Languages vs. ω -Languages in Regular Infinite Games

Namit Chaturvedi, Jörg Olschewski, Wolfgang Thomas

DLT 2011, Milano July 19, 2011

Languages vs. ω -Languages in Regular Infinite Games

- \bullet Two players alternately play letters from Σ_1 and Σ_2 ad infinitum
- *Play*: ω -word α over the alphabet $\Sigma = \Sigma_1 \times \Sigma_2$

- $\bullet\,$ Two players alternately play letters from Σ_1 and Σ_2 ad infinitum
- Play: ω -word α over the alphabet $\Sigma = \Sigma_1 \times \Sigma_2$
- Example: $\alpha = \begin{pmatrix} a \\ 0 \end{pmatrix} \begin{pmatrix} a \\ 1 \end{pmatrix} \begin{pmatrix} a \\ 0 \end{pmatrix} \begin{pmatrix} a \\ 1 \end{pmatrix} \begin{pmatrix} b \\ 2 \end{pmatrix} \begin{pmatrix} a \\ 0 \end{pmatrix} \dots$

- $\bullet\,$ Two players alternately play letters from Σ_1 and Σ_2 ad infinitum
- Play: ω -word α over the alphabet $\Sigma = \Sigma_1 \times \Sigma_2$
- Example: $\alpha = \begin{pmatrix} a \\ 0 \end{pmatrix} \begin{pmatrix} a \\ 1 \end{pmatrix} \begin{pmatrix} a \\ 0 \end{pmatrix} \begin{pmatrix} a \\ 1 \end{pmatrix} \begin{pmatrix} b \\ 2 \end{pmatrix} \begin{pmatrix} a \\ 0 \end{pmatrix} \dots$
- Winning condition: an ω -language $L \subseteq \Sigma^{\omega}$

- $\bullet\,$ Two players alternately play letters from Σ_1 and Σ_2 ad infinitum
- Play: ω -word α over the alphabet $\Sigma = \Sigma_1 \times \Sigma_2$
- Example: $\alpha = \begin{pmatrix} a \\ 0 \end{pmatrix} \begin{pmatrix} a \\ 1 \end{pmatrix} \begin{pmatrix} a \\ 0 \end{pmatrix} \begin{pmatrix} a \\ 1 \end{pmatrix} \begin{pmatrix} b \\ 2 \end{pmatrix} \begin{pmatrix} a \\ 0 \end{pmatrix} \dots$
- Winning condition: an ω -language $L \subseteq \Sigma^{\omega}$
 - If $\alpha \in L$ then Player 2 wins
 - If $\alpha \notin L$ then Player 1 wins

- $\bullet\,$ Two players alternately play letters from Σ_1 and Σ_2 ad infinitum
- Play: ω -word α over the alphabet $\Sigma = \Sigma_1 \times \Sigma_2$
- Example: $\alpha = \begin{pmatrix} a \\ 0 \end{pmatrix} \begin{pmatrix} a \\ 1 \end{pmatrix} \begin{pmatrix} a \\ 0 \end{pmatrix} \begin{pmatrix} a \\ 1 \end{pmatrix} \begin{pmatrix} b \\ 2 \end{pmatrix} \begin{pmatrix} a \\ 0 \end{pmatrix} \dots$
- Winning condition: an ω -language $L \subseteq \Sigma^{\omega}$
 - If $\alpha \in L$ then Player 2 wins
 - If $\alpha \notin L$ then Player 1 wins
- Given finite play prefixes, winning strategies guide players:

- $\bullet\,$ Two players alternately play letters from Σ_1 and Σ_2 ad infinitum
- Play: ω -word α over the alphabet $\Sigma = \Sigma_1 \times \Sigma_2$
- Example: $\alpha = \begin{pmatrix} a \\ 0 \end{pmatrix} \begin{pmatrix} a \\ 1 \end{pmatrix} \begin{pmatrix} a \\ 0 \end{pmatrix} \begin{pmatrix} a \\ 1 \end{pmatrix} \begin{pmatrix} b \\ 2 \end{pmatrix} \begin{pmatrix} a \\ 0 \end{pmatrix} \dots$
- Winning condition: an ω -language $L \subseteq \Sigma^{\omega}$
 - If $\alpha \in L$ then Player 2 wins
 - If $\alpha \notin L$ then Player 1 wins
- Given finite play prefixes, winning strategies guide players:
 - Strategy for Player 1: $\lambda_1 \colon \Sigma^* \to \Sigma_1$

- $\bullet\,$ Two players alternately play letters from Σ_1 and Σ_2 ad infinitum
- Play: ω -word α over the alphabet $\Sigma = \Sigma_1 \times \Sigma_2$
- Example: $\alpha = \begin{pmatrix} a \\ 0 \end{pmatrix} \begin{pmatrix} a \\ 1 \end{pmatrix} \begin{pmatrix} a \\ 0 \end{pmatrix} \begin{pmatrix} a \\ 1 \end{pmatrix} \begin{pmatrix} b \\ 2 \end{pmatrix} \begin{pmatrix} a \\ 0 \end{pmatrix} \dots$
- Winning condition: an ω -language $L \subseteq \Sigma^{\omega}$
 - If $\alpha \in L$ then Player 2 wins
 - If $\alpha \notin L$ then Player 1 wins
- Given finite play prefixes, winning strategies guide players:
 - Strategy for Player 1: $\lambda_1 \colon \Sigma^* \to \Sigma_1$
 - Strategy for Player 2: $\lambda_2 \colon \Sigma^* \to \mathbf{F}(\Sigma_1 \to \Sigma_2)$

- $\bullet\,$ Two players alternately play letters from Σ_1 and Σ_2 ad infinitum
- Play: ω -word α over the alphabet $\Sigma = \Sigma_1 \times \Sigma_2$
- Example: $\alpha = \begin{pmatrix} a \\ 0 \end{pmatrix} \begin{pmatrix} a \\ 1 \end{pmatrix} \begin{pmatrix} a \\ 0 \end{pmatrix} \begin{pmatrix} a \\ 1 \end{pmatrix} \begin{pmatrix} b \\ 2 \end{pmatrix} \begin{pmatrix} a \\ 0 \end{pmatrix} \dots$
- Winning condition: an ω -language $L \subseteq \Sigma^{\omega}$
 - If $\alpha \in L$ then Player 2 wins
 - If $\alpha \notin L$ then Player 1 wins
- Given finite play prefixes, winning strategies guide players:
 - Strategy for Player 1: $\lambda_1 \colon \Sigma^* \to \Sigma_1$
 - Strategy for Player 2: $\lambda_2 \colon \Sigma^* \to \mathbf{F}(\Sigma_1 \to \Sigma_2)$

Winning condition: $L \subseteq \Sigma^{\omega}$. Winning strategies: $K_1, K_2 \subseteq \Sigma^*$

Class of regular $\begin{array}{l} \mathsf{languages} \\ \mathcal{K} \, \subseteq \, \mathsf{2}^{\Sigma^*} \end{array}$

 $L = \text{Only finitely many } \binom{a}{0} \land (\text{Infinitely many } \binom{b}{0} \Leftrightarrow \text{Infinitely many } \binom{b}{1})$

 $L = \text{Only finitely many } \binom{a}{0} \land (\text{Infinitely many } \binom{b}{0} \Leftrightarrow \text{Infinitely many } \binom{b}{1})$

Player 2's winning strategy:

• Respond to *a*'s with 1's

L =Only finitely many $\binom{a}{0} \land ($ Infinitely many $\binom{b}{0} \Leftrightarrow$ Infinitely many $\binom{b}{1})$

- Respond to *a*'s with 1's
- Respond to b's with alternating 0's and 1's

L =Only finitely many $\binom{a}{0} \land ($ Infinitely many $\binom{b}{0} \Leftrightarrow$ Infinitely many $\binom{b}{1})$

- Respond to *a*'s with 1's
- Respond to b's with alternating 0's and 1's

L is "obtained from"
$$\Sigma^* \begin{pmatrix} a \\ 0 \end{pmatrix}, \Sigma^* \begin{pmatrix} b \\ 0 \end{pmatrix}, \Sigma^* \begin{pmatrix} b \\ 1 \end{pmatrix}$$

L =Only finitely many $\binom{a}{0} \land ($ Infinitely many $\binom{b}{0} \Leftrightarrow$ Infinitely many $\binom{b}{1})$

- Respond to *a*'s with 1's
- Respond to b's with alternating 0's and 1's

L is "obtained from"
$$\Sigma^* \begin{pmatrix} a \\ 0 \end{pmatrix}, \Sigma^* \begin{pmatrix} b \\ 0 \end{pmatrix}, \Sigma^* \begin{pmatrix} b \\ 1 \end{pmatrix}$$

L =Only finitely many $\binom{a}{0} \land ($ Infinitely many $\binom{b}{0} \Leftrightarrow$ Infinitely many $\binom{b}{1})$

Player 2's winning strategy:

- Respond to *a*'s with 1's
- Respond to b's with alternating 0's and 1's

L is "obtained from"
$$\Sigma^* \begin{pmatrix} a \\ 0 \end{pmatrix}, \Sigma^* \begin{pmatrix} b \\ 0 \end{pmatrix}, \Sigma^* \begin{pmatrix} b \\ 1 \end{pmatrix}$$

L =Only finitely many $\binom{a}{0} \land ($ Infinitely many $\binom{b}{0} \Leftrightarrow$ Infinitely many $\binom{b}{1})$

Player 2's winning strategy:

- Respond to *a*'s with 1's
- Respond to b's with alternating 0's and 1's

L is "obtained from"
$$\Sigma^* \begin{pmatrix} a \\ 0 \end{pmatrix}, \Sigma^* \begin{pmatrix} b \\ 0 \end{pmatrix}, \Sigma^* \begin{pmatrix} b \\ 1 \end{pmatrix}$$

Player 2's winning strategy: $(\sum_{k=1}^{\infty} {k \choose k})$

• $\lambda_2(\Sigma^*\binom{b}{0})$

 $L = \text{Only finitely many } \binom{a}{0} \land (\text{Infinitely many } \binom{b}{0} \Leftrightarrow \text{Infinitely many } \binom{b}{1})$

Player 2's winning strategy:

- Respond to *a*'s with 1's
- Respond to b's with alternating 0's and 1's

L is "obtained from"
$$\Sigma^* \begin{pmatrix} a \\ 0 \end{pmatrix}, \Sigma^* \begin{pmatrix} b \\ 0 \end{pmatrix}, \Sigma^* \begin{pmatrix} b \\ 1 \end{pmatrix}$$

•
$$\lambda_2(\Sigma^*\binom{b}{0}) = \{a \mapsto 1,$$

 $L = \text{Only finitely many } \binom{a}{0} \land (\text{Infinitely many } \binom{b}{0} \Leftrightarrow \text{Infinitely many } \binom{b}{1})$

Player 2's winning strategy:

- Respond to *a*'s with 1's
- Respond to b's with alternating 0's and 1's

L is "obtained from"
$$\Sigma^* \begin{pmatrix} a \\ 0 \end{pmatrix}, \Sigma^* \begin{pmatrix} b \\ 0 \end{pmatrix}, \Sigma^* \begin{pmatrix} b \\ 1 \end{pmatrix}$$

•
$$\lambda_2(\Sigma^* \begin{pmatrix} b \\ 0 \end{pmatrix}) = \{a \mapsto 1, b \mapsto 1\}$$

 $L = \text{Only finitely many } \binom{a}{0} \land (\text{Infinitely many } \binom{b}{0} \Leftrightarrow \text{Infinitely many } \binom{b}{1})$

Player 2's winning strategy:

- Respond to *a*'s with 1's
- Respond to b's with alternating 0's and 1's

L is "obtained from"
$$\Sigma^* \begin{pmatrix} a \\ 0 \end{pmatrix}, \Sigma^* \begin{pmatrix} b \\ 0 \end{pmatrix}, \Sigma^* \begin{pmatrix} b \\ 1 \end{pmatrix}$$

•
$$\lambda_2(\Sigma^*\binom{b}{0}) = \{a \mapsto 1, b \mapsto 1\}$$

•
$$\lambda_2(\Sigma^*\binom{b}{1}) = \{a \mapsto 1, b \mapsto 0\}$$

 $L = \text{Only finitely many } \binom{a}{0} \land (\text{Infinitely many } \binom{b}{0} \Leftrightarrow \text{Infinitely many } \binom{b}{1})$

Player 2's winning strategy:

- Respond to *a*'s with 1's
- Respond to b's with alternating 0's and 1's

L is "obtained from"
$$\Sigma^* \begin{pmatrix} a \\ 0 \end{pmatrix}, \Sigma^* \begin{pmatrix} b \\ 0 \end{pmatrix}, \Sigma^* \begin{pmatrix} b \\ 1 \end{pmatrix}$$

Player 2's winning strategy:

•
$$\lambda_2(\Sigma^*\binom{b}{0}) = \{a \mapsto 1, b \mapsto 1\}$$

•
$$\lambda_2(\Sigma^*\binom{b}{1}) = \{a \mapsto 1, b \mapsto 0\}$$

• $\lambda_2(\Sigma^*\binom{a}{1}) = \{a \mapsto 1,$

 $L = \text{Only finitely many } \binom{a}{0} \land (\text{Infinitely many } \binom{b}{0} \Leftrightarrow \text{Infinitely many } \binom{b}{1})$

Player 2's winning strategy:

- Respond to *a*'s with 1's
- Respond to b's with alternating 0's and 1's

L is "obtained from"
$$\Sigma^* \begin{pmatrix} a \\ 0 \end{pmatrix}, \Sigma^* \begin{pmatrix} b \\ 0 \end{pmatrix}, \Sigma^* \begin{pmatrix} b \\ 1 \end{pmatrix}$$

•
$$\lambda_2(\Sigma^*\binom{b}{0}) = \{a \mapsto 1, b \mapsto 1\}$$

•
$$\lambda_2(\Sigma^*\binom{b}{1}) = \{a \mapsto 1, b \mapsto 0\}$$

•
$$\lambda_2(\Sigma^*\binom{a}{1}) = \{a \mapsto 1, b \mapsto ?\}$$

Do simple games have simple strategies?

Do simple games have simple strategies?

Description languages

Winning strategies

Regular languages below SF

Regular languages below SF

• $DD_0 := w\Sigma^*, \Sigma^* w$, and their Boolean combinations

Regular languages below SF

- $DD_0 := w\Sigma^*, \Sigma^* w$, and their Boolean combinations
- $DD_1 := w_0 \Sigma^* w_1 \Sigma^* \dots \Sigma^* w_n$, and their Boolean combinations

Regular languages below SF

- $DD_0 := w\Sigma^*, \Sigma^* w$, and their Boolean combinations
- $DD_1 \coloneqq w_0 \Sigma^* w_1 \Sigma^* \dots \Sigma^* w_n$, and their Boolean combinations

For $n \in \mathbb{N}, 1 \leq j \leq n, K_j \in \mathsf{DD}_i$,

Regular languages below SF

- $DD_0 \coloneqq w\Sigma^*, \Sigma^*w$, and their Boolean combinations
- $DD_1 \coloneqq w_0 \Sigma^* w_1 \Sigma^* \dots \Sigma^* w_n$, and their Boolean combinations

For $n \in \mathbb{N}, 1 \leq j \leq n, K_j \in DD_i$, $DD_{i+1} := K_1 \cdot K_2 \cdot \ldots \cdot K_n$, and their Boolean combinations

Regular languages below SF

- $\mathsf{DD}_0 \coloneqq w\Sigma^*, \Sigma^*w$, and their Boolean combinations
- $DD_1 \coloneqq w_0 \Sigma^* w_1 \Sigma^* \dots \Sigma^* w_n$, and their Boolean combinations

For $n \in \mathbb{N}, 1 \leq j \leq n, K_j \in DD_i$, $DD_{i+1} := K_1 \cdot K_2 \cdot \ldots \cdot K_n$, and their Boolean combinations

Strict hierarchy:

- $DD_i \subsetneq DD_{i+1}$
- $\bigcup_{i \in \mathbb{N}} DD_i = SF$ (star-free languages)

For $K \subseteq \Sigma^*$:

For $K \subseteq \Sigma^*$:

For $K \subseteq \Sigma^*$:

•
$$\mathsf{lim}(\mathcal{K}) \coloneqq \{ \alpha \in \Sigma^{\omega} \mid \exists^{\omega} i \in \mathbb{N}, \alpha = \checkmark \forall i \in \mathbb{N}, \alpha = \checkmark \forall i \in \mathcal{K} \}$$

For $K \subseteq \Sigma^*$:

•
$$\lim(K) := \{ \alpha \in \Sigma^{\omega} \mid \exists^{\omega} i \in \mathbb{N}, \alpha = \checkmark \forall u_1 \in K \}$$

For $\mathcal{K} \subseteq 2^{\Sigma^*}$:

- $\operatorname{ext}(\mathcal{K}) \coloneqq \{L \subseteq \Sigma^{\omega} \mid L = \operatorname{ext}(\mathcal{K}), \mathcal{K} \in \mathcal{K}\}$
- $\lim(\mathcal{K}) := \{L \subseteq \Sigma^{\omega} \mid L = \lim(\mathcal{K}), \mathcal{K} \in \mathcal{K}\}$

For $\mathcal{K} \subseteq 2^{\Sigma^*}$:

- $\operatorname{ext}(\mathcal{K}) \coloneqq \{L \subseteq \Sigma^{\omega} \mid L = \operatorname{ext}(\mathcal{K}), \mathcal{K} \in \mathcal{K}\}$
- $\lim(\mathcal{K}) := \{L \subseteq \Sigma^{\omega} \mid L = \lim(\mathcal{K}), \mathcal{K} \in \mathcal{K}\}$

• $BC(ext(\mathcal{K})) := \{Boolean \text{ combinations over } ext(\mathcal{K})\}$ (Weak games)

• $BC(lim(\mathcal{K})) := \{Boolean \text{ combinations over } lim(\mathcal{K})\} \text{ (Strong games)}$

For $\mathcal{K} \subseteq 2^{\Sigma^*}$:

•
$$\operatorname{ext}(\mathcal{K}) \coloneqq \{L \subseteq \Sigma^{\omega} \mid L = \operatorname{ext}(\mathcal{K}), \mathcal{K} \in \mathcal{K}\}$$

•
$$\lim(\mathcal{K}) \coloneqq \{L \subseteq \Sigma^{\omega} \mid L = \lim(\mathcal{K}), \mathcal{K} \in \mathcal{K}\}$$

• $BC(ext(\mathcal{K})) := \{Boolean \text{ combinations over } ext(\mathcal{K})\}$ (Weak games)

• $BC(lim(\mathcal{K})) := \{Boolean \text{ combinations over } lim(\mathcal{K})\} \text{ (Strong games)}$

Note:
$$\omega$$
-REG = BC(lim(REG))

 $L = \text{Only finitely many } \binom{a}{0} \land (\text{Infinitely many } \binom{b}{0} \Leftrightarrow \text{Infinitely many } \binom{b}{1})$

 $L = \text{Only finitely many } \binom{a}{0} \land (\text{Infinitely many } \binom{b}{0} \Leftrightarrow \text{Infinitely many } \binom{b}{1})$

 $L \in BC(Iim(DD_0))$:

 $L = \text{Only finitely many } \binom{a}{0} \land (\text{Infinitely many } \binom{b}{0} \Leftrightarrow \text{Infinitely many } \binom{b}{1})$

$$L \in \mathsf{BC}(\mathsf{lim}(DD_0)):$$

• $\Sigma^*\binom{a}{0}, \Sigma^*\binom{a}{1}, \Sigma^*\binom{b}{0}, \Sigma^*\binom{b}{1} \in DD_0$

 $L = \text{Only finitely many } \binom{a}{0} \land (\text{Infinitely many } \binom{b}{0} \Leftrightarrow \text{Infinitely many } \binom{b}{1})$

$$L \in \mathsf{BC}(\mathsf{lim}(DD_0)):$$
• $\Sigma^*\binom{a}{0}, \Sigma^*\binom{a}{1}, \Sigma^*\binom{b}{0}, \Sigma^*\binom{b}{1} \in DD_0$
• $L = \overline{\mathsf{lim}(\Sigma^*\binom{a}{0})} \cap [\overline{\mathsf{lim}(\Sigma^*\binom{b}{0})} \cup \mathsf{lim}(\Sigma^*\binom{b}{1})] \cap [\overline{\mathsf{lim}(\Sigma^*\binom{b}{1})} \cup \mathsf{lim}(\Sigma^*\binom{b}{0})]$

 $L = \text{Only finitely many } \binom{a}{0} \land (\text{Infinitely many } \binom{b}{0} \Leftrightarrow \text{Infinitely many } \binom{b}{1})$

 $L \in \mathsf{BC}(\mathsf{lim}(DD_0)):$ • $\Sigma^*\binom{a}{0}, \Sigma^*\binom{b}{0}, \Sigma^*\binom{b}{1} \in DD_0$ • $L = \overline{\mathsf{lim}(\Sigma^*\binom{a}{0})} \cap [\overline{\mathsf{lim}(\Sigma^*\binom{b}{0})} \cup \mathsf{lim}(\Sigma^*\binom{b}{1})] \cap [\overline{\mathsf{lim}(\Sigma^*\binom{b}{0})}]$

 $L = \text{Only finitely many } \binom{a}{0} \land (\text{Infinitely many } \binom{b}{0} \Rightarrow \text{Infinitely many } \binom{b}{1})$

 $L \in BC(Iim(DD_0))$:

•
$$\Sigma^* \begin{pmatrix} a \\ 0 \end{pmatrix}, \Sigma^* \begin{pmatrix} a \\ 1 \end{pmatrix}, \Sigma^* \begin{pmatrix} b \\ 0 \end{pmatrix}, \Sigma^* \begin{pmatrix} b \\ 1 \end{pmatrix} \in DD_0$$

• $L = \overline{\lim(\Sigma^*\binom{a}{0})} \cap [\overline{\lim(\Sigma^*\binom{b}{0})} \cup \lim(\Sigma^*\binom{b}{1})] \cap [\overline{\lim(\Sigma^*\binom{b}{1})} \cup \lim(\Sigma^*\binom{b}{0})]$

 $L = \text{Only finitely many } \binom{a}{0} \land (\text{Infinitely many } \binom{b}{0} \Leftarrow \text{Infinitely many } \binom{b}{1})$

 $L \in \mathsf{BC}(\mathsf{lim}(DD_0)):$ • $\Sigma^*\binom{a}{0}, \Sigma^*\binom{b}{0}, \Sigma^*\binom{b}{1} \in DD_0$ • $L = \overline{\mathsf{lim}(\Sigma^*\binom{a}{0})} \cap [\overline{\mathsf{lim}(\Sigma^*\binom{b}{0})} \cup \mathsf{lim}(\Sigma^*\binom{b}{1})] \cap [\overline{\mathsf{lim}(\Sigma^*\binom{b}{0})}]$

 $L = \text{Only finitely many } \binom{a}{0} \land (\text{Infinitely many } \binom{b}{0} \Leftrightarrow \text{Infinitely many } \binom{b}{1})$

$$L \in \mathsf{BC}(\mathsf{lim}(DD_0)):$$
• $\Sigma^*\binom{a}{0}, \Sigma^*\binom{a}{1}, \Sigma^*\binom{b}{0}, \Sigma^*\binom{b}{1} \in DD_0$
• $L = \overline{\mathsf{lim}(\Sigma^*\binom{a}{0})} \cap [\overline{\mathsf{lim}(\Sigma^*\binom{b}{0})} \cup \mathsf{lim}(\Sigma^*\binom{b}{1})] \cap [\overline{\mathsf{lim}(\Sigma^*\binom{b}{1})} \cup \mathsf{lim}(\Sigma^*\binom{b}{0})]$

For a game $L \in \Sigma^{\omega}$, and a class of languages $\mathcal{K} \subseteq 2^{\Sigma^*}$:

For a game $L \in \Sigma^{\omega}$, and a class of languages $\mathcal{K} \subseteq 2^{\Sigma^*}$:

• If Player 1 wins:

• Define
$$K_a = \{w \in \Sigma^* \mid \lambda_1(w) = a\}$$

For a game $L \in \Sigma^{\omega}$, and a class of languages $\mathcal{K} \subseteq 2^{\Sigma^*}$:

• If Player 1 wins:

• Define
$$K_a = \{w \in \Sigma^* \mid \lambda_1(w) = a\}$$

• If
$$K_a \in \mathcal{K}$$
 for all $a \in \Sigma_1$, then strategy is in \mathcal{K}

For a game $L \in \Sigma^{\omega}$, and a class of languages $\mathcal{K} \subseteq 2^{\Sigma^*}$:

• If Player 1 wins:

- Define $K_a = \{w \in \Sigma^* \mid \lambda_1(w) = a\}$
- If $K_a \in \mathcal{K}$ for all $a \in \Sigma_1$, then strategy is in \mathcal{K}
- If Player 2 wins:
 - Define $K_f = \{w \in \Sigma^* \mid \lambda_2(w) = f\}$

For a game $L \in \Sigma^{\omega}$, and a class of languages $\mathcal{K} \subseteq 2^{\Sigma^*}$:

• If Player 1 wins:

- Define $K_a = \{w \in \Sigma^* \mid \lambda_1(w) = a\}$
- If $K_a \in \mathcal{K}$ for all $a \in \Sigma_1$, then strategy is in \mathcal{K}

• If Player 2 wins:

• Define
$$K_f = \{w \in \Sigma^* \mid \lambda_2(w) = f\}$$

• If $K_f \in \mathcal{K}$ for all $f \in \mathbf{F}(\Sigma_1 \to \Sigma_2)$, then strategy is in \mathcal{K}

For a game $L \in \Sigma^{\omega}$, and a class of languages $\mathcal{K} \subseteq 2^{\Sigma^*}$:

• If Player 1 wins:

- Define $K_a = \{w \in \Sigma^* \mid \lambda_1(w) = a\}$
- If $K_a \in \mathcal{K}$ for all $a \in \Sigma_1$, then strategy is in \mathcal{K}
- If Player 2 wins:
 - Define $K_f = \{w \in \Sigma^* \mid \lambda_2(w) = f\}$
 - If $K_f \in \mathcal{K}$ for all $f \in \mathbf{F}(\Sigma_1 \to \Sigma_2)$, then strategy is in \mathcal{K}

Theorem (Büchi-Landweber)

Games in BC(lim(REG)) are determined with winning strategies in REG

For a game $L \in \Sigma^{\omega}$, and a class of languages $\mathcal{K} \subseteq 2^{\Sigma^*}$:

• If Player 1 wins:

- Define $K_a = \{w \in \Sigma^* \mid \lambda_1(w) = a\}$
- If $K_a \in \mathcal{K}$ for all $a \in \Sigma_1$, then strategy is in \mathcal{K}
- If Player 2 wins:
 - Define $K_f = \{w \in \Sigma^* \mid \lambda_2(w) = f\}$
 - If $K_f \in \mathcal{K}$ for all $f \in \mathbf{F}(\Sigma_1 \to \Sigma_2)$, then strategy is in \mathcal{K}

Theorem (Büchi-Landweber)

Games in BC(lim(REG)) are determined with winning strategies in REG

Theorem (Selivanov, Rabinovich-T.)

Games in BC(Iim(SF)) are determined with winning strategies in SF

 $L = \text{Only finitely many } \binom{a}{0} \land (\text{Infinitely many } \binom{b}{0} \Leftrightarrow \text{Infinitely many } \binom{b}{1})$

 $L = \text{Only finitely many } \binom{a}{0} \land (\text{Infinitely many } \binom{b}{0} \Leftrightarrow \text{Infinitely many } \binom{b}{1})$

 $L = \text{Only finitely many } \binom{a}{0} \land (\text{Infinitely many } \binom{b}{0} \Leftrightarrow \text{Infinitely many } \binom{b}{1})$

•
$$\lambda_2(\Sigma^*\binom{b}{0}) = \{a \mapsto 1, b \mapsto 1\}$$

•
$$\lambda_2(\Sigma^*\binom{b}{1}) = \{a \mapsto 1, b \mapsto 0\}$$

 $L = \text{Only finitely many } \binom{a}{0} \land (\text{Infinitely many } \binom{b}{0} \Leftrightarrow \text{Infinitely many } \binom{b}{1})$

•
$$\lambda_2(\Sigma^* \begin{pmatrix} b \\ 0 \end{pmatrix}) = \{a \mapsto 1, b \mapsto 1\}$$

•
$$\lambda_2(\Sigma^*\binom{b}{1}) = \{a \mapsto 1, b \mapsto 0\}$$

•
$$\lambda_2(\Sigma^*\binom{a}{1}) = \{a \mapsto 1, b \mapsto ?\}$$

 $L = \text{Only finitely many } \binom{a}{0} \land (\text{Infinitely many } \binom{b}{0} \Leftrightarrow \text{Infinitely many } \binom{b}{1})$

•
$$\lambda_2(\Sigma^*\binom{b}{0}) = \{a \mapsto 1, b \mapsto 1\}$$

•
$$\lambda_2(\Sigma^*\binom{b}{1}) = \{a \mapsto 1, b \mapsto 0\}$$

•
$$\lambda_2(K_i) = \{a \mapsto 1, b \mapsto 1 - i\}$$

 $L = \text{Only finitely many } \binom{a}{0} \land (\text{Infinitely many } \binom{b}{0} \Leftrightarrow \text{Infinitely many } \binom{b}{1})$

•
$$\lambda_2(\Sigma^*({}^b_0)) = \{a \mapsto 1, b \mapsto 1\}$$

•
$$\lambda_2(\Sigma^*\binom{b}{1}) = \{a \mapsto 1, b \mapsto 0\}$$

•
$$\lambda_2(K_i) = \{a \mapsto 1, b \mapsto 1 - i\}$$

• $K_0 = \Sigma^* {b \choose 0}$

 $L = \text{Only finitely many } \binom{a}{0} \land (\text{Infinitely many } \binom{b}{0} \Leftrightarrow \text{Infinitely many } \binom{b}{1})$

•
$$\lambda_2(\Sigma^* {b \choose 0}) = \{ a \mapsto 1, \ b \mapsto 1 \}$$

• $\lambda_2(\Sigma^* {b \choose 1}) = \{ a \mapsto 1, \ b \mapsto 0 \}$

•
$$\lambda_2(K_i) = \{a \mapsto 1, b \mapsto 1 - i\}$$

• $K_0 = \Sigma^* {b \choose 0} \cdot \overline{\Sigma^* {b \choose 0} \Sigma^* \cup \Sigma^* {b \choose 1} \Sigma^*}$

 $L = \text{Only finitely many } \binom{a}{0} \land (\text{Infinitely many } \binom{b}{0} \Leftrightarrow \text{Infinitely many } \binom{b}{1})$

•
$$\lambda_2(\Sigma^*\binom{b}{0}) = \{a \mapsto 1, b \mapsto 1\}$$

• $\lambda_2(\Sigma^*\binom{b}{1}) = \{a \mapsto 1, b \mapsto 0\}$
• $\lambda_2(K_i) = \{a \mapsto 1, b \mapsto 1 - i\}$
• $K_0 = \Sigma^*\binom{b}{0} \cdot \overline{\Sigma^*\binom{b}{0}\Sigma^* \cup \Sigma^*\binom{b}{1}\Sigma^*} \cdot \binom{a}{1}$

 $L = \text{Only finitely many } \binom{a}{0} \land (\text{Infinitely many } \binom{b}{0} \Leftrightarrow \text{Infinitely many } \binom{b}{1})$

•
$$\lambda_2(\Sigma^*\binom{b}{0}) = \{a \mapsto 1, b \mapsto 1\}$$

• $\lambda_2(\Sigma^*\binom{b}{1}) = \{a \mapsto 1, b \mapsto 0\}$
• $\lambda_2(K_i) = \{a \mapsto 1, b \mapsto 1 - i\}$
• $K_0 = \Sigma^*\binom{b}{0} \cdot \overline{\Sigma^*\binom{b}{0}\Sigma^* \cup \Sigma^*\binom{b}{1}\Sigma^*} \cdot \binom{a}{1}$
• $K_1 = \Sigma^*\binom{b}{1}$

 $L = \text{Only finitely many } \binom{a}{0} \land (\text{Infinitely many } \binom{b}{0} \Leftrightarrow \text{Infinitely many } \binom{b}{1})$

•
$$\lambda_2(\Sigma^*\binom{b}{0}) = \{a \mapsto 1, b \mapsto 1\}$$

• $\lambda_2(\Sigma^*\binom{b}{1}) = \{a \mapsto 1, b \mapsto 0\}$
• $\lambda_2(K_i) = \{a \mapsto 1, b \mapsto 1-i\}$
• $K_0 = \Sigma^*\binom{b}{0} \cdot \overline{\frac{\Sigma^*\binom{b}{0}\Sigma^* \cup \Sigma^*\binom{b}{1}\Sigma^*}{\Sigma^*\binom{b}{0}\Sigma^* \cup \Sigma^*\binom{b}{1}\Sigma^*}} \cdot \binom{a}{1}$

 $L = \text{Only finitely many } \binom{a}{0} \land (\text{Infinitely many } \binom{b}{0} \Leftrightarrow \text{Infinitely many } \binom{b}{1})$

•
$$\lambda_2(\Sigma^*\binom{b}{0}) = \{a \mapsto 1, b \mapsto 1\}$$

• $\lambda_2(\Sigma^*\binom{b}{1}) = \{a \mapsto 1, b \mapsto 0\}$
• $\lambda_2(K_i) = \{a \mapsto 1, b \mapsto 1 - i\}$
• $K_0 = \Sigma^*\binom{b}{0} \cdot \frac{\overline{\Sigma^*\binom{b}{0}\Sigma^* \cup \Sigma^*\binom{b}{1}\Sigma^*}}{\overline{\Sigma^*\binom{b}{0}\Sigma^* \cup \Sigma^*\binom{b}{1}\Sigma^*}} \cdot \binom{a}{1}$
• $K_1 = \Sigma^*\binom{b}{1} \cdot \overline{\Sigma^*\binom{b}{0}\Sigma^* \cup \Sigma^*\binom{b}{1}\Sigma^*} \cdot \binom{a}{1}$

 $L = \text{Only finitely many } \binom{a}{0} \land (\text{Infinitely many } \binom{b}{0} \Leftrightarrow \text{Infinitely many } \binom{b}{1})$

Player 2's winning strategy:

•
$$\lambda_2(\Sigma^*\binom{b}{0}) = \{a \mapsto 1, b \mapsto 1\}$$

• $\lambda_2(\Sigma^*\binom{b}{1}) = \{a \mapsto 1, b \mapsto 0\}$
• $\lambda_2(K_i) = \{a \mapsto 1, b \mapsto 1 - i\}$
• $K_0 = \Sigma^*\binom{b}{0} \cdot \frac{\overline{\Sigma^*\binom{b}{0}\Sigma^* \cup \Sigma^*\binom{b}{1}\Sigma^*}}{\overline{\Sigma^*\binom{b}{0}\Sigma^* \cup \Sigma^*\binom{b}{1}\Sigma^*}} \cdot \binom{a}{1}$

Game $L \in BC(lim(DD_0))$. Strategy $K_0, K_1 \in DD_2 \setminus DD_1$

Games in $BC(ext(DD_i))$ are determined with winning strategies in DD_{i+1} .

Proof.

Games in $BC(ext(DD_i))$ are determined with winning strategies in DD_{i+1} .

Proof.

Given $L \in BC(ext(DD_i))$

Games in $BC(ext(DD_i))$ are determined with winning strategies in DD_{i+1} .

Proof.

Given $L \in BC(ext(DD_i))$

• $\mathcal{K}_\ell \in DD_i$ is accepted by DFA $\mathcal{A}_\ell = (\mathcal{Q}, \Sigma, \delta, q_0, F)$, s.t. for $q_j \in \mathcal{Q}$

Games in $BC(ext(DD_i))$ are determined with winning strategies in DD_{i+1} .

Proof.

Given $L \in BC(ext(DD_i))$

• $\mathcal{K}_{\ell} \in DD_i$ is accepted by DFA $\mathcal{A}_{\ell} = (\mathcal{Q}, \Sigma, \delta, q_0, F)$, s.t. for $q_j \in \mathcal{Q}$

$$[w]_j = \{ w \in \Sigma^* \mid q_0 \xrightarrow{w} q_j \}$$

Games in $BC(ext(DD_i))$ are determined with winning strategies in DD_{i+1} .

Proof.

Given $L \in BC(ext(DD_i))$

• $\mathcal{K}_\ell \in DD_i$ is accepted by DFA $\mathcal{A}_\ell = (\mathcal{Q}, \Sigma, \delta, q_0, F)$, s.t. for $q_j \in \mathcal{Q}$

$$[w]_j = \{ w \in \Sigma^* \mid q_0 \xrightarrow{w} q_j \}$$

 $[w]_j \in \mathsf{DD}_i$

Games in $BC(ext(DD_i))$ are determined with winning strategies in DD_{i+1} .

Proof.

Given $L \in BC(ext(DD_i))$

• $\mathcal{K}_\ell \in DD_i$ is accepted by DFA $\mathcal{A}_\ell = (\mathcal{Q}, \Sigma, \delta, q_0, \mathcal{F})$, s.t. for $q_j \in \mathcal{Q}$

$$[w]_j = \{ w \in \Sigma^* \mid q_0 \xrightarrow{w} q_j \}$$

 $[w]_j \in \mathsf{DD}_i$

Games in $BC(ext(DD_i))$ are determined with winning strategies in DD_{i+1} .

Proof.

Given $L \in \mathsf{BC}(\mathsf{ext}(DD_i))$

• $\mathcal{K}_\ell \in DD_i$ is accepted by DFA $\mathcal{A}_\ell = (\mathcal{Q}, \Sigma, \delta, q_0, \mathcal{F})$, s.t. for $q_j \in \mathcal{Q}$

$$[w]_j = \{ w \in \Sigma^* \mid q_0 \xrightarrow{w} q_j \}$$

 $[w]_j \in \mathsf{DD}_i$

A_ℓ = (Q, Σ, δ, q₀, F_F) is a S-W automaton accepting ext(K_ℓ)
A = ∏ A_ℓ

Games in $BC(ext(DD_i))$ are determined with winning strategies in DD_{i+1} .

Proof.

Given $L \in \mathsf{BC}(\mathsf{ext}(DD_i))$

• $\mathcal{K}_\ell \in DD_i$ is accepted by DFA $\mathcal{A}_\ell = (\mathcal{Q}, \Sigma, \delta, q_0, \mathcal{F})$, s.t. for $q_j \in \mathcal{Q}$

$$[w]_j = \{ w \in \Sigma^* \mid q_0 \xrightarrow{w} q_j \}$$

 $[w]_j \in \mathsf{DD}_i$

• $\mathcal{A}_{\ell} = (Q, \Sigma, \delta, q_0, \mathcal{F}_F)$ is a S-W automaton accepting $ext(K_{\ell})$

• $\mathcal{A} = \prod \mathcal{A}_{\ell}$ is a S-W automaton accepting L

Games in $BC(ext(DD_i))$ are determined with winning strategies in DD_{i+1} .

Proof.

Given $L \in \mathsf{BC}(\mathsf{ext}(DD_i))$

• $\mathcal{K}_\ell \in DD_i$ is accepted by DFA $\mathcal{A}_\ell = (\mathcal{Q}, \Sigma, \delta, q_0, \mathcal{F})$, s.t. for $q_j \in \mathcal{Q}$

$$[w]_j = \{ w \in \Sigma^* \mid q_0 \xrightarrow{w} q_j \}$$

 $[w]_j \in \mathsf{DD}_i$

• $\mathcal{A}_{\ell} = (Q, \Sigma, \delta, q_0, \mathcal{F}_F)$ is a S-W automaton accepting $\mathsf{ext}(\mathcal{K}_{\ell})$

• $\mathcal{A} = \prod \mathcal{A}_\ell$ is a S-W automaton accepting L, s.t. for $q_j \in \mathcal{Q}_\mathcal{A}$

Games in $BC(ext(DD_i))$ are determined with winning strategies in DD_{i+1} .

Proof.

Given $L \in \mathsf{BC}(\mathsf{ext}(DD_i))$

• $\mathcal{K}_\ell \in DD_i$ is accepted by DFA $\mathcal{A}_\ell = (\mathcal{Q}, \Sigma, \delta, q_0, \mathcal{F})$, s.t. for $q_j \in \mathcal{Q}$

$$[w]_j = \{w \in \Sigma^* \mid q_0 \xrightarrow{w} q_j\}$$

 $[w]_j \in \mathsf{DD}_j$

• $\mathcal{A}_{\ell} = (Q, \Sigma, \delta, q_0, \mathcal{F}_F)$ is a S-W automaton accepting $\mathsf{ext}(\mathcal{K}_{\ell})$

A = ∏ A_ℓ is a S-W automaton accepting L, s.t. for q_j ∈ Q_A
[w]_j ∈ DD_i

Games in $BC(ext(DD_i))$ are determined with winning strategies in DD_{i+1} .

Proof.

Given $L \in \mathsf{BC}(\mathsf{ext}(DD_i))$

• $\mathcal{K}_\ell \in DD_i$ is accepted by DFA $\mathcal{A}_\ell = (\mathcal{Q}, \Sigma, \delta, q_0, \mathcal{F})$, s.t. for $q_j \in \mathcal{Q}$

$$[w]_j = \{w \in \Sigma^* \mid q_0 \xrightarrow{w} q_j\}$$

 $[w]_j \in \mathsf{DD}_i$

• $\mathcal{A}_{\ell} = (Q, \Sigma, \delta, q_0, \mathcal{F}_F)$ is a S-W automaton accepting $\mathsf{ext}(\mathcal{K}_{\ell})$

A = ∏ A_ℓ is a S-W automaton accepting L, s.t. for q_j ∈ Q_A
[w]_j ∈ DD_i

•
$$\mathcal{A} \stackrel{AR}{\Longrightarrow} \mathcal{A}_P$$

Games in $BC(ext(DD_i))$ are determined with winning strategies in DD_{i+1} .

Proof.

Given $L \in \mathsf{BC}(\mathsf{ext}(DD_i))$

• $\mathcal{K}_\ell \in DD_i$ is accepted by DFA $\mathcal{A}_\ell = (\mathcal{Q}, \Sigma, \delta, q_0, \mathcal{F})$, s.t. for $q_j \in \mathcal{Q}$

$$[w]_j = \{w \in \Sigma^* \mid q_0 \xrightarrow{w} q_j\}$$

 $[w]_j \in \mathsf{DD}_i$

- $\mathcal{A} = \prod \mathcal{A}_{\ell}$ is a S-W automaton accepting L, s.t. for $q_j \in Q_{\mathcal{A}}$ • $[w]_j \in \mathsf{DD}_i$
- $\mathcal{A} \stackrel{AR}{\Longrightarrow} \mathcal{A}_P$, a parity automaton accepting L

Games in $BC(ext(DD_i))$ are determined with winning strategies in DD_{i+1} .

Proof.

Given $L \in \mathsf{BC}(\mathsf{ext}(DD_i))$

• $\mathcal{K}_\ell \in DD_i$ is accepted by DFA $\mathcal{A}_\ell = (\mathcal{Q}, \Sigma, \delta, q_0, \mathcal{F})$, s.t. for $q_j \in \mathcal{Q}$

$$[w]_j = \{w \in \Sigma^* \mid q_0 \xrightarrow{w} q_j\}$$

 $[w]_j \in \mathsf{DD}_j$

- $\mathcal{A} = \prod \mathcal{A}_{\ell}$ is a S-W automaton accepting *L*, s.t. for $q_j \in Q_{\mathcal{A}}$ • $[w]_j \in \mathsf{DD}_i$
- $\mathcal{A} \stackrel{AR}{\Longrightarrow} \mathcal{A}_P$, a parity automaton accepting L, s.t. for $q_j \in Q_{\mathcal{A}_P}$

Games in $BC(ext(DD_i))$ are determined with winning strategies in DD_{i+1} .

Proof.

Given $L \in \mathsf{BC}(\mathsf{ext}(DD_i))$

• $\mathcal{K}_\ell \in DD_i$ is accepted by DFA $\mathcal{A}_\ell = (\mathcal{Q}, \Sigma, \delta, q_0, \mathcal{F})$, s.t. for $q_j \in \mathcal{Q}$

$$[w]_j = \{w \in \Sigma^* \mid q_0 \xrightarrow{w} q_j\}$$

 $[w]_j \in \mathsf{DD}_j$

- A = ∏ A_ℓ is a S-W automaton accepting L, s.t. for q_j ∈ Q_A
 [w]_j ∈ DD_i
- A ⇒ A_P, a parity automaton accepting L, s.t. for q_j ∈ Q_{A_P}
 [w]_j ∈ DD_{i+1}

Games in $BC(ext(DD_i))$ are determined with winning strategies in DD_{i+1} .

Games in $BC(ext(DD_i))$ are determined with winning strategies in DD_{i+1} .

Theorem (Strong games)

Games in $BC(lim(DD_i))$ are determined with winning strategies in DD_{i+2} .

Games in $BC(ext(DD_i))$ are determined with winning strategies in DD_{i+1} .

Theorem (Strong games)

Games in $BC(lim(DD_i))$ are determined with winning strategies in DD_{i+2} .

Theorem

Games in $BC(ext(DD_i))$ are determined with winning strategies in DD_{i+1} .

Theorem (Strong games)

Games in $BC(lim(DD_i))$ are determined with winning strategies in DD_{i+2} .

Theorem

•
$$\Sigma_1 = \{a, b, c, d\}$$
 and $\Sigma_2 = \{0, 1\}$

Games in $BC(ext(DD_i))$ are determined with winning strategies in DD_{i+1} .

Theorem (Strong games)

Games in $BC(lim(DD_i))$ are determined with winning strategies in DD_{i+2} .

Theorem

There are games in $BC(ext(DD_1))$ that do not admit DD_1 strategies.

•
$$\Sigma_1 = \{a, b, c, d\}$$
 and $\Sigma_2 = \{0, 1\}$

• if Pl. 1 plays $x \in \{a, b, c\}$ then Pl. 2 must play 0

Games in $BC(ext(DD_i))$ are determined with winning strategies in DD_{i+1} .

Theorem (Strong games)

Games in $BC(lim(DD_i))$ are determined with winning strategies in DD_{i+2} .

Theorem

There are games in $BC(ext(DD_1))$ that do not admit DD_1 strategies.

•
$$\Sigma_1 = \{a, b, c, d\}$$
 and $\Sigma_2 = \{0, 1\}$

• if Pl. 1 plays $x \in \{a, b, c\}$ then Pl. 2 must play $0 \rightsquigarrow \neg \operatorname{ext}(\Sigma^* {x \choose 1} \Sigma^*)$

Games in $BC(ext(DD_i))$ are determined with winning strategies in DD_{i+1} .

Theorem (Strong games)

Games in $BC(lim(DD_i))$ are determined with winning strategies in DD_{i+2} .

Theorem

•
$$\Sigma_1 = \{a, b, c, d\}$$
 and $\Sigma_2 = \{0, 1\}$

- if Pl. 1 plays $x \in \{a, b, c\}$ then Pl. 2 must play 0 $\rightsquigarrow \neg \operatorname{ext}(\Sigma^*\binom{x}{1}\Sigma^*)$
- Pl. 1 must play d

Games in $BC(ext(DD_i))$ are determined with winning strategies in DD_{i+1} .

Theorem (Strong games)

Games in $BC(lim(DD_i))$ are determined with winning strategies in DD_{i+2} .

Theorem

•
$$\Sigma_1 = \{a, b, c, d\}$$
 and $\Sigma_2 = \{0, 1\}$

- if Pl. 1 plays $x \in \{a, b, c\}$ then Pl. 2 must play 0 $\rightsquigarrow \neg \operatorname{ext}(\Sigma^*\binom{x}{1}\Sigma^*)$
- PI. 1 must play $d \rightsquigarrow \operatorname{ext}(\Sigma^*\binom{d}{0}\Sigma^* \cup \Sigma^*\binom{d}{1}\Sigma^*)$

Games in $BC(ext(DD_i))$ are determined with winning strategies in DD_{i+1} .

Theorem (Strong games)

Games in $BC(lim(DD_i))$ are determined with winning strategies in DD_{i+2} .

Theorem

•
$$\Sigma_1 = \{a, b, c, d\}$$
 and $\Sigma_2 = \{0, 1\}$

- if Pl. 1 plays $x \in \{a, b, c\}$ then Pl. 2 must play $0 \rightsquigarrow \neg \operatorname{ext}(\Sigma^* {\binom{x}{1}} \Sigma^*)$
- PI. 1 must play $d \rightsquigarrow \operatorname{ext}(\Sigma^*\binom{d}{0}\Sigma^* \cup \Sigma^*\binom{d}{1}\Sigma^*)$
- when Pl. 1 plays d then Pl. 2 must decide between 0 and 1
 - if the play starts with $\binom{a}{0}^*\binom{b}{0}$ then answer 1
 - if the play starts with $\binom{a}{0}^*\binom{c}{0}$ then answer 0

Games in $BC(ext(DD_i))$ are determined with winning strategies in DD_{i+1} .

Theorem (Strong games)

Games in $BC(lim(DD_i))$ are determined with winning strategies in DD_{i+2} .

Theorem

•
$$\Sigma_1 = \{a, b, c, d\}$$
 and $\Sigma_2 = \{0, 1\}$

- if Pl. 1 plays $x \in \{a, b, c\}$ then Pl. 2 must play 0 $\rightsquigarrow \neg \operatorname{ext}(\Sigma^*\binom{x}{1}\Sigma^*)$
- PI. 1 must play $d \rightsquigarrow \operatorname{ext}(\Sigma^*\binom{d}{0}\Sigma^* \cup \Sigma^*\binom{d}{1}\Sigma^*)$
- when Pl. 1 plays d then Pl. 2 must decide between 0 and 1
 - if the play starts with $\binom{a}{0}^*\binom{b}{0}$ then answer 1
 - if the play starts with $\binom{a}{0}^*\binom{c}{0}$ then answer 0
 - $\blacktriangleright \quad \rightsquigarrow \qquad \operatorname{ext}(\binom{a}{0}^*\binom{b}{0}) \quad \Leftrightarrow \quad \operatorname{ext}(\Sigma^*\binom{d}{1}\Sigma^*)$

Games in $BC(ext(DD_i))$ are determined with winning strategies in DD_{i+1} .

Theorem (Strong games)

Games in $BC(lim(DD_i))$ are determined with winning strategies in DD_{i+2} .

Theorem

There are games in $BC(ext(DD_1))$ that do not admit DD_1 strategies.

•
$$\Sigma_1 = \{a, b, c, d\}$$
 and $\Sigma_2 = \{0, 1\}$

- if Pl. 1 plays $x \in \{a, b, c\}$ then Pl. 2 must play 0 $\rightsquigarrow \neg \operatorname{ext}(\Sigma^*\binom{x}{1}\Sigma^*)$
- PI. 1 must play $d \rightsquigarrow \operatorname{ext}(\Sigma^*\binom{d}{0}\Sigma^* \cup \Sigma^*\binom{d}{1}\Sigma^*)$
- when Pl. 1 plays d then Pl. 2 must decide between 0 and 1
 - if the play starts with $\binom{a}{0}^*\binom{b}{0}$ then answer 1
 - if the play starts with $\binom{a}{0}^*\binom{c}{0}$ then answer 0
 - $\blacktriangleright \quad \rightsquigarrow \qquad \operatorname{ext}(\binom{a}{0}^*\binom{b}{0}) \quad \Leftrightarrow \quad \operatorname{ext}(\Sigma^*\binom{d}{1}\Sigma^*)$
- Player 2 has a winning strategy, $K \in DD_2 \setminus DD_1$

Languages vs. ω -Languages in Regular Infinite Games

Conclusion

Class \mathcal{K}	Strategies for $BC(ext(\mathcal{K}))$	Strategies for $BC(lim(\mathcal{K}))$
DDi	DD_{i+1}	DD_{i+2}
DD_1	DD_2 but not DD_1	DD_3 but not DD_1
PT	DD_2 but not DD_1	PT
$DD_{1/2}$	DD_1	DD_3 but not DD_1

Conclusion

Class \mathcal{K}	Strategies for $BC(ext(\mathcal{K}))$	Strategies for $BC(lim(\mathcal{K}))$
DDi	DD_{i+1}	DD_{i+2}
DD_1	DD_2 but not DD_1	DD_3 but not DD_1
PT	DD_2 but not DD_1	PT
$DD_{1/2}$	DD_1	DD_3 but not DD_1

- Regular/SF ω -languages have regular/SF strategies
- No longer straightforward for dot-depth languages

Conclusion

Class \mathcal{K}	Strategies for $BC(ext(\mathcal{K}))$	Strategies for $BC(lim(\mathcal{K}))$
DDi	DD_{i+1}	DD_{i+2}
DD_1	DD_2 but not DD_1	DD_3 but not DD_1
PT	DD_2 but not DD_1	PT
$DD_{1/2}$	DD_1	DD_3 but not DD_1

- Regular/SF ω -languages have regular/SF strategies
- No longer straightforward for dot-depth languages
- Open: Do there exist games in BC(lim(DD_i)) that do not admit any DD_{i+1} strategies?
- Open: How many states are needed for winning strategies?