time it
allows for large pose variations between the camera shots.
In addition, the reconstructed body model is animatable
which facilitates its use in subsequent applications such
as garment transfer and virtual fitting.

• We demonstrate that the proposed 3DBodyNet can also
work for estimating the body shape under clothing.

• We introduce a large-scale dataset including male/female
dressed/undressed bodies and employ it in the task of
body shape reconstruction from the front-facing and/or
the back-facing depth images.

• We perform comprehensive experiments to validate the
proposed method and compare it against the existing
state-of-the-art methods, and demonstrate its superiority
in objective and subjective terms.

II. RELATED WORK

A. Non-parametric body reconstruction

Non-parametric methods include multi-camera and single-
camera scanning systems. Multi-camera systems [9][17][18]
employ several depth cameras at various positions in order to
capture the subject from different viewpoints. Such systems
are heavily depending on the quality of extrinsic calibration,
and the noise and missing areas in the captured point cloud
cannot be avoided. In addition, a multi-camera system needs
professional calibration and is expensive to the individual
customer. Reconstructing the body shape using a single depth
camera is a promising alternative. The pioneering work in this
direction is given by KinectFusion [8], which proposes a real-
time 3D reconstruction algorithm for complex and arbitrary
indoor scenes. Its limitation is that it fails when the objects
in the scene are not static or the depth camera moves fast.
[19] proposes a non-rigid registration algorithm for modeling
human bodies, using a single depth camera. However, non-
rigid registration can only tolerate small movements of the
subject (e.g. shaking the arms), and it needs to solve a complex
optimization problem which is time consuming. In addition,
a single-camera scanning system needs a longer capture time
compared to a multi-camera scanning system. In this work,
we propose a novel method that has the advantages of both
categories of scanners, namely, fast data acquisition, fast shape
reconstruction and a low-cost device. Moreover, our method
can output an animatable body shape which is not possible
using existing non-parametric methods.

B. Parametric body reconstruction

Parametric methods became increasingly popular for human
body modeling, several methods being recently proposed in

the literature. [20] trained a neural network to reconstruct
the body surface by fitting the SMPL body to the input
body point cloud. This method requires a complete body
point cloud as input, which is not always available. [13]
deforms the SCAPE model to fit the scanned data, given
a set of markers and specifying the target shape. Given
a static body model and markers for motion capture, this
method can produce a moving person but still needs to
take a complete body as input. Similarly, [10] deforms
a SMPL model to a low-quality body scan by manually
specifying landmarks. [2] fits their parametric body model
to two separate scans of the front-facing and back-facing
body and merge them. This method, however, requires the
user to keep a canonical standing pose and needs to solve a
set of optimization problems. Our work is mainly inspired
by the work of [2]. The main functional differences with
respect to [2] are: 1) we do not enforce users to freeze in a
given pose when acquiring the front- and back-facing scans,
2) we address this inherent pose variation between scans
by using a novel deep learning solution, avoiding solving
computationally expensive and time-consuming optimizations,
3) our reconstructed body is animatable and 4) our algorithm
can reconstruct the body shape under clothing. Another
interesting technology is 3D shape reconstruction from a
single RGB image [10][21][22][23]; these kinds of methods
can only produce visually consistent 3D models rather than
accurate 3D shapes due to the lack of depth information and
scale ambiguity from 2D to 3D.
C. Body Shape Under Clothing

The human body is usually covered by layers of clothing.
To capture the body geometry via 3D scanning, the subject
is asked to wear minimal or very tight and thin clothing for
accurate data acquisition [2][24]. However, the procedure is
inconvenient and it also raises questions regarding the right
to privacy. To address this issue, several studies have been
performed in the recent past. Early works fitted the body
template into the dressed body model [25][26][27] by solving
complex optimization problems. [28] proposed the first deep
learning method, Body PointNet, for estimating body shape
under clothing from 3D data. However, it requires a complete
dressed body scan as input, which is not always available.
[29] proposed to reconstruct the body shape and the garments
from RGB images. Due to the scale ambiguity from 2D to
3D and lack of depth information, this method assumed that
the subjects have the known height which severely affects the
estimation accuracy. However, it is a very strong assumption
which is not always known. One of the goals in our study is
to accurately model the body shape, so our method employs
depth images instead of RGB images as input.
D. Deep Learning on Point Clouds

Inspired by the success of deep learning in 2D application,
e.g. image classification [30] and human pose estimation
[31], many research works have proposed methods to feed
3D data into neural works for specific tasks. Although other
representations, including converting 3D data to regular
volumetric data [32] or multi-view 2D images [33] existed,
our method takes the point clouds as input since point
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clouds can be directly obtained from depth images given the
camera intrinsic parameters. The pioneering work, PointNet
[34], became a very popular deep method for processing
unstructured point clouds. It utilizes a pointwise multi-layer
perceptron with a symmetric aggregation function to achieve
invariance to permutations, which shows a good performance
for extracting features from point clouds. PointNet learns the
global features from points while variants of PointNet [35][36]
have been proposed to extract the local features. PointNet
has been successfully applied to many tasks [16][37][38][39].
To the best of our knowledge, this study is the first work
extending the use of PointNet for reconstructing the body
shape from only two front- and back-facing depth images
obtained with a handheld device.

III. METHODOLOGY

Problem Statement In this section, we formulate the
problem in this study. Given a front-facing point cloud of
the body X = {xi ∈ R3, i = 1, ..., N} and a back-facing
point cloud of the body Y = {yi ∈ R3, i = 1, ...,M},
the goal is to devise a low-complexity, computationally
affordable method that reconstructs an animatable
body B = {

(
vi ∈ R3, ej ∈ Z2, jm ∈ R3, si ∈ RD

)
, i =

1, ...P, , j = 1, ..., Q,m = 1, ...,W}, where vi, ej , jm and
si are the vertices, edges, joints and the skinning weights
of vertices in B respectively. D is the number of attaching
joints for each vertex. The existing state-of-the-art method [2]
addressed this problem by factoring it into three sub-problems
namely, (i) deforming a parametric body template to fit the
front-facing scan, (ii) deforming a parametric body template
to fit the back-facing scan, and (iii) stitching these two
half-body shapes to a fully body. Although this formulation
is intuitive, it is prone to template-based fitting errors and
it requires the user to keep a canonical pose but tolerating
small pose variations between the two partial scans. To avoid
these problems, our learning-based approach is (i) to extract
features of the front-facing and back-facing point clouds of the
body, (ii) to regress the shape parameters of the parametric
body model (e.g. the SMPL model) from the features of
inputs. We approach it by using supervised learning. Figure
1 illustrates the architecture of the proposed method, dubbed
3DBodyNet. It mainly consists of a Pose-invariant Feature
Module (PFM), Parametric Module (PM), Stiching Module
(SM) and the SMPL layer (SMPLL).

Preliminary In this study, the Skinned Multi-Person Linear
(SMPL) model of [14] is used to encode the 3D mesh of a
human body due to its good trade-off between high anatomic
flexibility and realism. SMPL parameterizes a body mesh with
shape and pose parameters. The shape β ∈ R10 is represented
by the first ten coefficients of a PCA shape space. The pose
θ ∈ R3K is parameterized by relative 3D rotation of K =
23 joints in axis-angle representation. Given a β and a θ, a
triangulated mesh M (β, θ) with N = 6890 vertices and T =
13776 triangles can be generated. The shape Bs(β) and pose-
dependent deformations Bp(θ) are first applied to an average
body Mµ to generate a human body with a specific body shape:

T (β, θ) =Mµ +Bs(β) +Bp(θ) (1)

The pose can be controlled by adjusting the joint angles J (β)
using the skinning function W , yielding a human body mesh
with a specific shape and pose:

M (β, θ) =W (T (β, θ) , J (β) , θ) (2)

SMPL is fully differentiable with respect to β and θ. We
integrate SMPL as a part of our deep learning model. Thanks
to SMPL, the troubles of noisy outputs [39] and the rugged
and twisted shapes [16] typically impairing human model
generation can be avoided.

A. Preprocessing

Given the raw data from the commodity depth camera, the
body data is extracted by setting the distance thresholds. We
normalized the point clouds in two steps:(i) it is centered to
the origin, (ii) and it is scaled by dividing the Z-axis length
of its bounding box. Next, we sample fixed number of points
to feed them into the deep neural network.

B. Pose-invariant Features

Point clouds are unstructured sets, which are not trivial
for direct analysis. Traditional features of point sets are
handcrafted intrinsically or extrinsically. However, such
features are designed for specific tasks. In this study, the
features of point sets should be pose invariant. To this end, a
learning strategy is adopted. The goal is to find an embedding
that is invariant to the posed partial scans of the body.
We evaluate two popular choices of learnable embedding
modules, namely PointNet [34] and DGCNN [36].
PointNet, the pioneering work of learning on point sets,
samples M points from the raw N points given as input.
Each point is embedded by a nonlinear function from R3

into a higher-dimensional space; the output of PointNet is a
K-sized global feature for the whole set of M points obtained
by using a symmetric channel-wise aggregation function (
e.g., max or

∑
). Let xli be the embedding of point i in the

l-th layer and let hlθ be the nonlinear function in the l-th layer.
The forward mechanism can be denoted by xli = hlθ(x

l−1
i ).

PointNet performs a per-point embedding and does not capture
local structures. In contrast, DGCNN [36] captures local
geometric structures by constructing a local neighborhood
graph and applying convolution-like operations on the
edges connecting neighboring pairs of points. The forward
mechanism of DGCNN can be represented as:

xli = f
(
{hlθ

(
xl−1i , xl−1j

)
}
)
, j ∈ Ni (3)

where Ni represents the set of neighbors of vertex i in the
graph.
As shown in Figure 1, our method takes two scans as input
and outputs a complete body shape. There are no restrictions
on the two inputs scans. In our approach we propose two
feature extractors, termed FPFM and BPFM, to extract the
pose-invariant features from the front- and back-facing scans
respectively. FPFM and BPFM have the same architecture
but the weights are different. In addition, the human subjects
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Fig. 1. Architecture of the proposed 3DBodyNet. C&S: the normalization operation that consists of centering to the centroid of the point cloud and scaling
it into a unit sphere; t and s: the translation vector and scale value for the input data; FPFM and BPFM: pose-invariant feature modules for the front-facing
and back-facing body point clouds respectively; f : the feature encoded in a 1024-dimensional vector; FPM and BPM: parametric modules for converting the
features to the β values of SMPL; SM: the stitching module that stitches the βs from the two partial point clouds of the body into a single β value; SMPLL:
Skinned Multi-Person Linear model layer.

do not need to maintain a certain pose. More specifically,
the subjects can perform arbitrary poses during scanning, we
do not assume any prior/ physical relationship between the
two poses. As shown in the experimental section, although
the input two scans have different poses, the reconstructed
body shape is morphologically correct and robust against
strong pose variations in the input. In this study, we sample
M = 2048 points as input of the proposed PFM and set
K = 1024.

C. Parametric Module

Given the embedding of the inputs, alternative methods directly
regress points of the whole body from an decoder. These
methods however, can only output a point cloud [39] or noisy
mesh [16], which is also not animatable. To cope with these
issues, we design the front-facing parametric module (FPM)
and back-facing parametric (BPM) to map the features from
the FPFM and BPFM to the shape space of SMPL. More
specifically, we directly regress β from the features of point
clouds. In this study, the PM consists of multilayer perceptrons
(MLPs) with 1024, 1024,1024 and 10 neurons. FPM and BPM
share the same architecture but with different learned weights.

D. Stitching Module

As shown in Figure 1, two β values (βF and βB), are obtained
from the FPM and BFM respectively. However, our goal is to
output a single accurate β value. In order to stitch the βF and
βB together, we design the stitching module (SM) that takes
the βF and βB as input and outputs an accurate β. To design

the SM, we present three alternative approaches (i) We use a
multilayer perceptron to predict β from the concatenation of
βF and βB ; (ii) We use a multilayer perceptron to estimate β
from the concatenation of the fF and fB that are the learned
features of two inputs; (iii) We propose a β based mean
pooling operation defined as:

β =
βF + βB

2
(4)

We will show that the proposed β-based mean pooling oper-
ation outperforms these MLP-based method of stitching β in
the following ablation study.

E. SMPL Layer

With the concatenation of introduced PFMs, PMs and the
SM, the network can be trained using Lβ2 = ||β − βGT ||2 or
L1 = ||β−βGT || as loss. However, the performance of directly
regressing β from the point clouds is not acceptable due to
the high non-linearity of SMPL. Our insight is to propose a
powerful constraint to guide the learning process. To this end,
we integrate SMPL as our final module in our architecture.
SMPL is a fully differentiable function that can back-propagate
gradients through the network. As we set θ to zero, Equation
2 can be rewritten:

M (β) =W (T (β) , J (β)) (5)

F. Losses

As shown in Figure 1, the module denoted by the dotted
lines are not trainable, while the rest of modules are trainable
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and are parameterized by a set of neural network weights
learned during training. The SMPL layer acts as a pre-
trained high-quality mesh decoder. Although the SMPL layer
is not parameterized by the neural network weights, its output
depends on the results of the stitching module. We train the
network in a supervised manner, and propose the following
loss function to measure the reconstruction error.
Vertex Loss. The ground truth body shape is pre-aligned with
the input point clouds of the front-facing and back-facing body
respectively using the camera extrinsic parameters obtained
during the rendering procedure. We defined the front-facing
based reconstruction error as:

LFvert =
1

|P |
∑
x∈P

min
y∈PGT

||x− y||2 (6)

where P = {pi ∈ R3, i = 1, ..., 6890} is the set of vertices
of the mesh from the SMPL layer while PGT is the set of
ground truth vertices. The back-facing based reconstruction
error LBvert is defined the same as LFvert.
Joint Loss. The model from SMPL has the skinning informa-
tion, such as the skeleton, consisting of joints and skinning
weights. Similar to the vertex loss, we define the front-facing
based joint error as:

LFjoint =
1

N

N∑
i=1

||ji − jGTi ||2 (7)

where ji denotes the position of the ith joint. The back-facing
based joint error LBjoint is the same as LFjoint.

β Loss. Besides the 3D vertex and joint losses, the ground
truth β is also included for supervision of the training.

Lβ = ||β − βGT ||2 (8)

As the two input point clouds are captured from the same body
with different postures, the predicted βF and βB are supposed
to be the same. We, thus, define an additional regularization
loss:

Lreg = ||βF − βB ||2 (9)

Complete Loss. Our complete loss is defined as:

Loss = LFvert + LBvert + λFjoint ∗ LFjoint
+λBjoint ∗ LBjoint + Lβ + Lreg

(10)

where λFjoint and λBjoint are the scalar weights.

IV. DATASET

In order to train our algorithm, we require a large set of
body shapes. More specifically, the dataset requires (i) the
front-facing and back-facing depth paired images having
the same, similar and totally different postures; (ii) it
contains both dressed and undressed bodies; (iii) it should
be large-scale. None of the existing datasets can meet these
requirements, thus, we propose a new synthetic dataset,
dubbed FBB (the Front-facing and Back-facing depth images
of human Bodies), for training our model.

Posed Body Shapes. To make use of realistic human body

Fig. 2. Layout of 23 joints in the SMPL models.

shapes, we collect a set of 1700 β values for the SMPL
model from the SURREAL dataset [40]. To mimic the poses
of humans, we collect 2667 θ values for SMPL model from
the SURREAL dataset. Considering existing scanning system
usually requires that the user to keep ”A” pose during capture,
we propose a simple yet efficient generative algorithm to
mimic a set of ”A” poses. As shown in Figure 2, SMPL has
23 joints. It is observed that these joints may have different
DOF (degrees of freedom). For example, the knee and elbow
joints are hinge joints with 1 DOF while the wrist joint is
a universal joint with 2 DOF. Taking into consideration all
these factors, we select 18 key joints and assign different
probability density functions of uniform distribution for them
in order to simulate possible joint angles (see Table I). The
rest of joint angles are set to {0}. Each sample of the dataset
is built by randomly combining one SMPL β value and two
θ values. The female and male data are produced separately.
Our final dataset has 3 · 105 samples. By setting all the joint
angles to be {0}, we have the human meshes and joints in
”T” pose, which are our ground truth data.
Dressed Bodies. This paper proposes a method for
reconstructing the body shape using a single depth camera,
which can be used for subjects with/without clothes. To
show its effectiveness for estimating the human body shape
under clothing, we put one type of popular clothes (shoes+
long-sleeved shirt and long pants) onto the body dataset used
for training. Experiments are then performed to validate the
idea of body shape estimation under clothing. Other types of
clothing can be easily prepared using the same method. This
strategy is also applied in [28], which is the state-of-the-art
in estimating body shape under clothing from a 3D scan. One
notes that the average time of putting clothes on one SMPL
body is only 0.6 seconds. This enables generating large
training datasets with a broad range of body morphologies for
various categories of clothing; for more details, the interested
reader is referred to [28].
Rendering. The open-source Blender Sensor Simulation
plugin Blensor [41] is used for rendering the front-facing and
back-facing depth images of bodies. These depth images are
further converted to partial point clouds given the intrinsic
parameters of the camera. We set the camera as Microsoft
Kinect V2 and the max distance as 3.6 meters. To increase
realism and generate more variability in point density, the
position of camera is randomly selected at the intervals from
1.5 to 2.5 meters; the orientation of camera is set by random
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rotation angles at the intervals from −10o to 10o in all x, y, z
directions. As introduced above, each sample of the body
dataset has one body instance with two poses. Therefore, our
final dataset has 1.2 · 106 pair of front-facing and back-facing
scans of the body (the 50% for the dressed body and the
other 50% for the undressed body ) and 3 · 105 ground truth
body shapes.

TABLE I
GENERATIVE ALGORITHM OF ”A” POSES OF HUMAN.

Joint ID X angle Y angle Z angle

]1
(
− π

36
, π
36

) (
− π

36
, π
36

) (
− π

36
, π
9

)
]2

(
− π

36
, π
36

) (
− π

36
, π
36

) (
−π

9
, π
36

)
]3

(
− π

36
, π
36

) (
− π

36
, π
36

) (
− π

36
, π
36

)
]4

(
− π

18
, π
18

)
0 0

]5
(
− π

18
, π
18

)
0 0

]7 0
(
− π

18
, π
6

)
0

]8 0
(
−π

6
, π
18

)
0

]12
(
− π
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, π
18

) (
− π

36
, π
36

) (
− π

36
, π
9

)
]13 0 0

(
−π

6
, π
6

)
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6
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6

)
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− π
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− π
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) (
−π

3
, π
6

)
]17

(
− π
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, π
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) (
− π
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, π
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) (
−π

6
, π
3

)
]18

(
− π
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, π
18

)
0

(
− π
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, 0

)
]19

(
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, π
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(
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)
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6
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)
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(
−π

6
, π
6

)
]23

(
−π

6
, π
6

)
0

(
−π

6
, π
6

)

V. EXPERIMENTS

A. Training setup

We split the dataset into training, validation, and testing
using 99% , 0.7% and 0.3% of the samples in the dataset
respectively. We train the model for male, female, dressed
and undressed data separately. The training is carried out
using the Adam optimizer [42] with an initial learning rate
of 0.0001 for 50 epochs and a batch size of 16. The training
is performed on a desktop PC (Intel(R) Xeon(R) Silver 4112
CPU @2.60GHz 64GB RAM GPU GeForce GTX 1080Ti)
based on TensorFlow [43]. We set λFjoint = 0.001 and
λBjoint = 0.001 in the loss.

B. Evaluation metrics

To evaluate the performance of our algorithm, we employ the
widely-used reconstruction evaluation metric: vertex-to-vertex
error (v2v). This metric is also used in the work of [2] that
we mainly used for comparison with our method. The v2v
error measures the average Euclidean distance from a vertex
of the reconstructed body shape Vrecon to its closest point of
the ground truth body shape Vgt. The v2v error is defined as:

E(Vrecon, Vgt) =
1

|Vrecon|
∑

x∈Vrecon

min
y∈Vgt

||x− y||2 (11)

In our experiments, we calculate the average value µ and
average standard derivation σ of the V2V error.

C. Qualitative Results and Comparisons
Human Body Shape Reconstruction. In this experiment, we
test our algorithm based on two public datasets: the PDT13
[44] and FAUST dataset [45]. In the PDT13 dataset, the real
human subjects are scanned from the front-facing and back-
facing view using the Kinect sensor. But the subject is asked
to keep the same posture during scanning, and no accurate
ground truth meshes can be used for quantitative comparison.
In the FAUST dataset, the subjects wear minimal clothing in
different postures. However, no T-pose ground truth meshes
are available.

In Figure 3, we compare our results with the results of [44]
based on the PDT13 data. Note that our method is robust to
the outlier that is observed in the region of inputs highlighted
by the red bounding box. It is noticeable that the head shape
using the method of [44] is not well reconstructed, while
our method can generate high-quality head shapes. Figure 4
depicts our results on the FAUST dataset. It can be seen that
the input front-facing and back-facing point clouds have a
very large posture variation. However, our method is robust
to these large posture variations, and the reconstructed body
shapes are visually consistent with the inputs.

Fig. 3. Comparison our method with the method of [44] on the PDT13 data.
The two input point clouds are colored in blue, our results are the white
meshes, while the yellow meshes are the results from [44].

Body Shape Under Clothing. In this experiment, we test
our algorithm based on the BUFF dataset [27] for the task
of estimating body shape under clothing. BUFF is a scanned
dressed body dataset obtained by capturing 6 real subjects
wearing 2 clothing styles (T-shirt and long patents, and
soccer outfit) in two motion sequences. Figure 5 shows the
results obtained with our method on the BUFF dataset. It
is noticeable that the T-shirt is not included in our training
dataset. But our algorithm shows a good generalization
performance.

Animation of Reconstructed Body. Compared to the
existing methods, one of the advantages of using our
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Fig. 4. Results obtained on the FAUST data using our method.

method is to output an animatable body model. Unlike
traditional animation methods that have to be configured
with skeleton and skinning weights, our reconstructed body
model can be animated easily with different pose parameters.
As shown in Figure 6, the top is the example of animated
results using our method, and the bottom is the dressed results.

D. Quantitative Comparison

To quantitatively compare our algorithm with existing state-
of-the-art methods, we perform experiments using the BUG
dataset [28] as it has the ground-truth body shapes and dressed
bodies. We compare our method against various state-of-the-
art methods including that of [2] that uses two depth-images
as input, the single depth-image based method of [38], and the
single RGB image based method of [47]. In contrast to these
methods, our approach also works for estimating the body
shape under clothing. Thus, we compare our method against
Body PointNet [28], which is the state-of-the-art deep learning
method taking a complete dressed human body scan as input
and outputting the body shape.
Body Shape Reconstruction. We first compare our results
with related works on the human body shape reconstruc-
tion based on the undressed bodies from BUG. For a fair
comparison, we apply the same posture with the pose of
the input front-facing point cloud to our reconstructed body
model. Table II illustrates the comparisons of our method
and related works. Figure 7 shows the error maps of the
reconstructed shape. It can be seen that the majority of vertices
of the reconstructed body using our method is less than 20
millimeters, which outperforms other methods.
Body Shape Estimation Under Clothing. Our method can
also work for body shape estimation under clothing. Figure 8
and Table III compare our method and the related works for the

TABLE II
COMPARISON OF RECONSTRUCTION ERROR WITH RELATED WORKS

(UNIT:mm).

input methods [2] [38] [47] ours

µ 5.1 10.4 51.0 1.3
σ 6.9 7.4 52.9 4.0

max 27.0 44.9 215.6 19.1

task of estimating body shape under clothing. It is noticeable
that the methods of [2], [38] and [47] do not perform well
for predicting body shape under clothing. Compared to the
results from Body PointNet [28], our results are better. As
shown in Table II and Table III, it is important to observe
that method [47] is a single RGB image-based method while
the other approaches ([2], [38], [28] and ours) are depth-based
methods. The experiments reveal that directly reconstructing
the 3D human body shape from a single RGB image requires
the body height as input due to the scale ambiguity from
2D to 3D. In contrast, depth images offer 3D information,
which is exploited by [2], [38], [28] and our proposed method;
this proves to us more accurate for 3D human body shape
reconstruction compared to the use of a single 2D picture as
in [47]. We also note that the training dataset used by [47]
lacks RGB images of the human body in tight clothing which
explains why [47] performs better when estimating the body
shape under clothing than when reconstructing the body shape
for tight clothing.

TABLE III
COMPARISON OF RECONSTRUCTION ERROR FOR BODY UNDER CLOTHING

WITH RELATED WORKS (UNIT:mm).

input methods [2] [38] [47] [28] ours

µ 8.2 34.7 32.8 9.3 2.2
σ 9.0 35.9 28.5 8.5 5.0

max 56.5 233.1 137.7 45.0 18.9

Table IV compares our method with existing state-of-the-
art methods in terms of input data type, human body
reconstruction, estimation of body shape under clothing,
being animatable the speed and being deep learning. The
method of [2], which takes two depth images as input, obtains
better result than the methods taking a single depth image
or a single RGB image as input; this is to be expected as
two depth images offer more reliable geometry information.
We also take two depth images as input. Compared to [2],
our method is about 16 times faster and our result is also better.

E. Ablation study

We conduct ablation experiments based on the 450 testing
undressed male samples that have no overlap with the data
used in the training in order to understand the value of our
design and the influence of the different terms in our loss
function.
PointNet or DGCNN. Firstly, we evaluate which types of
features yield better performance in this study: local features
or global features? To this end, we used the popular DGCNN
[36] and PointNet [34] to learn local and global features
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Fig. 5. Results obtained on the BUFF data using our method. Our results are the white meshes. The textured meshes are the BUFF samples.

TABLE IV
COMPARISON WITH DIFFERENT HUMAN BODY SHAPE RECONSTRUCTION METHODS.

methods input human body shape reconstruction estimation of human body under clothing being animatable run speed being deep learning

[2] two depth images
√

× × 120 seconds ×
[38] one depth image

√
× × 3.7 seconds

√

[47] one RGB image
√

×
√

4 seconds
√

[28] one complete 3D scan ×
√

× 5.8 seconds
√

ours two depth images
√ √ √

7.5 seconds
√

Fig. 6. The example of animated results using our method.

respectively. As shown in Table V, global features outperform
local features for this task, so we adopted PointNet as the
feature extractor in this work.

TABLE V
ABLATION STUDY ON THE FEATURES (UNIT:mm).

Feature Local Global

µ 0.090 0.059
σ 0.121 0.094

max 1.153 0.896

β-based Mean Pooling. In order to simultaneously capture the
information from the two input point clouds, it is necessary to
obtain a single accurate prediction. We propose three alterna-
tive stitching modules and then compare their performances.

As shown in Figure 9, β2β denotes the stitching module that
takes the concatenation of βF and βB as input and output the
β value; f2β represents the stitching module that regresses
the β value from the concatenation of latent features fF and
fB . Table VI gives the comparison for the three methods, it
is noticeable that the proposed β mean pooling outperforms
the other two methods although they have more complicated
architectures.

TABLE VI
ABLATION STUDY ON THE STITCHING MODULE (UNIT:mm).

Stitching Module β2β f2β β mean pooling

µ 0.070 0.066 0.059
σ 0.111 0.156 0.094

max 1.405 1.587 0.896

With or without SMPL layer. The SMPL layer is integrated
in our neural network design in the training phase. In the
testing phase, the trained networks directly output the SMPL
β values. The SMPL layer, thus, does not contribute to the
prediction. We attempt to explore directly regressing the
SMPL β values by minimizing the loss based on them.
Therefore, we remove the SMPL layer and train the networks
only based on the β loss. As shown in Table VII, the SMPL
layer can significantly reduce the reconstruction error. It
guides the deep neural network to search for the optimal
SMPL β in the SMPL model space.

TABLE VII
ABLATION STUDY ON THE SMPL LAYER (UNIT:mm).

SMPL layer With Without

µ 0.059 0.114
σ 0.094 0.136

max 0.896 0.896
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Fig. 7. Comparison of human body reconstruction error with start-of-the-art methods. From left to right: the two input point clouds (blue point sets), the
ground truth body (white point set), the result of [2], the result of [38], the result of [47] and our result. For each pair, the top is the front-facing view, and
the bottom is the back-facing view. The color of each point is colorized by per-vertex error in millimeters.

TABLE VIII
ABLATION STUDY: LOSS SELECTION (UNIT: mm).

Loss Lvert Lvert+joint Lvert+joint+beta Lvert+joint+beta+reg

µ 0.109 0.101 0.092 0.059
σ 0.152 0.142 0.145 0.094

max 1.349 1.389 1.40 0.896

Loss Selection. Our loss mainly consists of four type of
terms: Lvert, Ljoint. Lβ and Lreg . Lvert and Ljoint have
definitions for both the front-facing and back-facing data of
the body. To validate the contribution of these terms, we
compare Lvert = LFvert + LBvert, Lvert+joint = LFvert +
LBvert + 0.001 ∗ LFjoint + 0.001 ∗ LBjoint, Lvert+joint+beta =
LFvert+L

B
vert+0.001∗LFjoint+0.001∗LBjoint+Lbeta and our

complete loss Lvert+joint+beta+reg = LFvert+L
B
vert+0.001∗

LFjoint + 0.001 ∗LBjoint +Lbeta +Lreg . Table VIII shows the
reconstruction comparison. The results show that our full loss
obtained the best accuracy for the shape reconstruction.

Single depth image or two depth images. The proposed
method can be directly applied to single depth image-based
body shape reconstruction. In this study, we take a single front-
facing depth image, a single back-facing depth image and two
depth images as input and compare the performance when
using our model. As shown in Table IX, the results obtained
by using two depth images is systematically the best while the
result obtained a single back-facing depth image is the worst.

TABLE IX
COMPARISON OF THE RESULTS FROM SINGLE DEPTH IMAGES AND TWO

DEPTH IMAGES. (UNIT:mm).

Input type single front-facing depth image single back-facing depth image two depth images

µ 0.060 0.085 0.059
σ 0.124 0.183 0.094

max 1.605 1.919 0.896

VI. CONCLUSIONS

In this work, we propose a novel learning-based framework
for reconstructing the human body shape using a single
commodity depth camera. Compared to the existing methods,
our method has the following advantages: 1) we only need
two depth images from the front-facing and back-facing
views of the subject as input; 2) the posture variation of
two depth images is large; 3) our method is able to estimate
the body shape under clothing; 4) our reconstructed body
model is animatable; 5) the proposed method is of low
complexity and fast. We also present a novel dataset dubbed
FBB consisting of dressed and undressed human body shapes.
Extensive experimental results on PDT13, FAUST, BUFF
and BUG datasets show that our method outperforms the
existing methods. Since it is a parametric method, the main
limitation of our approach is that it cannot preserve fine
details from the raw partial scans. In future work, we will
focus on non-rigidly aligning two partial scans of subjects
with large pose variations based on deep learning.
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Fig. 8. Comparison of error of estimated body shape under clothing with start-of-the-art methods. From left to right: the two input point clouds (blue point
sets), the ground truth body (white point set), the result of [2], the result of [38], the result of [47], the result of [28] and our result. For each pair, the top is
the front-facing view, and the bottom is the back-facing view. The color of each point is colorized by per-vertex error in millimeters.

Fig. 9. Our other alternative stitching modules. (a) f2β: regressing the β value
from the concatenation of latent features fF and fB ; (b) β2β: regressing the
β value from the concatenation of βF and βB .
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[18] A. Fuster-Guilló, J. Azorı́n-López, M. Saval-Calvo, J. M. Castillo-
Zaragoza, N. Garcia-D’Urso, and R. B. Fisher, “Rgb-d-based frame-
work to acquire, visualize and measure the human body for dietetic
treatments,” Sensors, vol. 20, no. 13, p. 3690, 2020.
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