
Languages vs. ω-Languages in Regular Infinite Games

Namit Chaturvedi, Jörg Olschewski, Wolfgang Thomas

DLT 2011, Milano
July 19, 2011

Languages vs. ω-Languages in Regular Infinite Games 1 / 17



Infinite games

Two players alternately play letters from Σ1 and Σ2 ad infinitum
Play : ω-word α over the alphabet Σ = Σ1 × Σ2

Example: α =
(a

0
)(a

1
)(a

0
)(a

1
)(b

2
)(a

0
)
. . .

Winning condition: an ω-language L ⊆ Σω

I If α ∈ L then Player 2 wins
I If α /∈ L then Player 1 wins

Given finite play prefixes, winning strategies guide players:
I Strategy for Player 1: λ1 : Σ∗ → Σ1
I Strategy for Player 2: λ2 : Σ∗ → F(Σ1 → Σ2)

Winning condition: L ⊆ Σω. Winning strategies: K1,K2 ⊆ Σ∗
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Languages and games

Class of regular
languages
K ⊆ 2Σ∗

Class L = op(K)
of ω-languages

Infinitary operators

Class L of
winning conditions

Class K′
of winning
strategies

Solution

K′ vs. K?K′ vs. K?
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A simple game

L = Only finitely many
(a

0
)
∧ (Infinitely many

(b
0
)
⇔ Infinitely many

(b
1
)
)

Player 2’s winning strategy:
Respond to a’s with 1’s
Respond to b’s with alternating 0’s and 1’s

L is “obtained from” Σ∗
(a

0
)
,Σ∗

(b
0
)
,Σ∗

(b
1
)

Player 2’s winning strategy:
λ2(Σ∗

(b
0
)
) = {a 7→ 1, b 7→ 1}

λ2(Σ∗
(b

1
)
) = {a 7→ 1, b 7→ 0}

λ2(Σ∗
(a

1
)
) = {a 7→ 1, b 7→?}
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Motivation and results

Do simple games have simple strategies?

Description languages

Regular

Star-Free...
DDi...

DD2

DD1

DD0

Winning strategies

Regular

Star-Free...
...

DD2

DD1

DD0
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Description languages

Regular

Star-Free...
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Regular

Star-Free
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Motivation and results

Do simple games have simple strategies?

Description languages

Regular

Star-Free...
DDi...

DD2

DD1

DD0

Winning strategies

Regular

Star-Free

DDi+2

DD4

DD3

...

...

DD2

DD1

DD0

“Strong games”
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Regular languages ω-languages

Regular gamesWinning strategies
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Dot-depth hierarchy

Regular languages below SF

DD0 := wΣ∗,Σ∗w , and their Boolean combinations
DD1 := w0Σ∗w1Σ∗ . . .Σ∗wn, and their Boolean combinations

For n ∈ N, 1 ≤ j ≤ n,Kj ∈ DDi ,
DDi+1 := K1 · K2 · . . . · Kn, and their Boolean combinations

Strict hierarchy:
DDi ( DDi+1⋃
i∈N

DDi = SF (star-free languages)
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Regular languages

Regular games

ω-languages

Winning strategies
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Regular languages to infinite games
For K ⊆ Σ∗:

ext(K ) := {α ∈ Σω | α =
u ∈ K

} = K · Σω

lim(K ) := {α ∈ Σω | ∃ω i ∈ N, α = u1
u2

u3 · · · ui ∈ K

}

For K ⊆ 2Σ∗ :
ext(K) := {L ⊆ Σω | L = ext(K ),K ∈ K}
lim(K) := {L ⊆ Σω | L = lim(K ),K ∈ K}
BC(ext(K)) := {Boolean combinations over ext(K)} (Weak games)
BC(lim(K)) := {Boolean combinations over lim(K)} (Strong games)

Note: ω-REG = BC(lim(REG))
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The simple game: formally

L = Only finitely many
(a

0
)
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Games to regular languages

For a game L ∈ Σω, and a class of languages K ⊆ 2Σ∗ :

If Player 1 wins:
I Define Ka = {w ∈ Σ∗ | λ1(w) = a}
I If Ka ∈ K for all a ∈ Σ1, then strategy is in K

If Player 2 wins:
I Define Kf = {w ∈ Σ∗ | λ2(w) = f }
I If Kf ∈ K for all f ∈ F(Σ1 → Σ2), then strategy is in K

Theorem (Büchi-Landweber)
Games in BC(lim(REG)) are determined with winning strategies in REG

Theorem (Selivanov, Rabinovich-T.)
Games in BC(lim(SF )) are determined with winning strategies in SF
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The simple game: solution

L = Only finitely many
(a

0
)
∧ (Infinitely many

(b
0
)
⇔ Infinitely many

(b
1
)
)

Player 2’s winning strategy:
λ2(Σ∗

(b
0
)
) = {a 7→ 1, b 7→ 1}

λ2(Σ∗
(b

1
)
) = {a 7→ 1, b 7→ 0}

λ2(Σ∗
(a

1
)
) = {a 7→ 1, b 7→?}

I K0 = Σ∗
(b

0
)
· Σ∗

(b
0
)
Σ∗ ∪ Σ∗

(b
1
)
Σ∗ ·

(a
1
)

I K1 = Σ∗
(b

1
)
· Σ∗

(b
0
)
Σ∗ ∪ Σ∗

(b
1
)
Σ∗ ·

(a
1
)

Game L ∈ BC(lim(DD0)). Strategy K0,K1 ∈ DD2 \ DD1
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Theorem (Weak games)
Games in BC(ext(DDi )) are determined with winning strategies in DDi+1.

Proof.

Given L ∈

K` ∈ DDi is accepted by DFA A` = (Q,Σ, δ, q0,F ), s.t. for qj ∈ Q
I [w ]j = {w ∈ Σ∗ | q0

w−→ qj}
I [w ]j ∈ DDi

A` = (Q,Σ, δ, q0,FF ) is a S-W automaton accepting ext(K`)

A =
∏
A` is a S-W automaton accepting L, s.t. for qj ∈ QA

I [w ]j ∈ DDi

A AR
=⇒ AP , a parity automaton accepting L, s.t. for qj ∈ QAP

I [w ]j ∈ DDi+1
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Theorem (Weak games)
Games in BC(ext(DDi )) are determined with winning strategies in DDi+1.

Theorem (Strong games)
Games in BC(lim(DDi )) are determined with winning strategies in DDi+2.

Theorem
There are games in BC(ext(DD1)) that do not admit DD1 strategies.

Σ1 = {a, b, c, d} and Σ2 = {0, 1}
if Pl. 1 plays x ∈ {a, b, c} then Pl. 2 must play 0  ¬ ext(Σ∗

(x
1
)
Σ∗)

Pl. 1 must play d  ext(Σ∗
(d

0
)
Σ∗ ∪ Σ∗

(d
1
)
Σ∗)

when Pl. 1 plays d then Pl. 2 must decide between 0 and 1
I if the play starts with

(a
0
)∗(b

0
)
then answer 1

I if the play starts with
(a

0
)∗(c

0
)
then answer 0

I  ext(
(a

0
)∗(b

0
)
) ⇔ ext(Σ∗

(d
1
)
Σ∗)

Player 2 has a winning strategy, K ∈ DD2 \ DD1
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Conclusion

Class K Strategies for BC(ext(K)) Strategies for BC(lim(K))

DDi DDi+1 DDi+2
DD1 DD2 but not DD1 DD3 but not DD1
PT DD2 but not DD1 PT
DD1/2 DD1 DD3 but not DD1

Regular/SF ω-languages have regular/SF strategies
No longer straightforward for dot-depth languages

Open: Do there exist games in BC(lim(DDi )) that do not admit any
DDi+1 strategies?
Open: How many states are needed for winning strategies?

Languages vs. ω-Languages in Regular Infinite Games 17 / 17



Conclusion

Class K Strategies for BC(ext(K)) Strategies for BC(lim(K))

DDi DDi+1 DDi+2
DD1 DD2 but not DD1 DD3 but not DD1
PT DD2 but not DD1 PT
DD1/2 DD1 DD3 but not DD1

Regular/SF ω-languages have regular/SF strategies
No longer straightforward for dot-depth languages

Open: Do there exist games in BC(lim(DDi )) that do not admit any
DDi+1 strategies?
Open: How many states are needed for winning strategies?

Languages vs. ω-Languages in Regular Infinite Games 17 / 17



Conclusion

Class K Strategies for BC(ext(K)) Strategies for BC(lim(K))

DDi DDi+1 DDi+2
DD1 DD2 but not DD1 DD3 but not DD1
PT DD2 but not DD1 PT
DD1/2 DD1 DD3 but not DD1

Regular/SF ω-languages have regular/SF strategies
No longer straightforward for dot-depth languages

Open: Do there exist games in BC(lim(DDi )) that do not admit any
DDi+1 strategies?
Open: How many states are needed for winning strategies?

Languages vs. ω-Languages in Regular Infinite Games 17 / 17


	Introduction

