Languages vs. *ω*-Languages in Regular Infinite Games

Namit Chaturvedi, Jörg Olschewski, Wolfgang Thomas

DLT 2011, Milano July 19, 2011

Languages vs. *ω***[-Languages in Regular Infinite Games](#page-108-0) 1 / 17**

- Two players alternately play letters from Σ_1 and Σ_2 ad infinitum
- Play: *ω*-word α over the alphabet $\Sigma = \Sigma_1 \times \Sigma_2$

- Two players alternately play letters from Σ_1 and Σ_2 ad infinitum
- Play: *ω*-word α over the alphabet $\Sigma = \Sigma_1 \times \Sigma_2$
- Example: $\alpha = \begin{pmatrix} a \\ 0 \end{pmatrix}$ $\binom{a}{0}\binom{a}{1}\binom{a}{0}\binom{a}{1}\binom{b}{2}\binom{a}{0}\ldots$

- Two players alternately play letters from Σ_1 and Σ_2 ad infinitum
- Play: *ω*-word α over the alphabet $\Sigma = \Sigma_1 \times \Sigma_2$
- Example: $\alpha = \begin{pmatrix} a \\ 0 \end{pmatrix}$ $\binom{a}{0}\binom{a}{1}\binom{a}{0}\binom{a}{1}\binom{b}{2}\binom{a}{0}\ldots$
- Winning condition: an *ω*-language L ⊆ Σ *ω*

- Two players alternately play letters from Σ_1 and Σ_2 ad infinitum
- Play: *ω*-word α over the alphabet $\Sigma = \Sigma_1 \times \Sigma_2$
- Example: $\alpha = \begin{pmatrix} a \\ 0 \end{pmatrix}$ $\binom{a}{0}\binom{a}{1}\binom{a}{0}\binom{a}{1}\binom{b}{2}\binom{a}{0}\ldots$
- Winning condition: an *ω*-language L ⊆ Σ *ω*
	- If $\alpha \in L$ then Player 2 wins
	- If $\alpha \notin L$ then Player 1 wins

- Two players alternately play letters from Σ_1 and Σ_2 ad infinitum
- Play: *ω*-word α over the alphabet $\Sigma = \Sigma_1 \times \Sigma_2$
- Example: $\alpha = \begin{pmatrix} a \\ 0 \end{pmatrix}$ $\binom{a}{0}\binom{a}{1}\binom{a}{0}\binom{a}{1}\binom{b}{2}\binom{a}{0}\ldots$
- Winning condition: an *ω*-language L ⊆ Σ *ω*
	- If $\alpha \in L$ then Player 2 wins
	- If $\alpha \notin L$ then Player 1 wins
- **•** Given finite play prefixes, winning strategies guide players:

- Two players alternately play letters from Σ_1 and Σ_2 ad infinitum
- Play: *ω*-word α over the alphabet $\Sigma = \Sigma_1 \times \Sigma_2$
- Example: $\alpha = \begin{pmatrix} a \\ 0 \end{pmatrix}$ $\binom{a}{0}\binom{a}{1}\binom{a}{0}\binom{a}{1}\binom{b}{2}\binom{a}{0}\ldots$
- Winning condition: an *ω*-language L ⊆ Σ *ω*
	- If $\alpha \in L$ then Player 2 wins
	- If $\alpha \notin L$ then Player 1 wins
- **•** Given finite play prefixes, winning strategies guide players:
	- **EXECUTE:** Strategy for Player 1: λ_1 : Σ^{*} → Σ₁

- Two players alternately play letters from Σ_1 and Σ_2 ad infinitum
- Play: *ω*-word α over the alphabet $\Sigma = \Sigma_1 \times \Sigma_2$
- Example: $\alpha = \begin{pmatrix} a \\ 0 \end{pmatrix}$ $\binom{a}{0}\binom{a}{1}\binom{a}{0}\binom{a}{1}\binom{b}{2}\binom{a}{0}\ldots$
- Winning condition: an *ω*-language L ⊆ Σ *ω*
	- If $\alpha \in L$ then Player 2 wins
	- If $\alpha \notin L$ then Player 1 wins
- **•** Given finite play prefixes, winning strategies guide players:
	- **EXECUTE:** Strategy for Player 1: λ_1 : Σ^{*} → Σ₁
	- \triangleright Strategy for Player 2: λ_2 : Σ^{*} → **F**(Σ₁ → Σ₂)

- Two players alternately play letters from Σ_1 and Σ_2 ad infinitum
- Play: *ω*-word α over the alphabet $\Sigma = \Sigma_1 \times \Sigma_2$
- Example: $\alpha = \begin{pmatrix} a \\ 0 \end{pmatrix}$ $\binom{a}{0}\binom{a}{1}\binom{a}{0}\binom{a}{1}\binom{b}{2}\binom{a}{0}\ldots$
- Winning condition: an *ω*-language L ⊆ Σ *ω*
	- If $\alpha \in L$ then Player 2 wins
	- If $\alpha \notin L$ then Player 1 wins
- **•** Given finite play prefixes, winning strategies guide players:
	- **EXECUTE:** Strategy for Player 1: λ_1 : Σ^{*} → Σ₁
	- \triangleright Strategy for Player 2: λ_2 : Σ^{*} → **F**(Σ₁ → Σ₂)

Winning condition: $L \subseteq \Sigma^\omega$. Winning strategies: $\mathcal{K}_1, \mathcal{K}_2 \subseteq \Sigma^*$

Class of regular languages $\mathcal{K} \subseteq 2^{\mathsf{\Sigma}^*}$

 $L =$ Only finitely many $\binom{a}{0}$ $\binom{a}{0}$ \wedge (Infinitely many $\binom{b}{0}$ $\binom{b}{0}$ \Leftrightarrow Infinitely many $\binom{b}{1}$ $\binom{D}{1}$

 $L =$ Only finitely many $\binom{a}{0}$ $\binom{a}{0}$ \wedge (Infinitely many $\binom{b}{0}$ $\binom{b}{0}$ \Leftrightarrow Infinitely many $\binom{b}{1}$ $\binom{D}{1}$

Player 2's winning strategy:

• Respond to a's with 1's

 $L =$ Only finitely many $\binom{a}{0}$ $\binom{a}{0}$ \wedge (Infinitely many $\binom{b}{0}$ $\binom{b}{0}$ \Leftrightarrow Infinitely many $\binom{b}{1}$ $\binom{D}{1}$

- Respond to a's with 1's
- Respond to b 's with alternating 0 's and 1 's

 $L =$ Only finitely many $\binom{a}{0}$ $\binom{a}{0}$ \wedge (Infinitely many $\binom{b}{0}$ $\binom{b}{0}$ \Leftrightarrow Infinitely many $\binom{b}{1}$ $\binom{D}{1}$

- Respond to a's with 1's
- Respond to b 's with alternating 0 's and 1 's

L is "obtained from"
$$
\Sigma^*(^a_0), \Sigma^*(^b_0), \Sigma^*(^b_1)
$$

 $L =$ Only finitely many $\binom{a}{0}$ $\binom{a}{0}$ \wedge (Infinitely many $\binom{b}{0}$ $\binom{b}{0}$ \Leftrightarrow Infinitely many $\binom{b}{1}$ $\binom{D}{1}$

Player 2's winning strategy:

- Respond to a's with 1's
- Respond to b 's with alternating 0 's and 1 's

L is "obtained from" Σ^* (a_0 $\binom{a}{0}$, Σ^{*} $\binom{b}{0}$ $\binom{b}{0}$, Σ^{*} $\binom{b}{1}$ $\binom{D}{1}$

 $L =$ Only finitely many $\binom{a}{0}$ $\binom{a}{0}$ \wedge (Infinitely many $\binom{b}{0}$ $\binom{b}{0}$ \Leftrightarrow Infinitely many $\binom{b}{1}$ $\binom{D}{1}$

Player 2's winning strategy:

- Respond to a's with 1's
- Respond to b 's with alternating 0 's and 1 's

L is "obtained from"
$$
\Sigma^*(^a_0), \Sigma^*(^b_0), \Sigma^*(^b_1)
$$

 $L =$ Only finitely many $\binom{a}{0}$ $\binom{a}{0}$ \wedge (Infinitely many $\binom{b}{0}$ $\binom{b}{0}$ \Leftrightarrow Infinitely many $\binom{b}{1}$ $\binom{D}{1}$

Player 2's winning strategy:

- Respond to a's with 1's
- Respond to b 's with alternating 0 's and 1 's

L is "obtained from"
$$
\Sigma^*(^a_0), \Sigma^*(^b_0), \Sigma^*(^b_1)
$$

Player 2's winning strategy: $\lambda_2(\Sigma^*(\begin{smallmatrix} b\ 0 \end{smallmatrix}$ $\binom{b}{0}$

 $L =$ Only finitely many $\binom{a}{0}$ $\binom{a}{0}$ \wedge (Infinitely many $\binom{b}{0}$ $\binom{b}{0}$ \Leftrightarrow Infinitely many $\binom{b}{1}$ $\binom{D}{1}$

Player 2's winning strategy:

- Respond to a's with 1's
- Respond to b 's with alternating 0 's and 1 's

L is "obtained from"
$$
\Sigma^*(^a_0), \Sigma^*(^b_0), \Sigma^*(^b_1)
$$

$$
\bullet \ \lambda_2(\Sigma^*(\begin{smallmatrix} b \\ 0 \end{smallmatrix})) = \{a \mapsto 1,
$$

 $L =$ Only finitely many $\binom{a}{0}$ $\binom{a}{0}$ \wedge (Infinitely many $\binom{b}{0}$ $\binom{b}{0}$ \Leftrightarrow Infinitely many $\binom{b}{1}$ $\binom{D}{1}$

Player 2's winning strategy:

- Respond to a's with 1's
- Respond to b 's with alternating 0 's and 1 's

L is "obtained from"
$$
\Sigma^*(^a_0), \Sigma^*(^b_0), \Sigma^*(^b_1)
$$

$$
\bullet \ \lambda_2(\Sigma^*(\begin{smallmatrix} b \\ 0 \end{smallmatrix})) = \{a \mapsto 1, \ b \mapsto 1\}
$$

 $L =$ Only finitely many $\binom{a}{0}$ $\binom{a}{0}$ \wedge (Infinitely many $\binom{b}{0}$ $\binom{b}{0}$ \Leftrightarrow Infinitely many $\binom{b}{1}$ $\binom{D}{1}$

Player 2's winning strategy:

- Respond to a's with 1's
- Respond to b 's with alternating 0 's and 1 's

L is "obtained from"
$$
\Sigma^*(^a_0), \Sigma^*(^b_0), \Sigma^*(^b_1)
$$

$$
\bullet \ \lambda_2(\Sigma^*(\begin{smallmatrix}b\\0\end{smallmatrix}))=\{a\mapsto 1,\ b\mapsto 1\}
$$

$$
\bullet\ \lambda_2(\Sigma^*(\begin{smallmatrix}b\\1\end{smallmatrix}))=\{a\mapsto 1,\ b\mapsto 0\}
$$

 $L =$ Only finitely many $\binom{a}{0}$ $\binom{a}{0}$ \wedge (Infinitely many $\binom{b}{0}$ $\binom{b}{0}$ \Leftrightarrow Infinitely many $\binom{b}{1}$ $\binom{D}{1}$

Player 2's winning strategy:

- Respond to a's with 1's
- Respond to b 's with alternating 0 's and 1 's

L is "obtained from"
$$
\Sigma^*(^a_0), \Sigma^*(^b_0), \Sigma^*(^b_1)
$$

$$
\bullet \ \lambda_2(\Sigma^*(\begin{smallmatrix} b \\ 0 \end{smallmatrix})) = \{a \mapsto 1, \ b \mapsto 1\}
$$

$$
\bullet \ \lambda_2(\Sigma^* {\binom{b}{1}}) = \{a \mapsto 1, \ b \mapsto 0\}
$$

$$
\bullet\ \lambda_2(\Sigma^* \tbinom{a}{1})=\{\,a\mapsto 1,\,
$$

 $L =$ Only finitely many $\binom{a}{0}$ $\binom{a}{0}$ \wedge (Infinitely many $\binom{b}{0}$ $\binom{b}{0}$ \Leftrightarrow Infinitely many $\binom{b}{1}$ $\binom{D}{1}$

Player 2's winning strategy:

- Respond to a's with 1's
- Respond to b 's with alternating 0 's and 1 's

L is "obtained from"
$$
\Sigma^*(^a_0), \Sigma^*(^b_0), \Sigma^*(^b_1)
$$

$$
\bullet \ \lambda_2(\Sigma^*(\begin{smallmatrix}b\\0\end{smallmatrix}))=\{a\mapsto 1,\ b\mapsto 1\}
$$

$$
\bullet \ \lambda_2(\Sigma^* \binom{b}{1}) = \{a \mapsto 1, \ b \mapsto 0\}
$$

$$
\bullet\ \lambda_2(\Sigma^* \tbinom{a}{1})=\{a\mapsto 1,\ b\mapsto ?\}
$$

Do simple games have simple strategies?

Do simple games have simple strategies?

Description languages

Winning strategies

Regular languages below SF

Regular languages below SF

 $DD_0 \coloneqq w\Sigma^*, \Sigma^*w$, and their Boolean combinations

Regular languages below SF

- $DD_0 \coloneqq w\Sigma^*, \Sigma^*w$, and their Boolean combinations
- $DD_1 := w_0 \Sigma^* w_1 \Sigma^* \dots \Sigma^* w_n$, and their Boolean combinations

Regular languages below SF

- $DD_0 \coloneqq w\Sigma^*, \Sigma^*w$, and their Boolean combinations
- $DD_1 := w_0 \Sigma^* w_1 \Sigma^* \dots \Sigma^* w_n$, and their Boolean combinations

For $n \in \mathbb{N}, 1 \le j \le n, K_j \in DD_j$

Regular languages below SF

- $DD_0 \coloneqq w\Sigma^*, \Sigma^*w$, and their Boolean combinations
- $DD_1 := w_0 \Sigma^* w_1 \Sigma^* \dots \Sigma^* w_n$, and their Boolean combinations

For $n \in \mathbb{N}, 1 \le j \le n, K_j \in DD_j$ $DD_{i+1} := K_1 \cdot K_2 \cdot \ldots \cdot K_n$ and their Boolean combinations

Regular languages below SF

- $DD_0 \coloneqq w\Sigma^*, \Sigma^*w$, and their Boolean combinations
- $DD_1 := w_0 \Sigma^* w_1 \Sigma^* \dots \Sigma^* w_n$, and their Boolean combinations

For $n \in \mathbb{N}, 1 \le j \le n, K_j \in DD_j$ $DD_{i+1} := K_1 \cdot K_2 \cdot \ldots \cdot K_n$ and their Boolean combinations

Strict hierarchy:

$$
\bullet \; DD_i \subsetneq DD_{i+1}
$$

 \bigcup DD $_{i}=$ SF (star-free languages) i∈N

For $K \subseteq \Sigma^*$:

For $K \subseteq \Sigma^*$:

$$
\bullet \mathsf{ext}(K) := \{ \alpha \in \Sigma^\omega \mid \alpha = \underbrace{\qquad \qquad ^{\psi \in K}}_{\text{max}} \qquad \qquad ~~\dots \} = K \cdot \Sigma^\omega
$$

For $K \subseteq \Sigma^*$: $\mathrm{ext}(K) \coloneqq \{ \alpha \in \Sigma^\omega \mid \alpha = \overbrace{}^{\omega \in K} \quad \quad \textrm{and} \quad K \cdot \Sigma^\omega$

For $K \subseteq \Sigma^*$: $\mathrm{ext}(K) \coloneqq \{ \alpha \in \Sigma^\omega \mid \alpha = \overbrace{}^{\omega \in K} \quad \quad \textrm{and} \quad K \cdot \Sigma^\omega$ $\lim(K) \coloneqq \{ \alpha \in \Sigma^\omega \mid \exists^\omega i \in \mathbb{N}, \alpha =$ ll u2 u3 $\widetilde{\cdots}$ u $_i$ ∈ K }

For $\mathcal{K} \subseteq 2^{\mathsf{\Sigma}^*}$:

- $ext(\mathcal{K}) \coloneqq \{L \subseteq \Sigma^\omega \mid L = ext(K), K \in \mathcal{K}\}$
- $\text{lim}(\mathcal{K}) \coloneqq \{ L \subseteq \Sigma^{\omega} \mid L = \text{lim}(K), K \in \mathcal{K} \}$

For $K \subseteq \Sigma^*$: $\mathrm{ext}(K) \coloneqq \{ \alpha \in \Sigma^\omega \mid \alpha = \overbrace{}^{\omega \in K} \quad \quad \textrm{and} \quad K \cdot \Sigma^\omega$ $\lim(K) \coloneqq \{ \alpha \in \Sigma^\omega \mid \exists^\omega i \in \mathbb{N}, \alpha =$ ll u2 u3 $\widetilde{\cdots}$ u $_i$ ∈ K }

For $\mathcal{K} \subseteq 2^{\mathsf{\Sigma}^*}$:

- $ext(\mathcal{K}) \coloneqq \{L \subseteq \Sigma^\omega \mid L = ext(K), K \in \mathcal{K}\}$
- $\text{lim}(\mathcal{K}) \coloneqq \{ L \subseteq \Sigma^{\omega} \mid L = \text{lim}(K), K \in \mathcal{K} \}$

• $BC(\text{ext}(\mathcal{K})) := \{ Boolean combinations over ext(\mathcal{K})\}$ (Weak games)

• $BC(\lim(\mathcal{K})) := \{ Boolean combinations over \lim(\mathcal{K})\}$ (Strong games)

For $K \subseteq \Sigma^*$: $\mathsf{ext}(\mathcal{K}) \coloneqq \{ \alpha \in \mathsf{\Sigma}^\omega \mid \alpha =$ u ∈ K $\} = K \cdot \Sigma^{\omega}$ $\lim(K) \coloneqq \{ \alpha \in \Sigma^\omega \mid \exists^\omega i \in \mathbb{N}, \alpha =$ ll u2 u3 $\widetilde{\cdots}$ u $_i$ ∈ K }

For $\mathcal{K} \subseteq 2^{\mathsf{\Sigma}^*}$:

- $ext(\mathcal{K}) \coloneqq \{L \subseteq \Sigma^\omega \mid L = ext(K), K \in \mathcal{K}\}$
- $\text{lim}(\mathcal{K}) \coloneqq \{ L \subseteq \Sigma^{\omega} \mid L = \text{lim}(K), K \in \mathcal{K} \}$

• $BC(\text{ext}(\mathcal{K})) := \{ Boolean combinations over \text{ext}(\mathcal{K})\}$ (Weak games)

• BC($\text{lim}(\mathcal{K})$) := {Boolean combinations over $\text{lim}(\mathcal{K})$ } (Strong games)

Note:
$$
\omega
$$
-REG = BC(lim(REG))

 $L =$ Only finitely many $\binom{a}{0}$ $\binom{a}{0} \wedge$ (Infinitely many $\binom{b}{0}$ $\binom{b}{0}$ \Leftrightarrow Infinitely many $\binom{b}{1}$ $\binom{p}{1}$

 $L \in BC(\lim(DD_0))$:

$$
L \in BC(\text{lim}(DD_0))\text{:}
$$

$$
\bullet \ \Sigma^*(\begin{matrix} a \\ 0 \end{matrix}), \Sigma^*(\begin{matrix} a \\ 1 \end{matrix}), \Sigma^*(\begin{matrix} b \\ 0 \end{matrix}), \Sigma^*(\begin{matrix} b \\ 1 \end{matrix}) \in DD_0
$$

$$
L \in BC(\text{lim}(DD_0)):
$$

\n• $\Sigma^*(\frac{a}{0}), \Sigma^*(\frac{a}{1}), \Sigma^*(\frac{b}{0}), \Sigma^*(\frac{b}{1}) \in DD_0$
\n• $L = \overline{\text{lim}(\Sigma^*(\frac{a}{0}))} \cap [\overline{\text{lim}(\Sigma^*(\frac{b}{0}))} \cup \text{lim}(\Sigma^*(\frac{b}{1}))] \cap [\overline{\text{lim}(\Sigma^*(\frac{b}{1}))} \cup \text{lim}(\Sigma^*(\frac{b}{0}))]$

$$
L \in BC(\text{lim}(DD_0)):
$$

\n• $\Sigma^*(\frac{a}{0}), \Sigma^*(\frac{a}{1}), \Sigma^*(\frac{b}{0}), \Sigma^*(\frac{b}{1}) \in DD_0$
\n• $L = \overline{\text{lim}(\Sigma^*(\frac{a}{0}))} \cap [\overline{\text{lim}(\Sigma^*(\frac{b}{0}))} \cup \text{lim}(\Sigma^*(\frac{b}{1}))] \cap [\overline{\text{lim}(\Sigma^*(\frac{b}{1}))} \cup \text{lim}(\Sigma^*(\frac{b}{0}))]$

$$
L \in BC(\text{lim}(DD_0)):
$$

\n• $\Sigma^*(\substack{a\\0}, \Sigma^*(\substack{a\\1}, \Sigma^*(\substack{b\\0}), \Sigma^*(\substack{b\\0}, \Sigma^*(\substack{b\\1}) \in DD_0$
\n• $L = \overline{\text{lim}(\Sigma^*(\substack{a\\0})}) \cap [\overline{\text{lim}(\Sigma^*(\substack{b\\0})}) \cup \text{lim}(\Sigma^*(\substack{b\\1}))] \cap [\overline{\text{lim}(\Sigma^*(\substack{b\\1})}) \cup \text{lim}(\Sigma^*(\substack{b\\0}))]$

$$
L \in BC(\text{lim}(DD_0)):
$$

\n• $\Sigma^*(\begin{matrix} a \\ 0 \end{matrix}), \Sigma^*(\begin{matrix} a \\ 1 \end{matrix}), \Sigma^*(\begin{matrix} b \\ 0 \end{matrix}), \Sigma^*(\begin{matrix} b \\ 1 \end{matrix}) \in DD_0$
\n• $L = \overline{\text{lim}(\Sigma^*(\begin{matrix} a \\ 0 \end{matrix}))} \cap [\overline{\text{lim}(\Sigma^*(\begin{matrix} b \\ 0 \end{matrix}))}] \cup \text{lim}(\Sigma^*(\begin{matrix} b \\ 1 \end{matrix}))}] \cap [\overline{\text{lim}(\Sigma^*(\begin{matrix} b \\ 1 \end{matrix}))}] \cup \text{lim}(\Sigma^*(\begin{matrix} b \\ 0 \end{matrix}))]$

$$
L \in BC(\text{lim}(DD_0)):
$$

\n• $\Sigma^*(\frac{a}{0}), \Sigma^*(\frac{a}{1}), \Sigma^*(\frac{b}{0}), \Sigma^*(\frac{b}{1}) \in DD_0$
\n• $L = \overline{\text{lim}(\Sigma^*(\frac{a}{0}))} \cap [\overline{\text{lim}(\Sigma^*(\frac{b}{0}))} \cup \text{lim}(\Sigma^*(\frac{b}{1}))] \cap [\overline{\text{lim}(\Sigma^*(\frac{b}{1}))} \cup \text{lim}(\Sigma^*(\frac{b}{0}))]$

For a game $L \in \Sigma^\omega$, and a class of languages $\mathcal{K} \subseteq 2^{\Sigma^*}$:

For a game $L \in \Sigma^\omega$, and a class of languages $\mathcal{K} \subseteq 2^{\Sigma^*}$:

If Player 1 wins:

• Define
$$
K_a = \{ w \in \Sigma^* \mid \lambda_1(w) = a \}
$$

For a game $L \in \Sigma^\omega$, and a class of languages $\mathcal{K} \subseteq 2^{\Sigma^*}$:

If Player 1 wins:

- ► Define $K_a = \{w \in \Sigma^* \mid \lambda_1(w) = a\}$
- If $K_a \in \mathcal{K}$ for all $a \in \Sigma_1$, then strategy is in \mathcal{K}

For a game $L \in \Sigma^\omega$, and a class of languages $\mathcal{K} \subseteq 2^{\Sigma^*}$:

If Player 1 wins:

- ► Define $K_a = \{w \in \Sigma^* \mid \lambda_1(w) = a\}$
- If $K_a \in \mathcal{K}$ for all $a \in \Sigma_1$, then strategy is in \mathcal{K}

• If Player 2 wins:

► Define $K_f = \{w \in \Sigma^* \mid \lambda_2(w) = f\}$

For a game $L \in \Sigma^\omega$, and a class of languages $\mathcal{K} \subseteq 2^{\Sigma^*}$:

If Player 1 wins:

- ► Define $K_a = \{w \in \Sigma^* \mid \lambda_1(w) = a\}$
- If $K_a \in \mathcal{K}$ for all $a \in \Sigma_1$, then strategy is in \mathcal{K}

• If Player 2 wins:

- ► Define $K_f = \{w \in \Sigma^* \mid \lambda_2(w) = f\}$
- \triangleright If $K_f \in \mathcal{K}$ for all $f \in \mathbf{F}(\Sigma_1 \to \Sigma_2)$, then strategy is in \mathcal{K}

For a game $L \in \Sigma^\omega$, and a class of languages $\mathcal{K} \subseteq 2^{\Sigma^*}$:

If Player 1 wins:

- ► Define $K_a = \{w \in \Sigma^* \mid \lambda_1(w) = a\}$
- If $K_a \in \mathcal{K}$ for all $a \in \Sigma_1$, then strategy is in \mathcal{K}
- If Player 2 wins:
	- ► Define $K_f = \{w \in \Sigma^* \mid \lambda_2(w) = f\}$
	- \triangleright If $K_f \in \mathcal{K}$ for all $f \in \mathbf{F}(\Sigma_1 \to \Sigma_2)$, then strategy is in \mathcal{K}

Theorem (Büchi-Landweber)

Games in BC(lim(REG)) are determined with winning strategies in REG

For a game $L \in \Sigma^\omega$, and a class of languages $\mathcal{K} \subseteq 2^{\Sigma^*}$:

If Player 1 wins:

- ► Define $K_a = \{w \in \Sigma^* \mid \lambda_1(w) = a\}$
- If $K_a \in \mathcal{K}$ for all $a \in \Sigma_1$, then strategy is in \mathcal{K}
- If Player 2 wins:
	- ► Define $K_f = \{w \in \Sigma^* \mid \lambda_2(w) = f\}$
	- \triangleright If $K_f \in \mathcal{K}$ for all $f \in \mathbf{F}(\Sigma_1 \to \Sigma_2)$, then strategy is in \mathcal{K}

Theorem (Büchi-Landweber)

Games in BC(lim(REG)) are determined with winning strategies in REG

Theorem (Selivanov, Rabinovich-T.)

Games in BC(lim(SF)) are determined with winning strategies in SF

 $L =$ Only finitely many $\binom{a}{0}$ $\binom{a}{0}$ \wedge (Infinitely many $\binom{b}{0}$ $\binom{b}{0}$ \Leftrightarrow Infinitely many $\binom{b}{1}$ $\binom{p}{1}$

 $L =$ Only finitely many $\binom{a}{0}$ $\binom{a}{0}$ \wedge (Infinitely many $\binom{b}{0}$ $\binom{b}{0}$ \Leftrightarrow Infinitely many $\binom{b}{1}$ $\binom{p}{1}$

$$
\bullet \ \lambda_2(\Sigma^*(\begin{smallmatrix} b \\ 0 \end{smallmatrix})) = \{a \mapsto 1, \ b \mapsto 1\}
$$

$$
\bullet \ \lambda_2(\Sigma^*(\begin{smallmatrix} b \\ 1 \end{smallmatrix})) = \{a \mapsto 1, \ b \mapsto 0\}
$$

 $L =$ Only finitely many $\binom{a}{0}$ $\binom{a}{0}$ \wedge (Infinitely many $\binom{b}{0}$ $\binom{b}{0}$ \Leftrightarrow Infinitely many $\binom{b}{1}$ $\binom{p}{1}$

- $\lambda_2(\Sigma^*(\begin{smallmatrix} b \ 0 \end{smallmatrix}$ $\binom{b}{0}$) = {a \mapsto 1, b \mapsto 1}
- $\lambda_2(\mathsf{\Sigma}^*(\frac{b}{1}$ $\binom{b}{1}$ = {a \mapsto 1, b \mapsto 0}
- $\lambda_2(\Sigma^*(\frac{a}{1}))$ $\binom{a}{1}$ = {a \mapsto 1, b \mapsto ?}

 $L =$ Only finitely many $\binom{a}{0}$ $\binom{a}{0}$ \wedge (Infinitely many $\binom{b}{0}$ $\binom{b}{0}$ \Leftrightarrow Infinitely many $\binom{b}{1}$ $\binom{D}{1}$

$$
\bullet \ \lambda_2(\Sigma^*(\begin{smallmatrix}b\\0\end{smallmatrix}))=\{a\mapsto 1,\ b\mapsto 1\}
$$

$$
\bullet \ \lambda_2(\Sigma^* {\binom{b}{1}}) = \{a \mapsto 1, \ b \mapsto 0\}
$$

$$
\bullet \ \lambda_2(K_i) = \{a \mapsto 1, \ b \mapsto 1 - i\}
$$
$L =$ Only finitely many $\binom{a}{0}$ $\binom{a}{0}$ \wedge (Infinitely many $\binom{b}{0}$ $\binom{b}{0}$ \Leftrightarrow Infinitely many $\binom{b}{1}$ $\binom{D}{1}$

Player 2's winning strategy:

 \blacktriangleright $K_0 = \Sigma^* \binom{b}{0}$

\n- $$
\lambda_2(\Sigma^*(\begin{matrix} b \\ 0 \end{matrix})) = \{a \mapsto 1, \ b \mapsto 1\}
$$
\n- $\lambda_2(\Sigma^*(\begin{matrix} b \\ 1 \end{matrix})) = \{a \mapsto 1, \ b \mapsto 0\}$
\n- $\lambda_2(K_i) = \{a \mapsto 1, \ b \mapsto 1 - i\}$
\n

 $L =$ Only finitely many $\binom{a}{0}$ $\binom{a}{0}$ \wedge (Infinitely many $\binom{b}{0}$ $\binom{b}{0}$ \Leftrightarrow Infinitely many $\binom{b}{1}$ $\binom{D}{1}$

\n- \n
$$
\begin{aligned}\n \mathbf{O} & \lambda_2(\Sigma^*(\begin{matrix} b \\ 0 \end{matrix})) = \{a \mapsto 1, \ b \mapsto 1\} \\
\mathbf{O} & \lambda_2(\Sigma^*(\begin{matrix} b \\ 1 \end{matrix})) = \{a \mapsto 1, \ b \mapsto 0\} \\
\mathbf{O} & \lambda_2(K_i) = \{a \mapsto 1, \ b \mapsto 1 - i\} \\
& \mathbf{K}_0 = \Sigma^*(\begin{matrix} b \\ 0 \end{matrix}) \cdot \overline{\Sigma^*(\begin{matrix} b \\ 0 \end{matrix})\Sigma^* \cup \Sigma^*(\begin{matrix} b \\ 1 \end{matrix})\Sigma^*}\n \end{aligned}
$$
\n
\n

 $L =$ Only finitely many $\binom{a}{0}$ $\binom{a}{0}$ \wedge (Infinitely many $\binom{b}{0}$ $\binom{b}{0}$ \Leftrightarrow Infinitely many $\binom{b}{1}$ $\binom{D}{1}$

*λ*2(Σ[∗] b 0) = {a 7→ 1*,* b 7→ 1} *λ*2(Σ[∗] b 1) = {a 7→ 1*,* b 7→ 0} *λ*2(Ki) = {a 7→ 1*,* b 7→ 1 − i} ^I K⁰ = Σ[∗] b 0 · Σ[∗] b 0 Σ[∗] ∪ Σ[∗] b 1 Σ[∗] · a 1

 $L =$ Only finitely many $\binom{a}{0}$ $\binom{a}{0}$ \wedge (Infinitely many $\binom{b}{0}$ $\binom{b}{0}$ \Leftrightarrow Infinitely many $\binom{b}{1}$ $\binom{D}{1}$

\n- \n
$$
\lambda_2(\Sigma^*(\begin{matrix} b \\ 0 \end{matrix})) = \{a \mapsto 1, \ b \mapsto 1\}
$$
\n
\n- \n
$$
\lambda_2(\Sigma^*(\begin{matrix} b \\ 1 \end{matrix})) = \{a \mapsto 1, \ b \mapsto 0\}
$$
\n
\n- \n
$$
\lambda_2(K_i) = \{a \mapsto 1, \ b \mapsto 1 - i\}
$$
\n
\n- \n
$$
K_0 = \Sigma^*(\begin{matrix} b \\ 0 \end{matrix}) \cdot \overline{\Sigma^*(\begin{matrix} b \\ 0 \end{matrix})\Sigma^* \cup \Sigma^*(\begin{matrix} b \\ 1 \end{matrix})\Sigma^*} \cdot \begin{matrix} a \\ 1 \end{matrix})
$$
\n
\n- \n
$$
K_1 = \Sigma^*(\begin{matrix} b \\ 1 \end{matrix})
$$
\n
\n

 $L =$ Only finitely many $\binom{a}{0}$ $\binom{a}{0}$ \wedge (Infinitely many $\binom{b}{0}$ $\binom{b}{0}$ \Leftrightarrow Infinitely many $\binom{b}{1}$ $\binom{D}{1}$

\n- \n
$$
\lambda_2(\Sigma^*(\begin{matrix} b \\ 0 \end{matrix})) = \{a \mapsto 1, \ b \mapsto 1\}
$$
\n
\n- \n
$$
\lambda_2(\Sigma^*(\begin{matrix} b \\ 1 \end{matrix})) = \{a \mapsto 1, \ b \mapsto 0\}
$$
\n
\n- \n
$$
\lambda_2(K_i) = \{a \mapsto 1, \ b \mapsto 1 - i\}
$$
\n
\n- \n
$$
K_0 = \Sigma^*(\begin{matrix} b \\ 0 \end{matrix}) \cdot \frac{\overline{\Sigma^*(\begin{matrix} b \\ 0 \end{matrix})\Sigma^* \cup \Sigma^*(\begin{matrix} b \\ 1 \end{matrix})\Sigma^*}}{\Sigma^*(\begin{matrix} b \\ 0 \end{matrix})\Sigma^* \cup \Sigma^*(\begin{matrix} b \\ 1 \end{matrix})\Sigma^*}
$$
\n
\n

 $L =$ Only finitely many $\binom{a}{0}$ $\binom{a}{0}$ \wedge (Infinitely many $\binom{b}{0}$ $\binom{b}{0}$ \Leftrightarrow Infinitely many $\binom{b}{1}$ $\binom{D}{1}$

\n- \n
$$
\lambda_2(\Sigma^*(\begin{matrix} b \\ 0 \end{matrix})) = \{a \mapsto 1, \ b \mapsto 1\}
$$
\n
\n- \n
$$
\lambda_2(\Sigma^*(\begin{matrix} b \\ 1 \end{matrix})) = \{a \mapsto 1, \ b \mapsto 0\}
$$
\n
\n- \n
$$
\lambda_2(K_i) = \{a \mapsto 1, \ b \mapsto 1 - i\}
$$
\n
\n- \n
$$
K_0 = \Sigma^*(\begin{matrix} b \\ 0 \end{matrix}) \cdot \frac{\overline{\Sigma^*(\begin{matrix} b \\ 0 \end{matrix})\Sigma^* \cup \Sigma^*(\begin{matrix} b \\ 1 \end{matrix})\Sigma^*}}{\Sigma^*(\begin{matrix} b \\ 0 \end{matrix})\Sigma^* \cup \Sigma^*(\begin{matrix} b \\ 1 \end{matrix})\Sigma^*} \cdot \begin{matrix} a \\ 1 \end{matrix})}
$$
\n
\n

 $L =$ Only finitely many $\binom{a}{0}$ $\binom{a}{0}$ \wedge (Infinitely many $\binom{b}{0}$ $\binom{b}{0}$ \Leftrightarrow Infinitely many $\binom{b}{1}$ $\binom{D}{1}$

Player 2's winning strategy:

\n- \n
$$
\lambda_2(\Sigma^*(\begin{matrix} b \\ 0 \end{matrix})) = \{a \mapsto 1, \ b \mapsto 1\}
$$
\n
\n- \n
$$
\lambda_2(\Sigma^*(\begin{matrix} b \\ 1 \end{matrix})) = \{a \mapsto 1, \ b \mapsto 0\}
$$
\n
\n- \n
$$
\lambda_2(K_i) = \{a \mapsto 1, \ b \mapsto 1 - i\}
$$
\n
\n- \n
$$
K_0 = \Sigma^*(\begin{matrix} b \\ 0 \end{matrix}) \cdot \frac{\overline{\Sigma^*(\begin{matrix} b \\ 0 \end{matrix})\Sigma^* \cup \Sigma^*(\begin{matrix} b \\ 1 \end{matrix})\Sigma^*}}{\Sigma^*(\begin{matrix} b \\ 0 \end{matrix})\Sigma^* \cup \Sigma^*(\begin{matrix} b \\ 1 \end{matrix})\Sigma^*} \cdot \begin{matrix} a \\ 1 \end{matrix})}
$$
\n
\n

Game $L \in BC(\lim(DD_0))$. Strategy $K_0, K_1 \in DD_2 \setminus DD_1$

Games in $BC(\text{ext}(DD_i))$ are determined with winning strategies in DD_{i+1} .

Proof.

Games in $BC(ext(DD_i))$ are determined with winning strategies in DD_{i+1} .

Proof.

Given $L \in BC(\text{ext}(DD_i))$

Games in $BC(ext(DD_i))$ are determined with winning strategies in DD_{i+1} .

Proof.

Given $L \in BC(\text{ext}(\overline{DD_i}))$

 $\mathcal{K}_\ell \in DD_i$ is accepted by DFA $\mathcal{A}_\ell = (\mathcal{Q}, \mathsf{\Sigma}, \delta, q_0, \mathcal{F})$, s.t. for $q_j \in \mathcal{Q}$

Games in $BC(ext(DD_i))$ are determined with winning strategies in DD_{i+1} .

Proof.

Given $L \in BC(\text{ext}(\overline{DD_i}))$

 $\mathcal{K}_\ell \in DD_i$ is accepted by DFA $\mathcal{A}_\ell = (\mathcal{Q}, \mathsf{\Sigma}, \delta, q_0, \mathcal{F})$, s.t. for $q_j \in \mathcal{Q}$

$$
\vdash [w]_j = \{w \in \Sigma^* \mid q_0 \xrightarrow{w} q_j\}
$$

Games in $BC(ext(DD_i))$ are determined with winning strategies in DD_{i+1} .

Proof.

Given $L \in BC(\text{ext}(\overline{DD_i}))$

 $\mathcal{K}_\ell \in DD_i$ is accepted by DFA $\mathcal{A}_\ell = (\mathcal{Q}, \mathsf{\Sigma}, \delta, q_0, \mathcal{F})$, s.t. for $q_j \in \mathcal{Q}$

$$
[w]_j = \{ w \in \Sigma^* \mid q_0 \xrightarrow{w} q_j \}
$$

= [w]_j \in DD_j

Games in $BC(\text{ext}(DD_i))$ are determined with winning strategies in DD_{i+1} .

Proof.

Given $L \in BC(\text{ext}(DD_i))$

 $\mathcal{K}_\ell \in DD_i$ is accepted by DFA $\mathcal{A}_\ell = (\mathcal{Q}, \mathsf{\Sigma}, \delta, q_0, \mathcal{F})$, s.t. for $q_j \in \mathcal{Q}$

$$
[w]_j = \{ w \in \Sigma^* \mid q_0 \xrightarrow{w} q_j \}
$$

= [w]_j \in DD_j

 $\mathcal{A}_{\ell} = (Q, \Sigma, \delta, q_0, \mathcal{F}_F)$ is a S-W automaton accepting ext(K_{ℓ})

Games in $BC(\text{ext}(DD_i))$ are determined with winning strategies in DD_{i+1} .

Proof.

Given $L \in \vert BC(\text{ext}(DD_i)) \vert$

 $\mathcal{K}_\ell \in DD_i$ is accepted by DFA $\mathcal{A}_\ell = (\mathcal{Q}, \mathsf{\Sigma}, \delta, q_0, \mathcal{F})$, s.t. for $q_j \in \mathcal{Q}$

$$
[w]_j = \{ w \in \Sigma^* \mid q_0 \xrightarrow{w} q_j \}
$$

= [w]_j \in DD_j

 $\mathcal{A}_{\ell} = (Q, \Sigma, \delta, q_0, \mathcal{F}_F)$ is a S-W automaton accepting ext(K_{ℓ}) $\mathcal{A} = \prod \mathcal{A}_\ell$

Games in $BC(\text{ext}(DD_i))$ are determined with winning strategies in DD_{i+1} .

Proof.

Given $L \in \vert BC(\text{ext}(DD_i)) \vert$

 $\mathcal{K}_\ell \in DD_i$ is accepted by DFA $\mathcal{A}_\ell = (\mathcal{Q}, \mathsf{\Sigma}, \delta, q_0, \mathcal{F})$, s.t. for $q_j \in \mathcal{Q}$

$$
[w]_j = \{ w \in \Sigma^* \mid q_0 \xrightarrow{w} q_j \}
$$

$$
[w]_j \in DD_j
$$

 $\mathcal{A}_{\ell} = (Q, \Sigma, \delta, q_0, \mathcal{F}_{\mathcal{F}})$ is a S-W automaton accepting ext(K_{*i*})</sub>

 $\mathcal{A} = \prod \mathcal{A}_\ell$ is a S-W automaton accepting L

Games in $BC(\text{ext}(DD_i))$ are determined with winning strategies in DD_{i+1} .

Proof.

Given $L \in \vert BC(\text{ext}(DD_i)) \vert$

 $\mathcal{K}_\ell \in DD_i$ is accepted by DFA $\mathcal{A}_\ell = (\mathcal{Q}, \mathsf{\Sigma}, \delta, q_0, \mathcal{F})$, s.t. for $q_j \in \mathcal{Q}$

$$
[w]_j = \{ w \in \Sigma^* \mid q_0 \xrightarrow{w} q_j \}
$$

$$
[w]_j \in DD_j
$$

 $\mathcal{A}_{\ell} = (Q, \Sigma, \delta, q_0, \mathcal{F}_F)$ is a S-W automaton accepting ext(K_{ℓ})

 $\mathcal{A} = \prod \mathcal{A}_\ell$ is a S-W automaton accepting \mathcal{L} , s.t. for $\mathit{q_j} \in \mathcal{Q}_\mathcal{A}$

Games in $BC(\text{ext}(DD_i))$ are determined with winning strategies in DD_{i+1} .

Proof.

Given $L \in \mathsf{BC}(\mathsf{ext}(DD_i))$

 $\mathcal{K}_\ell \in DD_i$ is accepted by DFA $\mathcal{A}_\ell = (\mathcal{Q}, \mathsf{\Sigma}, \delta, q_0, \mathcal{F})$, s.t. for $q_j \in \mathcal{Q}$

$$
[w]_j = \{ w \in \Sigma^* \mid q_0 \xrightarrow{w} q_j \}
$$

$$
[w]_j \in DD_j
$$

 $\mathcal{A}_{\ell} = (Q, \Sigma, \delta, q_0, \mathcal{F}_F)$ is a S-W automaton accepting ext(K_{ℓ})

 $\mathcal{A} = \prod \mathcal{A}_\ell$ is a S-W automaton accepting \mathcal{L} , s.t. for $\mathit{q_j} \in \mathcal{Q}_\mathcal{A}$ \blacktriangleright $[w]_i \in DD_i$

Games in $BC(\text{ext}(DD_i))$ are determined with winning strategies in DD_{i+1} .

Proof.

Given $L \in \mathsf{BC}(\mathsf{ext}(DD_i))$

 $\mathcal{K}_\ell \in DD_i$ is accepted by DFA $\mathcal{A}_\ell = (\mathcal{Q}, \mathsf{\Sigma}, \delta, q_0, \mathcal{F})$, s.t. for $q_j \in \mathcal{Q}$

$$
[w]_j = \{ w \in \Sigma^* \mid q_0 \xrightarrow{w} q_j \}
$$

$$
[w]_j \in DD_j
$$

 $\mathcal{A}_{\ell} = (Q, \Sigma, \delta, q_0, \mathcal{F}_F)$ is a S-W automaton accepting ext(K_{ℓ})

 $\mathcal{A} = \prod \mathcal{A}_\ell$ is a S-W automaton accepting \mathcal{L} , s.t. for $\mathit{q_j} \in \mathcal{Q}_\mathcal{A}$ \blacktriangleright $[w]_i \in DD_i$

$$
\bullet \: \mathcal{A} \stackrel{AR}{\Longrightarrow} \mathcal{A}_P
$$

Games in $BC(\text{ext}(DD_i))$ are determined with winning strategies in DD_{i+1} .

Proof.

Given $L \in \text{BC}(\text{ext}(DD_i))$

 $\mathcal{K}_\ell \in DD_i$ is accepted by DFA $\mathcal{A}_\ell = (\mathcal{Q}, \mathsf{\Sigma}, \delta, q_0, \mathcal{F})$, s.t. for $q_j \in \mathcal{Q}$

$$
[w]_j = \{ w \in \Sigma^* \mid q_0 \xrightarrow{w} q_j \}
$$

$$
[w]_j \in DD_j
$$

 $\mathcal{A}_{\ell} = (Q, \Sigma, \delta, q_0, \mathcal{F}_F)$ is a S-W automaton accepting ext(K_{ℓ})

\n- $$
\mathcal{A} = \prod \mathcal{A}_{\ell}
$$
 is a S-W automaton accepting L , s.t. for $q_j \in Q_{\mathcal{A}}$
\n- $[w]_j \in DD_j$
\n

•
$$
A \stackrel{AR}{\Longrightarrow} \mathcal{A}_P
$$
, a parity automaton accepting L

Games in $BC(\text{ext}(DD_i))$ are determined with winning strategies in DD_{i+1} .

Proof.

Given $L \in \text{BC}(\text{ext}(DD_i))$

 $\mathcal{K}_\ell \in DD_i$ is accepted by DFA $\mathcal{A}_\ell = (\mathcal{Q}, \mathsf{\Sigma}, \delta, q_0, \mathcal{F})$, s.t. for $q_j \in \mathcal{Q}$

$$
[w]_j = \{ w \in \Sigma^* \mid q_0 \xrightarrow{w} q_j \}
$$

$$
[w]_j \in DD_j
$$

 $\mathcal{A}_{\ell} = (Q, \Sigma, \delta, q_0, \mathcal{F}_F)$ is a S-W automaton accepting ext(K_{ℓ})

 $\mathcal{A} = \prod \mathcal{A}_\ell$ is a S-W automaton accepting \mathcal{L} , s.t. for $\mathit{q_j} \in \mathcal{Q}_\mathcal{A}$ \blacktriangleright $[w]_i \in DD_i$

 $\mathcal{A} \stackrel{AR}{\Longrightarrow} \mathcal{A}_{P}$, a parity automaton accepting L , s.t. for $q_j \in Q_{\mathcal{A}_P}$

Games in $BC(\text{ext}(DD_i))$ are determined with winning strategies in DD_{i+1} .

Proof.

Given $L \in \text{BC}(\text{ext}(DD_i))$

 $\mathcal{K}_\ell \in DD_i$ is accepted by DFA $\mathcal{A}_\ell = (\mathcal{Q}, \mathsf{\Sigma}, \delta, q_0, \mathcal{F})$, s.t. for $q_j \in \mathcal{Q}$

$$
[w]_j = \{ w \in \Sigma^* \mid q_0 \xrightarrow{w} q_j \}
$$

$$
[w]_j \in DD_j
$$

 $\mathcal{A}_{\ell} = (Q, \Sigma, \delta, q_0, \mathcal{F}_F)$ is a S-W automaton accepting ext(K_{ℓ})

- $\mathcal{A} = \prod \mathcal{A}_\ell$ is a S-W automaton accepting \mathcal{L} , s.t. for $\mathit{q_j} \in \mathcal{Q}_\mathcal{A}$ \blacktriangleright $[w]_i \in DD_i$
- $\mathcal{A} \stackrel{AR}{\Longrightarrow} \mathcal{A}_{P}$, a parity automaton accepting L , s.t. for $q_j \in Q_{\mathcal{A}_P}$ \blacktriangleright $[w]_i \in DD_{i+1}$

Games in $BC(ext(DD_i))$ are determined with winning strategies in DD_{i+1} .

Games in BC($ext(DD_i)$) are determined with winning strategies in DD_{i+1} .

Theorem (Strong games)

Games in BC(lim(DD_i)) are determined with winning strategies in DD_{i+2}.

Games in BC($ext(DD_i)$) are determined with winning strategies in DD_{i+1} .

Theorem (Strong games)

Games in BC(lim(DD_i)) are determined with winning strategies in DD_{i+2}.

Theorem

There are games in $BC(ext(DD₁))$ that do not admit $DD₁$ strategies.

Games in BC($ext(DD_i)$) are determined with winning strategies in DD_{i+1} .

Theorem (Strong games)

Games in BC(lim(DD_i)) are determined with winning strategies in DD_{i+2}.

Theorem

There are games in $BC(ext(DD₁))$ that do not admit $DD₁$ strategies.

$$
\bullet\ \Sigma_1=\{a,b,c,d\}\ \text{and}\ \Sigma_2=\{0,1\}
$$

Games in BC($ext(DD_i)$) are determined with winning strategies in DD_{i+1} .

Theorem (Strong games)

Games in BC($\lim(DD_i)$) are determined with winning strategies in DD_{i+2} .

Theorem

There are games in $BC(ext(DD₁))$ that do not admit $DD₁$ strategies.

•
$$
\Sigma_1 = \{a, b, c, d\}
$$
 and $\Sigma_2 = \{0, 1\}$

• if Pl. 1 plays $x \in \{a, b, c\}$ then Pl. 2 must play 0

Games in BC($ext(DD_i)$) are determined with winning strategies in DD_{i+1} .

Theorem (Strong games)

Games in BC($\lim(DD_i)$) are determined with winning strategies in DD_{i+2} .

Theorem

There are games in $BC(ext(DD₁))$ that do not admit $DD₁$ strategies.

•
$$
\Sigma_1 = \{a, b, c, d\}
$$
 and $\Sigma_2 = \{0, 1\}$

if PI. 1 plays $x \in \{a, b, c\}$ then PI. 2 must play $0 \rightsquigarrow \neg \operatorname{ext}(\Sigma^*)^{\times \times \times}_{1}$ $_{1}^{x})\Sigma^{*}$)

Games in BC($ext(DD_i)$) are determined with winning strategies in DD_{i+1} .

Theorem (Strong games)

Games in BC($\lim(DD_i)$) are determined with winning strategies in DD_{i+2} .

Theorem

There are games in $BC(ext(DD_1))$ that do not admit DD_1 strategies.

$$
\bullet\ \Sigma_1=\{a,b,c,d\}\ \text{and}\ \Sigma_2=\{0,1\}
$$

if PI. 1 plays $x \in \{a, b, c\}$ then PI. 2 must play $0 \rightsquigarrow \neg \operatorname{ext}(\Sigma^*)^{\times \times \times}_{1}$ $_{1}^{x})\Sigma^{*}$)

• Pl. 1 must play d

Games in BC($ext(DD_i)$) are determined with winning strategies in DD_{i+1} .

Theorem (Strong games)

Games in BC($\lim(DD_i)$) are determined with winning strategies in DD_{i+2} .

Theorem

There are games in $BC(ext(DD_1))$ that do not admit DD_1 strategies.

$$
\bullet\ \Sigma_1=\{a,b,c,d\}\ \text{and}\ \Sigma_2=\{0,1\}
$$

- if PI. 1 plays $x \in \{a, b, c\}$ then PI. 2 must play $0 \rightsquigarrow \neg \operatorname{ext}(\Sigma^*)^{\times \times \times}_{1}$ $_{1}^{x})\Sigma^{*}$)
- Pl. 1 must play $d \rightsquigarrow \text{ext}(\Sigma^*(\frac{d}{d}))$ $\binom{d}{0}\Sigma^*\cup\Sigma^*\binom{d}{1}$ $_{1}^{d})\Sigma ^{*})$

Games in BC($ext(DD_i)$) are determined with winning strategies in DD_{i+1} .

Theorem (Strong games)

Games in BC($\lim(DD_i)$) are determined with winning strategies in DD_{i+2} .

Theorem

There are games in $BC(ext(DD_1))$ that do not admit DD_1 strategies.

- $\sum_1 = \{a, b, c, d\}$ and $\Sigma_2 = \{0, 1\}$
- if PI. 1 plays $x \in \{a, b, c\}$ then PI. 2 must play $0 \rightsquigarrow \neg \operatorname{ext}(\Sigma^*)^{\times \times \times}_{1}$ $_{1}^{x})\Sigma^{*}$)
- Pl. 1 must play $d \rightsquigarrow \text{ext}(\Sigma^*(\frac{d}{d}))$ $\binom{d}{0}\Sigma^*\cup \Sigma^*\binom{d}{1}$ $_{1}^{d})\Sigma ^{*})$
- when Pl. 1 plays d then Pl. 2 must decide between 0 and 1
	- ► if the play starts with $\binom{a}{0}^* \binom{b}{0}$ then answer 1
	- ► if the play starts with $\binom{a}{0}^* \binom{c}{0}$ then answer 0

Games in BC($ext(DD_i)$) are determined with winning strategies in DD_{i+1} .

Theorem (Strong games)

Games in BC($\lim(DD_i)$) are determined with winning strategies in DD_{i+2} .

Theorem

There are games in $BC(ext(DD_1))$ that do not admit DD_1 strategies.

$$
\bullet\ \Sigma_1=\{a,b,c,d\}\ \text{and}\ \Sigma_2=\{0,1\}
$$

- if PI. 1 plays $x \in \{a, b, c\}$ then PI. 2 must play $0 \rightsquigarrow \neg \operatorname{ext}(\Sigma^*)^{\times \times \times}_{1}$ $_{1}^{x})\Sigma^{*}$)
- Pl. 1 must play $d \rightsquigarrow \text{ext}(\Sigma^*(\frac{d}{d}))$ $\binom{d}{0}\Sigma^*\cup \Sigma^*\binom{d}{1}$ $_{1}^{d})\Sigma ^{*})$
- when Pl. 1 plays d then Pl. 2 must decide between 0 and 1
	- ► if the play starts with $\binom{a}{0}^* \binom{b}{0}$ then answer 1
	- ► if the play starts with $\binom{a}{0}^* \binom{c}{0}$ then answer 0
	- ► \rightarrow ext $(\binom{a}{0}^*(\binom{b}{0}))$ \Leftrightarrow ext $(\Sigma^*(\binom{d}{1}\Sigma^*)$

Games in BC($ext(DD_i)$) are determined with winning strategies in DD_{i+1} .

Theorem (Strong games)

Games in BC($\lim(DD_i)$) are determined with winning strategies in DD_{i+2} .

Theorem

There are games in $BC(ext(DD_1))$ that do not admit DD_1 strategies.

$$
\bullet\ \Sigma_1=\{a,b,c,d\}\ \text{and}\ \Sigma_2=\{0,1\}
$$

- if PI. 1 plays $x \in \{a, b, c\}$ then PI. 2 must play $0 \rightsquigarrow \neg \operatorname{ext}(\Sigma^*)^{\times \times \times}_{1}$ $_{1}^{x})\Sigma^{*}$)
- Pl. 1 must play $d \rightsquigarrow \text{ext}(\Sigma^*(\frac{d}{d}))$ $\binom{d}{0}\Sigma^*\cup \Sigma^*\binom{d}{1}$ $_{1}^{d})\Sigma ^{*})$
- when Pl. 1 plays d then Pl. 2 must decide between 0 and 1
	- ► if the play starts with $\binom{a}{0}^* \binom{b}{0}$ then answer 1
	- ► if the play starts with $\binom{a}{0}^* \binom{c}{0}$ then answer 0
	- ► \rightarrow ext $(\binom{a}{0}^*(\binom{b}{0}))$ \Leftrightarrow ext $(\Sigma^*(\binom{d}{1}\Sigma^*)$
- Player 2 has a winning strategy, $K \in DD_2 \setminus DD_1$

Languages vs. *ω***[-Languages in Regular Infinite Games](#page-0-0) 16 / 17**

Conclusion

Conclusion

- Regular/SF *ω*-languages have regular/SF strategies
- No longer straightforward for dot-depth languages
Conclusion

- Regular/SF *ω*-languages have regular/SF strategies
- No longer straightforward for dot-depth languages
- \bullet Open: Do there exist games in BC(lim(DD_i)) that do not admit any DD_{i+1} strategies?
- Open: How many states are needed for winning strategies?