
Bernstein-Bézier Finite Elements on Tetrahedral-
Hexahedral-Pyramidal Partitions

Mark Ainsworth1, Oleg Davydov and Larry L. Schumaker

Abstract. A construction for high order continuous finite elements on par-
titions consisting of tetrahedra, hexahedra and pyramids based on polynomial
Bernstein-Bézier shape functions is presented along with algorithms that allow
the computation of the system matrices in optimal complexity O(1) per entry.

§1. Introduction

In theory at least, finite element approximation on a three dimensional domain dif-
fers little from approximation over planar domains. However, the reality is that one
is beset by various niggling issues not least of which is the choice of a partitioning
for the domain. On the one hand, hexahedral elements are often preferred for rea-
sons of efficiency stemming from the tensor-product nature of the elements and the
underlying approximation space, but the practical issues of meshing a complicated
three dimensional geometry using only hexahedra should not be underestimated.
On the other hand, while there are many efficient algorithms available for mesh-
ing using tetrahedral elements, the numbers of degrees of freedom in the resulting
finite element space generally significantly exceeds what would be needed should
a hexahedral partitioning be available, without a commensurate improvement in
accuracy.

An obvious solution would seem to consist of using a partition comprised of a
mix of both tetrahedra and hexahedra with hexahedra used as much as possible,
with the tetrahedra used to mesh the remaining more complicated geometrical fea-
tures. This would be fine were it not for the fact that tetrahedra and hexahedra
fail to tessellate. Again, a possible solution readily suggests itself whereby pyrami-
dal elements are used as a means of interfacing between the tetrahedra with the
hexahedra, see e.g. [6,25].

The question then becomes one of how to define shape functions on the pyra-
mids in such a way as to obtain globally C0 (conformal) test functions. The problem
now is that it is impossible to do this using polynomial basis functions. Various
approaches have been taken to solving this problem, see [8,9,23] and Remark 3. The
upshot is that non-polynomial basis functions are required which, in turn, gives rise
to further difficulties associated with numerical integration and the analysis [8,24].

1 This author gratefully acknowledges the partial support of this work under AFOSR

contract FA9550-12-1-0399.

1



At this point, one might be left with a growing feeling that hybrid partitions
may be more trouble than they are worth. Nevertheless, the current work presents
a fresh approach to dealing with the pyramidal transition elements which: avoids
the need for non-polynomial functions in favour of using piecewise polynomials,
and as such is entirely in keeping with the spirit of the finite element method;
neatly side steps technical questions associated with the error of the quadrature and
approximation power of the spaces; and, opens up the possibility for adopting fast
(optimal complexity) algorithms developed in [3] for the system matrix assembly
and matrix-free implementations.

The paper is organized as follows. Sect. 2 contains a description of the hybrid
partitions of interest in this paper. While this might seem to be straightforward, in
practice, it is of considerable interest to allow partitions in which the faces of the
hexahedra are allowed to be bilinear quadrilaterals. In turn, this means that one is
obliged to consider pyramids whose quadrilateral face is bilinear, which is generally
disallowed in existing work on pyramidal elements. We therefore devote attention
to carefully defining pyramidal elements of this type and characterizing conditions
under which associated maps to the reference element are invertible. The bilinear
face of the pyramid means that the splitting of the pyramid into interface tetrahedra
is not straightforward. The section concludes with a discussion of an appropriate
way to split pyramids into a pair of interface tetrahedra which, of necessity, must be
curvilinear. In Sect. 3 we introduce the approximation space to be used in the finite
element method, while Sect. 4 is concerned with the construction of the shape func-
tions associated with each of our elements. In Sect. 5 we discuss domain points and
minimal determining sets, while in Sect. 6 we use these concepts to find a formula
for the dimension of our spline space and to construct a locally supported basis
for it. In Sect. 7 we collect some useful computational algorithms for dealing with
Bernstein basis polynomials from our previous work, which are then used in Sect. 8
to develop algorithms for efficiently computing all of the various quantities needed
for a finite element analysis and evaluation of the resulting approximation. Sect. 9
describes a nodal basis for the approximation space. Finally, the approximation
power of our spline space is treated in Sect. 10.

§2. Partitions

We begin by specifying precisely what is meant by a hexahedron, a pyramid and
a tetrahedron in the context of hybrid finite element partitions. While the cases
of tetrahedra and hexahedra contain no surprises for the seasoned finite element
analyst, the situation for pyramids is less straightforward.

2.1 Tetrahedra

A tetrahedron with vertices v1, . . . , v4 is a polyhedron with four triangular faces.
We write T = 〈v1, v2, v3, v4〉.

2



2.2 Hexahedra

An ordinary hexahedron is a polyhedron with eight vertices and six flat quadrilateral
faces. We follow the usual practice of allowing hexahedra whose faces are not
necessarily flat, see e.g. [14]. The precise definition makes use of the linear Bernstein
polynomials B0(λ) = 1−λ and B1(λ) = λ defined on [0, 1], with H0 being the unit
cube [0, 1]3.

Definition 2.1. Given eight distinct points {vijk}0≤i,j,k≤1 in IR3, let

φH(λ1, λ2, λ3) :=
∑

0≤i,j,k≤1

vijkBi(λ1)Bj(λ2)Bk(λ3), (2.1)

and let H = φH(H0). Suppose that φH is a one-to-one mapping from H0 to H,
i.e., it is invertible on H. Then we call H a hexahedron.

We note that a hexahedron as defined here is not necessarily convex. Mappings
of the form (2.1) are called trilinear maps and are not necessarily invertible for every
location of the points {vijk}0≤i,j,k≤1. We shall not dwell on this point, but refer the
curious reader to [20] and references therein for conditions guaranteeing invertibility.
Clearly, the vertices of H0 map to the vertices of H, and the edges of H0 map to
the edges of H, which are easily seen to be straight lines. The faces of H0, which
correspond to setting one of the variables in φH to either zero or one, map into
bilinear surface patches with four straight line edges. We call these the faces of H.
Thus, for example, the face corresponding to λ3 = 0 is

F :=
{ ∑

0≤i,j≤1

vij0Bi(λ1)Bj(λ2) : (λ1, λ2) ∈ [0, 1]2
}
. (2.2)

In general, bilinear surface patches are curved. A face of H is flat if and only if
its four vertices lie in a plane. If all faces of H are flat, then H is an ordinary
hexahedron.

2.3 Pyramids

An ordinary pyramid is a polyhedron with four triangular faces and one convex
quadrilateral (planar) face. Existing work on pyramidal elements is generally con-
fined to the case of ordinary pyramids which, in turn, can only be attached to
ordinary hexahedra with flat faces. However, it is of considerable practical impor-
tance to allow for pyramids to be attached to hexahedra of the type defined above.
Consequently, we are obliged to consider a more general class of pyramids whose
bases are allowed to be bilinear Bézier patches.

Definition 2.2. Suppose

GP := {(1−λ1)(1−λ2)v2+λ1(1−λ2)v1+(1−λ1)λ2v3+λ1λ2v4 : (λ1, λ2) ∈ [0, 1]2},
(2.3)

3



 v
2

 v
3

 G
P

 v
0

 v
1

 v
4

Fig. 1. A typical pyramid: see Definition 2.2.

is a nondegenerate bilinear Bézier patch in IR3 without self-intersections. Given a
point v0 ∈ IR3, let P c be the polyhedron obtained by taking the convex hull of the
points v0, . . . , v4. Suppose v0 is not in the convex hull G of the points v1, . . . , v4,
and is such that 〈v0, v1, v2〉, 〈v0, v2, v3〉, 〈v0, v3, v4〉, 〈v0, v4, v1〉, are nondegenerate
triangular faces of P c. We define a pyramid P associated with the vertices v0, . . . , v4
to be the unique bounded, simply connected domain in IR3 whose boundary is given
by the above triangles and the patch GP .

Fig. 1 shows a typical pyramid. Note that v0 cannot lie on the bilinear patch
GP because GP is contained in G. The points v0, . . . , v4 form the vertices of the
pyramid P which has: eight edges, each of which is a straight line segment; four
triangular faces, each of which is planar; and a base, comprising of the bilinear patch
GP . The base GP need not necessarily be planar, which means that although the
pyramid P may not be convex, it is contained in the convex set P c. If GP is a
convex planar quadrilateral, then P is an ordinary pyramid.

2.4 THP partitions

We can now define the class of hybrid partitions that will be considered.

Definition 2.3. Suppose we are given a collection△ of elements (tetrahedra, pyra-
mids, or hexahedra) such that if any pair of elements have a nonempty intersection
Γ, then Γ is either a single common vertex, a single common edge, or a single
common face of both elements. We assume that no faces of a pyramid are shared
with another pyramid or with the boundary of Ω. Suppose also that the union Ω
of the elements is a simply connected closed set in IR3. Then we say that △ is a
Tetrahedral-Hexahedral-Pyramidal (THP) partition.

4



Since a nondegenerate bilinear patch cannot coincide with a triangle, the inte-
rior faces of △ are either triangles shared by two tetrahedra or a tetrahedron and
a pyramid, or are bilinear patches shared by two hexahedra or a hexahedron and a
pyramid.

Note that the restriction for the pyramids to share no faces with other pyramids
or with the boundary is consistent with the typical usage whereby pyramids are
used as an interface element between sub-regions meshed using purely tetrahedral
and hexahedral elements.

The next step is to define an approximation space on a THP partition △
consisting of C0 functions on Ω whose restrictions to the elements of △ are either
polynomials or simple maps of polynomials. These restrictions are often called shape
functions in the finite element literature. However, it turns out to be impossible
to require the shape functions associated with pyramids to be polynomials, see
Remark 3. To overcome this problem, we shall not work directly with the THP
partition △, but shall instead introduce a special refinement obtained by splitting
pyramids into so-called interface tetrahedra.

2.5 Splitting a pyramid

Suppose P is a pyramid with vertices v0, . . . , v4, where v1, . . . , v4 are the vertices
of the base GP defined in (2.3), enumerated in clockwise sense along the boundary
of GP as viewed from the apex v0. Set vP = v2 + v4 − v1 − v3, and define interface
tetrahedra as follows:

P1 = φP1
(T0), P2 = φP2

(T0),

where
φP1

(λ1, λ2, λ3) := λ1v1 + λ2v3 + λ3v2 + λ4v0 + λ1λ2vP ,

φP2
(λ1, λ2, λ3) := λ1v1 + λ2v3 + λ3v4 + λ4v0 + λ1λ2vP ,

(2.4)

with
λ4 = 1− λ1 − λ2 − λ3,

and
T0 := {(λ1, λ2, λ3) ∈ IR3 : λ1, λ2, λ3 ≥ 0 and λ1 + λ2 + λ3 ≤ 1}. (2.5)

The invertibility of the mappings, as in the case of hexahedra, is a non-trivial
issue. Nevertheless, it is of practical importance to establish conditions for the
invertibility of the mappings in (2.4) for a given pyramid, and it is to this issue
that we now turn.

Lemma 2.4. Suppose that the points v0, . . . , v3 ∈ IR3 do not all lie on one plane,
and let v4 = v0+α1(v1−v0)+α2(v2−v0)+α3(v3−v0). The mapping φP1

: T0 → P1

defined in (2.4) is invertible if and only if α1 > 0 and α3 > 0.

Proof: Although the lemma could be derived after a close examination of the proof
of Theorem 2.1 in [19], we give a short proof. We can rewrite

φP1
(λ1, λ2, λ3) = v0 + (λ1 + β1λ1λ2)σ1 + (λ2 + β3λ1λ2)σ3 + (λ3 + β2λ1λ2)σ2,

5



where σi := vi − v0, βi := αi − 1, and λ1, λ2, λ3 ≥ 0, λ1 + λ2 + λ3 ≤ 1. Since the
vectors σ1, σ2, σ3 are linearly independent, it suffices to consider the invertibility of
the mapping 


λ1
λ2
λ3


 7−→



λ1 + β1λ1λ2
λ2 + β3λ1λ2
λ3 + β2λ1λ2


 . (2.6)

The Jacobian of the mapping is given by 1 + β1λ2 + β3λ1, which is positive for all
admissible λ1, λ2 if and only if α1, α3 > 0. The statement now follows from the fact
that the invertibility of a multilinear mapping on a set with constant second order
derivatives on the boundary is guaranteed if its Jacobian is positive, see the proof
of Theorem 37.2 in [12] and page 665 of [19].

The next result gives equivalent conditions for the invertibility of the map-
pings (2.4) in a more readily verifiable form.

Theorem 2.5. Let v0, . . . , v4 be any points in IR3. Assume that the bilinear
patch GP defined by (2.3) is nondegenerate and has no self-intersections. Then the
following conditions are equivalent:

A) The patch GP and the vertex v0 form a pyramid.

B) Both mappings φP1
and φP2

defined in (2.4) are invertible.

C) Let σ4 = α1σ1 + α2σ2 + α3σ3, where σi := vi − v0, i = 1, . . . , 4. Then α1 > 0,
α3 > 0 and α2 < 0.

D) a) v0 can be separated from v1, . . . , v4 by a plane, b) the plane through v0, v1, v3
separates v2 and v4, and c) the plane through v0, v2, v4 separates v1 and v3.

Proof: A ⇔ C. If A holds, then the four vertices v0, v1, v2, v3 cannot be copla-
nar (since the triangles 〈v0, v1, v2〉 and 〈v0, v2, v3〉 are the faces of a polyhedron),
and thus σ1, σ2, σ3 are linearly independent and σ4 can be written as their linear
combination. The triangle 〈v0, v2, v3〉 is a face of the polyhedron P c formed by the
convex hull of v0, . . . , v4 if and only if v1 and v4 lie in the same half-space defined
by the plane through v0, v2, v3, which is equivalent to the condition that α1 > 0.
Similarly, 〈v0, v1, v2〉 is a face of P c if and only if α3 > 0, 〈v0, v3, v4〉 is a face of P c

if and only if α1α2 < 0, and 〈v0, v4, v1〉 is a face of P c if and only if α2α3 < 0.
B ⇔ C. By Lemma 2.4 the pair of inequalities α1 > 0, α3 > 0 is equivalent

to the invertibility of φP1
. By writing σ2 = −α1

α2
σ1 +

1
α2
σ4 −

α3

α2
σ3, and applying

Lemma 2.4 again, we see that the invertibility of φP2
is characterized by −α1

α2
> 0,

−α3

α2
> 0, and thus both φP1

and φP2
are invertible if and only if α1 > 0, α3 > 0,

α2 < 0. Note that B ⇔ C also follows from Theorem 2.1 in [19] whose formulation
uses the coefficients of the vector v4 − v2 in terms of vi − v2, i = 0, 1, 3, in our
notation.

C ⇔ D. We first note that b) is equivalent to α2 < 0 since (σ4, σ1, σ3) =
α2(σ2, σ1, σ3), where (a, b, c) = a · (b × c) denotes the scalar triple product of
three vectors. Moreover, from (σ1, σ2, σ4) = α3(σ1, σ2, σ3) and (σ3, σ2, σ4) =
α1(σ3, σ2, σ1) = −α1(σ1, σ2, σ3) it follows that c) is equivalent to α1α3 > 0. Now,

6



a) is equivalent to v0 /∈ 〈v1, . . . , v4〉, and, on the other hand, to the existence of a
vector ν such that the inner products (ν, σi), i = 1, . . . , 4, are all positive. Since
(ν, σ4) = α1(ν, σ1)+α2(ν, σ2)+α3(ν, σ3), we conclude that at least one of α1, α2, α3

must be positive.

The interface tetrahedra P1 and P2 are each images of the reference tetrahedron
T0 under an invertible quadratic mapping. As such, they are quadratic tetrahedral
Bézier volumes, see e.g. [17], with control points located at the vertices and at
the midpoints of the straight line segments between vertices, with the exception of
〈v1, v3〉 whose midpoint is replaced by 1

2(v2 + v4).
We refer to P1 and P2 as interface tetrahedra, although strictly speaking they

are not tetrahedra since they have two curved faces. More precisely, P1 has the two
triangular faces 〈v0, v1, v2〉 and 〈v0, v2, v3〉, while P2 has the two triangular faces
〈v0, v3, v4〉 and 〈v0, v4, v1〉. Moreover, P1 and P2 share the common face

FP :=
{
λ1v1 + λ2v3 + λ4v0 + λ1λ2vP : λ1 + λ2 + λ4 = 1, λ1, λ2, λ4 ≥ 0

}
.

This is a quadratic triangular Bézier patch. Clearly,

φP1
|{λ3=0} = φP2

|{λ3=0}. (2.7)

The fourth face of P1 (corresponding to λ4 = 0 in (2.4)) is given by

F1 := {(1− λ1)(1− λ2)v2 + λ1(1− λ2)v1 + (1− λ1)λ2v3 + λ1λ2v4}, (2.8)

while the corresponding face of P2 is

F2 := {(1− λ1)(1− λ2)v4 + λ1(1− λ2)v1 + (1− λ1)λ2v3 + λ1λ2v2}. (2.9)

These faces are both quadratic triangular Bézier patches. The union of F1 and F2

is the base GP of the pyramid P . Clearly, P1 and P2 define a refinement of P , i.e.,
P = P1 ∪ P2 with P1 ∩ P2 = FP . Fig. 2 shows a typical split of a pyramid into two
interface tetrahedra.

The inverse of the mapping (2.6) can be easily evaluated. Indeed, let µ1 =
λ1 + β1λ1λ2, µ2 = λ2 + β3λ1λ2, µ3 = λ3 + β2λ1λ2. Then λ1 is a solution of the
quadratic equation

β3λ
2
1 + (β1 + β1µ2 − β3µ1)λ1 − β1µ1 = 0,

whereas λ2 = µ2 − β3

β1
(µ1 − λ1), λ3 = µ3 − β2λ1λ2. The coefficients β1, β3 can

be obtained directly from the coordinates of the vertices by using the formulae
β1 = (σ4, σ2, σ3)/(σ1, σ2, σ3) − 1, β3 = (σ1, σ2, σ4)/(σ1, σ2, σ3) − 1. This inverse
mapping can be used to determine in which of the two interface tetrahedra a given
point x ∈ P lies.

7



 v
2

 v
3

 F
1

 v
0

 F
P

 F
2

 v
1

 v
4

Fig. 2. A typical split of a pyramid into two interface tetrahedra.

2.6 Attaching a pyramid to a hexahedron

Consider a face F of the hexahedron H = φH(H0), and suppose without loss of
generality that F corresponds to λ3 = 1, and thus has vertices v1 = v101, v2 = v001,
v3 = v011, and v4 = v111. Then

F = {(1−λ1)(1−λ2)v2 +λ1(1−λ2)v1 +(1−λ1)λ2v3 +λ1λ2v4 : (λ1, λ2) ∈ [0, 1]2}.

Let P be a pyramid whose base is defined by these four vertices, i.e., attached to
the top of H. Suppose P1 and P2 are the two associated interface tetrahedra. Then

φH |{(λ1,λ2,1):λ1+λ2≤1} = φP1
|{(λ1,λ2,1−λ1−λ2,0):λ1+λ2≤1}. (2.10)

i.e., the face F1 of P1 corresponding to λ4 = 0, see (2.8), lies on the part of the
face F of H corresponding to λ1, λ2 ≥ 0 with λ1 + λ2 ≤ 1. This is a quadratic
triangular Bézier patch with the two straight edges 〈v2, v1〉 and 〈v2, v3〉, and a third
edge which is the quadratic Bézier curve

δ(λ) := λ2v1 + λ(1− λ)(v2 + v4) + (1− λ)2v3, 0 ≤ λ ≤ 1,

with control points v1, (v2 + v4)/2, v3.
We call the curve δ a hanging edge of the refined partition since it lies in the

interior of a face of a hexahedron and as such does not match with any edge of
the neighbouring element. The face F2 also lies on F , and is a triangular Bézier
patch with two straight edges 〈v4, v1〉 and 〈v4, v3〉, and the third edge δ, such that
F = F1 ∪ F2. In addition, similar to (2.10), the mappings φH and φP2

can be
identified on the other half of F . Note that a pyramid could equally well be split
with δ running from v2 to v4 instead of from v1 to v3.

8



2.7 Refining a THP partition

Given a THP-partition △, let △R be a refinement obtained by splitting each pyra-
mid into two interface tetrahedra. This eliminates the pyramids, and the elements
of this partition are now either tetrahedra or hexahedra, where a tetrahedron can
be either an ordinary tetrahedron or an interface tetrahedron.

Effectively eliminating the pyramids comes at the price that the partition now
contains hanging edges, and some of the edges of △R may be curved, namely, the
hanging edges which arise when we split pyramids.

There are three kinds of faces of △R.

1) The planar triangles which originally were faces of the initial THP partition
△. All of the faces of ordinary tetrahedra are triangles, as are two of the faces
of each interface tetrahedra. They can be on the boundary of Ω, or can be
shared by two tetrahedra.

2) The quadratic triangular Bézier patches which arise in splitting pyramids.
Each interface tetrahedron has two of these. They can be the common face of
two interface tetrahedra, or can lie in the bilinear face of a hexahedron.

3) The bilinear patches which were faces of the hexahedra in the initial THP
partition △.

Note that faces of type 2 can lie in faces of type 3.

§3. The approximation space

Given an integer d > 0, let Pd be the usual space of trivariate polynomials of total
degree d, and let Qd be the space of trivariate tensor-product polynomials of degree
d in each coordinate. For each hexahedron H of △R, let

PH := {p ◦ φ−1
H : p ∈ Qd},

and for each interface tetrahedron T of △R, let

PT := {p ◦ φ−1
T : p ∈ P2d}.

Then we define

S0
d(△) := {s ∈ C0(Ω) : s|H ∈ PH for each hexahedron H of △R,

s|T ∈ Pd for each ordinary tetrahedron T of △R,

s|T ∈ PT for each interface tetrahedron T of △R }.
(3.1)

Clearly, S0
d(△) is a finite dimensional linear space. We give a formula for its di-

mension in Sect. 6. It may be regarded as a kind of spline space in the sense that it
consists of piecewise functions defined on the partition △ which are joined together
with C0 continuity.

9



§4. Bernstein-Bézier shape functions

In this section we describe the shape functions for the space S0
d(△). First we intro-

duce some notation.

4.1. Notation

We use standard multi-index notation. Thus if ν = (ν1, . . . , νm) ∈ ZZm
+ is a set of

nonnegative integers, we write |ν| =
∑m

i=1 νi, and define

ν! := ν1! · · ·νm!

and (
ν + µ

µ

)
:=

(ν + µ)!

ν!µ!
.

The inequality ν ≤ µ means that νi ≤ µi, i = 1, . . . , m. We need the following
index sets

In
m := {ν ∈ ZZm+1

+ : |ν| = n}

and
J

(n,m,ℓ)
3 := {(i, j, k) ∈ ZZ3

+ : i ≤ n, j ≤ m, k ≤ ℓ}.

Given d > 0, we describe some convenient basis functions for the spaces P1
d ,

P2
d , and P3

d of polynomials of total degree at most d in one, two, and three variables.
First, for an interval I := [0, 1], we define the classical Bernstein basis polynomials
of degree d as

Bd,I
ij (λ) :=

d!

i! j!
(1− λ)iλj , (i, j) ∈ Id

1 . (4.1)

Now suppose F = 〈v1, v2, v3〉 is a triangle with vertices v1, v2, v3, and let d
be a positive integer. Given any point v ∈ IR3, let (λ1, λ2, λ3) be its barycentric
coordinates relative to F , i.e., v = λ1v1 + · · ·+ λ3v3. Then the associated bivariate
Bernstein basis polynomials are defined to be

Bd,F
ijk (λ1, λ2, λ3) :=

d!

i! j! k!
λi1λ

j
2λ

k
3 , (i, j, k) ∈ Id

2 . (4.2)

These functions form a basis for P2
d , and and have many attractive properties

that can be exploited for stable and efficient computation, see [21]. In particular,
on F they are nonnegative and form a partition of unity.

We can define trivariate Bernstein basis polynomials in a similar way on a tetra-
hedron T = 〈v1, v2, v3, v4〉. Given any point v ∈ IR3, let (λ1, λ2, λ3, λ4) be its
barycentric coordinates relative to T , i.e., v = λ1v1 + · · ·+ λ4v4. Then the associ-
ated trivariate Bernstein basis polynomials are defined to be

Bd,T
ijkl(λ1, λ2, λ3, λ4) :=

d!

i! j! k! l!
λi1λ

j
2λ

k
3λ

l
4, (i, j, k, l) ∈ Id

3 . (4.3)

10



These functions form a basis for P3
d , and also have many nice properties, see [21].

In particular, on T they are nonnegative and form a partition of unity.
We shall also make use of tensor-product Bernstein basis polynomials. In two

variables we define them by

Bn,m
ij (λ1, λ2) := Bn

i (λ1)B
m
j (λ2), (λ1, λ2) ∈ [0, 1]2, (4.4)

for 0 ≤ i ≤ n and 0 ≤ j ≤ m. In three variables we define them as

Bn,m,ℓ
ijk (λ1, λ2, λ3) := Bn

i (λ1)B
m
j (λ2)B

ℓ
k(λ3), (λ1, λ2, λ3) ∈ [0, 1]3, (4.5)

for 0 ≤ i ≤ n, 0 ≤ j ≤ m, and 0 ≤ k ≤ ℓ.
We are now ready to define shape functions for the three kinds of elements

contained in △R.

4.2. Shape functions for an ordinary tetrahedron

Let T := 〈v1, v2, v3, v4〉 be a nondegenerate ordinary tetrahedron. For each point
v ∈ IR3, let (λ1, λ2, λ3, λ4) denote its barycentric coordinates relative to T , and set

ψd,T
ijkl(v) := Bd,T

ijkl(λ1, λ2, λ3, λ4), (i, j, k, l) ∈ Id
3 , (4.6)

where Bd,T
ijkl are the Bernstein basis polynomials defined in (4.3).

Instead of indexing the shape functions as in (4.6), for later use it is convenient
to introduce an alternative indexing scheme used frequently in the spline literature,
see [21]. Given T and d as above, the set of associated domain points is defined as

Dd,T :=
{
ξd,Tijkl :=

iv1 + jv2 + kv3 + lv4
d

}

i+j+k=d
.

For each ξ = ξTijkl ∈ Dd,T , we now set ψd,T
ξ := ψd,T

ijkl. Then for any s ∈ S0
d(△) we

can write
s|T =

∑

ξ∈Dd,T

cTξ ψ
d,T
ξ . (4.7)

We call the coefficients cTξ the B-coefficients of s|T .

4.3. Shape functions for a hexahedron

Let H = φH(H0) be a general hexahedral element as defined in Sect. 2. If H
is a rectangular box with edges parallel to the axes, we can use tensor-product
polynomials for the shape functions associated with H. For general H, we map
back to H0 using the inverse of the map φH . In particular, we define the shape
functions associated with H to be

ψd,H
ijk (v) := Bd,d,d

ijk (φ−1
H (v)), 0 ≤ i, j, k ≤ d, (4.8)

11



where Bd,d,d
ijk are the tensor-product Bernstein polynomials defined in (4.5) on H0 =

[0, 1]3.
Just as was done for tetrahedra, we would like to index these shape functions

using certain domain points. Let

Dd,H0
:= {ξd,H0

ijk := (i/d, j/d, k/d) : 0 ≤ i, j, k ≤ d}.

Then we define the domain points associated with H as Dd,H = φH(Dd,H0
). Note

that these points are in H, not in H0. In this case we write ψd,H
ξ = ψd,H

ijk whenever

ξ = ξd,Hijk . For any s ∈ S0
d(△), we can now write

s|H =
∑

ξ∈Dd,H

cHξ ψd,H
ξ . (4.9)

We call the coefficients cHξ the B-coefficients of s|H .

4.4. Shape functions for an interface tetrahedron

Suppose P1 and P2 are the interface tetrahedra associated with a pyramid P . Now
for each v ∈ P1, we define

ψ2d,P1

ijkl (v) := B2d
ijkl(φ

−1
P1

(v)), (i, j, k, l) ∈ I2d
3 , (4.10)

where B2d
ijkl are the trivariate Bernstein basis polynomials of degree 2d associated

with the reference tetrahedron T0 defined in (2.5). Instead of indexing these shape
functions with integer subscripts, we can follow the idea of Sect. 4.2 and index
them with the set of domain points D2d,P1

:= φP1
(D2d,T0

). Then for any spline
s ∈ S0

d(△), we can write

s|P1
=

∑

ξ∈D2d,P1

cP1

ξ ψ2d,P1

ξ . (4.11)

We call the cP1

ξ the B-coefficients of s|P1
. Shape functions and domain points for

the interface tetrahedron P2 can be defined in exactly the same way.

§5. Domain points and a minimal determining set for S0
d(△)

The concept of domain points and minimal determining sets is frequently used in
the analysis of splines, and play a similar role to the notion of degrees of freedom
in the finite element community. Let △ be a THP partition, and suppose △R is
its refinement as defined in Sect. 2.7. We define the set of domain points Dd,△R

associated with △R to be the union of the sets of domain points associated with
the elements of △R, but with no repetitions. To describe Dd,△R

more precisely, we
need some additional notation:

12



Fig. 3. Domain points associated with an interface tetrahedron attached to the
top of a hexahedron.

1) For each vertex v, let Dv = {v}.

2) For each edge e, let D◦
d,e be the set of d−1 equally spaced points in the interior

of e.

3) For each triangular face F of an ordinary tetrahedron T , let D◦
d,F be the set

of
(
d−1
2

)
domain points in Dd,T lying in the interior of F .

4) For each face F shared by an interface tetrahedron T̃ with another interface
tetrahedron, let D◦

2d,F be the set of
(
2d−1

2

)
domain points in D

2d,T̃
lying in the

interior of F .

5) For each bilinear face R of a hexahedron, let D◦
d,R be the set of (d−1)2 domain

points in Dd,H lying in the interior of R.

6) For each ordinary tetrahedron T , let D◦
d,T be the set of domain points in Dd,T

that lie in the interior of T .

7) For each interface tetrahedron T̃ , let D◦

2d,T̃
be the set of

(
2d−1

3

)
domain points

in D
2d,T̃

that lie in the interior of T̃ .

8) For each hexahedron H, let D◦
d,H be the set of (d− 1)3 domain points of Dd,H

that lie in the interior of H.

The superscript circles in this notation are to remind us that the points in the
corresponding sets are in the interiors of the indicated domains.

To help understand where these points lie, in Fig. 3 we show an interface tetra-
hedron T̃ joined to the top of a hexahedron H. For d = 2, there are nine domain

13



points lying on the top face of the hexahedron: these are shown as blue dots, and
belong to Dd,H . Assuming this configuration is connected to an ordinary tetrahe-
dron on the left and on the back, we can think of the six blue dots on the left and
back triangular faces as belonging to sets of the form Dd,T . For the curved face
F of this interface tetrahedron, there are three points in the set D◦

2d,F – these are
shown as red diamonds. Finally, there is one point in the set D◦

2d,T̃
– it is also

shown as a red diamond. Four red networks in the interface tetrahedron indicate
the positions of the domain points in D

2d,T̃
.

Let V and E be the sets of vertices and edges of △. In addition, let FO be
the set of faces of ordinary tetrahedra, and let FI be the set of faces shared by two
interface tetrahedra. Let FR be the set of all bilinear faces of △. Finally, let H, TO,
and TI be the sets of all hexahedra, ordinary tetrahedra, and interface tetrahedra
of △R, respectively. We now define

Dd,△ :=
⋃

v∈V

Dv ∪
⋃

e∈E

D◦
d,e ∪

⋃

F∈FO

D◦
d,F ∪

⋃

F∈FI

D◦
2d,F ∪

⋃

R∈FR

D◦
d,R

∪
⋃

T∈TO

D◦
d,T ∪

⋃

T̃∈TI

D◦

2d,T̃
∪

⋃

H∈H

D◦
d,H .

(5.1)

The sets in (5.1) are pairwise disjoint. We can also write

Dd,△ =
⋃

F∈FI

D◦
2d,F ∪

⋃

T∈TO

Dd,T ∪
⋃

T̃∈TI

D◦

2d,T̃
∪

⋃

H∈H

Dd,H , (5.2)

with the proviso that repeated points should be identified as a single point in the
set.

We now describe how to parametrize a spline s ∈ S0
d(△) in terms of the

coefficients of the expansions of Sect 4. The following definitions follow standard
spline usage, see [21].

Definition 5.1. For each point ξ ∈ Dd,△, pick some element E ∈ △R containing
ξ, and let cξ be the coefficient associated with the domain point ξ in the shape-
function expansion of s on E. Then we call {cξ}ξ∈Dd,△

the set of B-coefficients of
s. A set M ⊆ Dd,△ is called a determining set for S0

d(△) provided that if we set
cξ = 0 for all ξ ∈ M, then s ≡ 0. Moreover, if M is a smallest such set, it is called
a minimal determining set for S0

d(△).

The minimal determining set is important in practical finite element analysis
because it may be identified with the global degrees of freedom in the finite element
space.

Theorem 5.2. The set M := Dd,△R
is a determining set for S0

d(△).

Proof: Let s ∈ S0
d(△), and suppose we assign a value of zero to all of the B-

coefficients associated with domain points in M. Let H be a hexahedron. Then

14



since M contains Dd,H , it is clear that s|H ≡ 0. Similarly, if T is an ordinary
tetrahedron, then since M contains Dd,T , s|T ≡ 0. Now consider an interface

tetrahedron T̃ . We already know that s vanishes on the triangular faces of T̃
where T̃ joins an ordinary tetrahedron. It also vanishes on the face that lies in
a neighboring hexahedron. Now if F is the Bézier patch forming the boundary
between T̃ and another interface tetrahedron, then M contains D2d,F , and so s

also vanishes on this patch. We can now conclude that s also vanishes on all of T̃
since D

d,T̃
⊂ M.

Theorem 5.3. The set M is a minimal determining set for S0
d(△).

Proof: We show that the set M is consistent in the sense of Definition 5.14 of [21],
i.e., if we fix the coefficients {cξ}ξ∈M, then all pieces of s are uniquely determined
and join together with C0 continuity. Suppose H is a hexahedron. Then since we
have set the coefficients associated with all of the domain points at the vertices,
edges, and faces of H, as well as those in the set D◦

d,H , it follows that s is uniquely
defined on H by the expansion in (4.9). Similarly, if T is an ordinary tetrahedron,
then since we have set the coefficients corresponding to all of the domain points in
T , we see that s is uniquely defined on T by the expansion (4.7).

Suppose now that T̃ is an interface tetrahedron, and let F be a triangular
face of T̃ shared with an ordinary tetrahedron T . Then we have already set the
coefficients of s corresponding to domain points in Dd,T ∩ F . But using degree
raising, this uniquely determines the coefficients of s corresponding to the domain
points in D

2d,T̃
∩F , and by C0 continuity these values are consistent. Now suppose

F is the face of T̃ which lies on the face R of a hexahedron H. We already know
the coefficients of the bivariate d × d tensor-product polynomial s|R ◦ φ−1

H . Using
Lemma 7.2 below, these can be uniquely expressed as coefficients of a polynomial
of total degree 2d, and so the coefficients of s

T̃
associated with F are determined

by C0 continuity. We have shown that all B-coefficients of s|
T̃

are consistently
determined.

§6. A dimension formula and a basis for S0
d(△)

Our next result gives a formula for the dimension of the finite element space S0
d(△)

in terms of the following combinatorial quantities associated with the partition:

nV := number of vertices,

nE := number of edges,

nT := number of ordinary tetrahedra,

nP := number of pyramids,

nH := number of hexahedra.

15



Theorem 6.1. For any d ≥ 1,

nd := dimS0
d(△) = nV + (d− 1)nE +

[
4

(
d− 1

2

)
+

(
d− 1

3

)]
nT

+
[(2d− 1

2

)
+ 2

(
2d− 1

3

)]
nP +

[
6(d− 1)2 + (d− 1)3

]
nH .

(6.1)

Proof: The fact that M is a minimal determining set for S0
d(△) implies that

dimS0
d(△) = #M, which is easily seen to be given by the formula in (6.1).

We now describe a basis for S0
d(△) that is suitable for the finite element imple-

mentation. For any domain point ξ ∈ M and any spline s ∈ S0
d(△), let λξs = cξ,

where cξ is the B-coefficient of s associated with ξ. Then it follows from the fact
that M is a minimal determining set that for each ξ ∈ M, there exists a unique
spline ψξ ∈ S0

d(△) such that

ληψξ = δξ,η, all η ∈ M. (6.2)

This expression is reminiscent of the Lagrange bases commonly used in low order
finite element approximations. Indeed, one will not go far wrong in thinking of
the Bernstein-Bézier basis in this fashion, but it is important to realize that the
B-coefficients do not correspond to the values of the function at the corresponding
domain points.

Theorem 6.2. The set Ψ := {ψξ}ξ∈M is a basis for S0
d(△). Moreover, for each

ξ ∈ M, the support of ψξ is given by

σ(ψξ) = the union of all of the elements of △ that contain the point ξ.

Proof: The splines in Ψ are clearly linearly independent in view of the dual prop-
erty (6.2). Now if Ωk is a hexahedron or ordinary tetrahedron that does not contain
ξ, then all of its coefficients must be zero, and so ψξ|Ωk

≡ 0. If Ωk is an interface
tetrahedron which is not part of a pyramid containing ξ, then ψξ|Ωk

≡ 0. This
establishes the result on the supports.

The basis functions in this theorem all have small supports, which ensures that
the standard finite element sub-assembly procedures remain efficient. For example
if ξ is at a vertex of △, the support of ψξ is just the collection of elements sharing
that vertex. Similarly, if ξ lies in the interior of an edge e of △, we get the collection
of elements sharing that edge. If ξ lies in the interior of a face shared by a pair
of elements, the support is just the set obtained by taking the union of those two
elements. Finally, if ξ is in the interior of a hexahedron, an ordinary tetrahedron
or a pyramid, the support is just that single element of △.

Note that the domain points in Dd,T for an ordinary tetrahedron T , D2d,T for
an interface tetrahedron T , or Dd,H for a hexahedron H can be identified with the
local degrees of freedom of the corresponding element. The set M can be identified
with the global degrees of freedom of S0

d(△).

16



§7. Computing with Bernstein basis polynomials

We now turn to the issue of how the basis developed in the previous section lends
itself to effective algorithms for the computation of the various entities needed for
the finite element analysis. We shall be particularly interested in the dependence
of the complexity estimates on the polynomial degree d.

7.1. Degree raising

One attractive property of the Bernstein-Bézier basis is a simple formula for ex-
pressing a polynomial of degree d as a combination of Bernstein polynomials of
degree d+ 1, a process known as degree raising in the spline literature.

Lemma 7.1. Let F be a triangle, and suppose p is a bivariate polynomial of degree
d with B-coefficients {cijk}i+j+k=d. Then p can be rewritten as

p =
∑

(i,j,k)∈Id+1
2

c̃ijkB
d+1,F
ijk ,

where

c̃ijk =
ici−1,j,k + jci,j−1,k + kci,j,k−1

d+ 1
, (i, j, k) ∈ Id+1

2 . (7.1)

For a proof, see Sect. 2.15 of [21]. This result can be interpreted in terms
of matrix multiplication. Suppose we insert the B-coefficients cijk and c̃ijk in the
above lemma into vectors c of length n and c̃ of length ñ, using the lexicographical
order. Then there exists a

(
d+3
2

)
×

(
d+2
2

)
matrix Rd,d+1 such that

c̃ = Rd,d+1c.

This matrix is sparse since each row contains just three entries corresponding to
the factors appearing in (7.1). For example, in the lowest order case,

R1,2 :=




1 0 0
.5 .5 0
.5 0 .5
0 1 0
0 .5 .5
0 0 1



.

More generally, one can apply degree raising to a polynomial of degree n to
any higher degree m through a succession of single degree raises, corresponding to
multiplication by the matrix

Rn,m := Rm−1,m · · ·Rn,n+1. (7.2)

17



It is straightforward to precompute and store Rn,m, see Remark 12, so that
c̃ = Rn,mc can be computed from c by matrix multiplication. However, a simple
count shows that for large m − n it is more efficient to compute c̃ by repeated
use of the formula (7.1), or equivalently by repeated multiplications by the sparse
matrices Ri,i+1 appearing in (7.2). Indeed, we note that the number of nonzeros in
any row of Rn,n+ℓ is equal to #Iℓ

2, which is three in the case ℓ = 1 corresponding
to a single step of degree raising by one. The sparse matrix-vector multiplication
Rn,n+ℓc costs

#In
2 ·#Iℓ

2 =

(
n+ 2

2

)(
ℓ+ 2

2

)
=

1

4
n2ℓ2 +

3

4
(n2ℓ+ nℓ2) +O(n2 + nℓ+ ℓ2)

floating point operations (counting only multiplications) if done directly. However,
it is performed more efficiently for large ℓ if replaced by ℓ multiplications by the
sparse matrices Ri,i+1, i = n, . . . , n + ℓ − 1, that is by the step-by-step degree
raising, with total cost

3
n+ℓ∑

i=n+1

(
i+ 2

2

)
= 3

(
n+ ℓ+ 3

3

)
− 3

(
n+ 3

3

)

=
1

2
ℓ[(n+ ℓ+ 2)(n+ ℓ+ 3) + (n+ 1)(2n+ ℓ+ 5)]

=
1

2
ℓ(3n2 + 3nℓ+ ℓ2) +O(n2 + nℓ+ ℓ2).

The same count applies to (Rn,n+ℓ)tc computed as (Rn,n+1)t · · · (Rn+ℓ−1,n+ℓ)tc.
For present purposes, we need to degree raise a polynomial written as a com-

bination of Bernstein polynomials of degree d relative to a face F of an ordinary
tetrahedron, to obtain its coefficients as a combination of Bernstein polynomials
B2d,F

ijk of degree 2d relative to F considered as a face of a neighboring interface

tetrahedron T̃ :

Lemma 7.2. Let T be an ordinary tetrahedron that shares a triangular face F with
an interface tetrahedron T̃ . Suppose we insert the B-coefficients of s corresponding
to the domain points in Dd,F = Dd,T ∩ F into a vector c := (c1, . . . , cn), where

n :=
(
d+2
2

)
. Let c̃ := (c̃1, . . . , c̃ñ) with ñ :=

(
2d+2

2

)
be the coefficients of s|

T̃
∈ P2d

corresponding to domain points in D2d,F = D
2d,T̃

∩ F . Then there exists an ñ× n

matrix Ud such that
c̃ = Ud c. (7.3)

Proof: The matrix Ud can be obtained from Rd,2d after permuting its rows and
columns to take account of the ordering of the coefficients.

It follows from the above that if we multiply the matrix Ud or (Ud)
t directly

with a vector, then the cost is 1
4
d4+ 3

2
d3+O(d2) operations. If we instead perform

step-by-step degree raising, then the cost is 7
2d

3+O(d2). A more precise operation
count shows that the break even point occurs when d = 10.

18



7.2. Conversion from tensor-product to total degree form

We also need to express a tensor-product polynomial of degree d associated with a
bilinear face R of a hexagon as a combination of the Bernstein polynomials of degree
2d associated with the bottom face F of an interface tetrahedron. The following
lemma can be used for this conversion, compare [16]. Suppose Bk,s

ij are the tensor-

product Bernstein basis polynomials on [0, 1]2, see (4.4), and let Bm
µ := Bm,F0

µ ,
µ = (µ1, µ2, µ3) ∈ Im

2 be the bivariate Bernstein basis polynomials defined by (4.2)
on the triangle F0 with vertices at (1, 0), (0, 1), (0, 0).

Lemma 7.3. For any positive integers k, s and any set of B-coefficients {cij},

k∑

i=0

s∑

j=0

cijB
k,s
ij =

∑

µ∈Ik+s
2

c̃µB
k+s,F0
µ ,

where

c̃µ =
∑

κ∈Ik
2

κ≤µ

(
µ
κ

)
(
k+s
k

)cκ1,µ2−κ2
, µ ∈ Ik+s

2 . (7.4)

Proof: We have

Bk,s
ij (λ) = Bk,I

i,k−i(λ1)B
s,I
j,s−j(λ2) =

∑

κ∈Ik
2

κ1=i

Bk,F0
κ (λ)

∑

σ∈Is
2

σ2=j

Bs,F0
σ (λ).

Using the product formula

Bn,F
ν Bm,F

µ =

(
ν+µ
ν

)
(
n+m
n

)Bn+m,F
ν+µ , ν ∈ In

2 , µ ∈ Im
2 , F any triangle, (7.5)

we get

Bk,s
ij =

∑

κ∈Ik
2
, σ∈Is

2
κ1=i, σ2=j

(
κ+σ
κ

)
(
k+s
k

)Bk+s,F0
κ+σ ,

compare [16]. This leads to

k∑

i=0

s∑

j=0

cijB
k,s
ij =

∑

κ∈Ik
2 , σ∈Is

2

cκ1,σ2

(
κ+σ
κ

)
(
k+s
k

)Bk+s,F0

κ+σ ,

which implies (7.4).

The conversion process for computing c̃ = (c̃µ)µ∈Ik+s
2

from c = (cij)
k,s
i,j=0 in

this lemma can be written in terms of matrix multiplication as

c̃ = T k,sc,

19



where

T k,s
µ,(ij) =

{
Mk,s

κ,µ−κ, if κ ≤ µ, where κ = (i, µ2 − j, k − i− µ2 + j),
0, otherwise,

and Mk,s is the trinomial matrix whose elements are

Mk,s
α,β :=

(
α+β
α

)
(
k+s
k

) α ∈ Ik
2 , β ∈ Is

2 , (7.6)

see Algorithm 5 of [3]. Note that the condition (i, µ2 − j, k − i − µ2 + j) ≤ µ is
equivalent to

i ≤ µ1 ≤ i+ (s− j),

j ≤ µ2 ≤ j + (k − i).

By the proof of Theorem 3 of [3], the cost of Algorithm 5 of that paper for finding
Mk,s is

(k + 1)(s+ 1) + 2

(
k + 2

2

)(
s+ 2

2

)
= O(k2s2).

Hence, by computing and storing Mk,s
κ,σ as the (κ + σ, (κ1, σ2))-th entry of

T k,s, for all κ ∈ Ik
2 , σ ∈ Is

2 , we get an O(k2s2) algorithm for computing T k,s

without storing Mk,s. Since the number of nonzero entries in the column of T k,s

corresponding to the pair (i, j) is (s− j+1)(k− i+1), the total number of nonzero
entries in T k,s is

(
k+2
2

)(
s+2
2

)
= O(k2s2).

As an example, we give the matrix T 1,1 for converting from a bilinear tensor-
product polynomial on the square [0, 1]2 to a bivariate polynomial of degree two on
the triangle F0 with vertices (1, 0), (0, 1), (0, 0):

T 1,1 =




0 0 1 0
.5 0 0 .5
.5 0 .5 0
0 1 0 0
.5 .5 0 0
1 0 0 0



,

where the rows correspond to B2,F0

200 , B2,F0

110 , B2,F0

101 , B2,F0

020 , B2,F0

011 , B2,F0

002 , and the
columns to B1,1

00 , B1,1
01 , B1,1

10 , B1,1
11 . This can be easily checked either directly or by

the above formulae using

M1,1 =




1 .5 .5
.5 1 .5
.5 .5 1


 .

Lemma 7.4. Let H be a hexahedron that shares a face F with an interface tetra-
hedron T̃ . Suppose we insert the B-coefficients of the tensor-product polynomial

20



s|H ◦ φH ∈ Qd corresponding to the domain points in Dd,H lying in the face R of
H containing F into a vector c := (c1, . . . , cn), where n := (d + 1)2. Similarly, let
c̃ := (c̃1, . . . , c̃ñ) with ñ :=

(
2d+2

2

)
be the coefficients of the polynomial s|

T̃
◦φ

T̃
∈ P2d

corresponding to domain points in Dd,F = D
d,T̃

∩ F . Then there exists a ñ × n

matrix Wd such that
c̃ =Wd c. (7.7)

Proof: We can take Wd to be a permuted version of T d,d, where the permutation
depends on the ordering of the components of c and c̃.

This lemma involves converting a tensor-product polynomial of degree (d, d)
to a total degree polynomial of degree 2d. Since the sparse matrix Wd in (7.7) has
at most O(d4) nonzero entries, this requires O(d4) operations. The same operation
count obviously applies to the multiplication of (Wd)

t with a vector.

7.3. Bernstein-Bézier moments

As with any projection method, the finite element method requires the computation
of moments of the data against the basis functions. Given a function f , its Bernstein-
Bézier (BB) moments [3] are defined as

µd
ν(f, T ) =

∫

T

Bd,T
ν (x)f(x) dx, ν ∈ Id

3 ,

for any tetrahedron T , and as

µ(n,m,ℓ)
ν (f,H0) =

∫

H0

Bn,m,ℓ
ν (x)f(x) dx, ν ∈ J (n,m,ℓ)

3 ,

for the unit cube H0 = [0, 1]3.
Algorithms proposed in [3] (see Corollary 2 there) allow the computation of

the arrays {µd
ν(f, T )}ν∈Id

3
with O(d4) floating point operations, that is with O(d)

cost per entry. According to Theorem 6 of [3], the cost of computing the array

{µ
(n,m,ℓ)
ν (f,H0)}ν∈J

(n,m,ℓ)
3

is O(n2mℓ+ nm2ℓ+ nmℓ2).

§8. Use of S0
d(△) in the FEM

The space S0
d(△) can be used for finite element analysis in the standard way,

which entails that the mass, stiffness matrices etc. of the basis functions ψξ of
Sect. 6 have to be computed, along with the corresponding load vector. The local
support property of the Bernstein polynomial shape functions means that the finite
element sub-assembly procedure can be applied, see e.g. [26,27]. The foregoing
properties might be regarded as a basic minimum for a basis. However, a crucial
advantage of the Bernstein shape functions, in comparison to the shape functions
of Lagrange or orthogonal polynomial type (see e.g. [18]), is the availability of
optimal algorithms for the assembly of the element level system matrices [3]. The

21



resulting approximating spline s is represented in the computer by simply storing
its B-coefficients on all elements of △R. This means that the evaluation of s, or its
partial derivatives, can be efficiently performed using the well-known deCasteljau
algorithm, see e.g. [21]. In particular, we can efficiently compute the gradient of s
by using sparse formulae for the gradients of Bernstein polynomials, see (8.9) and
(8.10) below.

8.1. Global-Local transformation

An important tool for the finite element implementation is that if c is the global
vector of all B-coefficients of a spline s ∈ S0

d(△) corresponding to the domain points
in M, and ĉ is the vector of coefficients of the shape functions associated with the
individual elements of △R, then there exists an n̂× nd matrix A such that

ĉ = Ac,

where nd = dimS0
d(△) and n̂ is the sum of the number of local degrees of freedom

in each element ignoring the continuity constraints between neighbouring elements:

n̂ :=

(
d+ 3

3

)
nT + 2

(
2d+ 3

3

)
nP + (d+ 1)3nH .

The matrix A is called the global-local transformation matrix. The columns of
A consist of the coefficients of the restrictions of the basis functions {ψξ}ξ∈M to
the elements of △R, expanded into linear combinations of the shape functions.

In practice, the full matrix A is never constructed explicitly thanks to the block
structure

A =



A(1)

...
A(N)


 .

where N is the number of elements and each block A(k) corresponds to the degrees
of freedom in an individual element Ωk. For instance, each block corresponding
to a hexahedron H will have #Dd,H = (d + 1)3 rows; blocks corresponding to an

ordinary tetrahedron will have #Dd,T =
(
d+3
3

)
rows; and blocks corresponding to

an interface tetrahedron T̃ will have #D
2d,T̃

=
(
2d+3

3

)
rows.

For a partition comprising of purely tetrahedra or hexahedra, the blocks A(k)

are Boolean matrices (composed of 0’s and 1’s). However, the presence of pyra-
midal elements, and the attendant splitting into interface tetrahedra, means that
the corresponding blocks are no longer Boolean. Nevertheless, it is not difficult
to assemble the matrix A (and hence the individual blocks) using the following
algorithm.

Algorithm 8.1. Assembly of the transformation matrix A.

1) Initialize A as an n̂× nd zero matrix.

22



2) For each column corresponding to a point ξ ∈ M, insert 1 in that column in
all rows corresponding to ξ.

3) For each face F shared by an ordinary tetrahedron T ∈ TO and an interface

tetrahedron T̃ ∈ TI , write the entries of the matrix Ud appearing in (7.3)
into the rows of A corresponding to D

2d,T̃
∩ F and columns corresponding to

M∩ F = Dd,T ∩ F .

4) For each face F shared by a hexahedron H ∈ H and an interface tetrahedron

T̃ ∈ TI , write the entries of the matrixWd appearing in (7.7) into the rows of A
corresponding to D

2d,T̃
∩F and columns corresponding to M∩R = Dd,H ∩R,

where R is the face of H containing F .

We reiterate that the explicit evaluation and storage of A is generally avoided,
see Algorithms 8.2 and 8.3 below. However, for expository purposes, we shall
discuss the full matrix A with understanding that, in the actual code, the matrix
is treated blockwise.

A basic operation used in the finite element analysis using our spline space
is the the computation of matrix vector products of the A and its transpose: Ac
and Atĉ. These can be accomplished directly without assembling the full matrix

A as follows. We split the vector ĉ into blocks ĉ(k) = {ĉ(k)ξ }ξ∈DΩk
, k = 1, . . . , N ,

corresponding to the elements Ωk of △R, with a local indexing within these blocks
by the domain points with

DΩk
:=

{
Dd,Ωk

if Ωk is either a hexahedron or an ordinary tetrahedron,

D2d,Ωk
if Ωk is an interface tetrahedron.

For any K ⊆ Ω, let ĉ
(k)
K := {ĉ(k)ξ }ξ∈DΩk

∩K and cK := {cξ}ξ∈M∩K .

Algorithm 8.2. (Computation of ĉ = Ac.) Input: The vector c = {cξ}ξ∈M.

Output: The vector ĉ of length n̂ split into blocks ĉ(k) = {ĉ
(k)
ξ }ξ∈DΩk

, k = 1, . . . , N .

For all k = 1, . . . , N :

1) If Ωk is a hexahedron or an ordinary tetrahedron, set ĉ(k) = cΩk
.

2) If Ωk is an interface tetrahedron:

a) set ĉ
(k)
K = cK , where K is the interior of Ωk;

b) set ĉ
(k)
K = cK , where K is the interior of the face of Ωk shared with another

interface tetrahedron;

c) for the face F of Ωk shared with a hexahedron H, set ĉ
(k)
F = Wd cR, where

R is the face of H containing F , and Wd is the matrix in (7.7);

d) for each face F of Ωk shared with an ordinary tetrahedron, set ĉ
(k)
F =

Ud cF , where Ud is the matrix in (7.3).

The corresponding algorithm for the transpose reads as follows:

23



Algorithm 8.3. (Computation of c = Atĉ.) Input: The vector ĉ of length n̂ split

into blocks ĉ(k) = {ĉ
(k)
ξ }ξ∈DΩk

, k = 1, . . . , N . Output: The vector c = {cξ}ξ∈M.
Initialize c as a zero vector of length nd.

For all k = 1, . . . , N such that ĉ(k) 6= 0:
1) If Ωk is a hexahedron or an ordinary tetrahedron, set cΩk

= cΩk
+ ĉ(k).

2) If Ωk is an interface tetrahedron:

a) set cK = cK + ĉ
(k)
K , where K is the interior of Ωk;

b) set cK = cK + ĉ
(k)
K , where K is the interior of the face of Ωk shared with

another interface tetrahedron;

c) for the face F of Ωk shared with a hexahedron H, set cR = cR +W t
d ĉ

(k)
F ,

where R is the face of H containing F and Wd is the matrix in (7.7);
d) Let F1 and F2 be the two faces of Ωk shared with ordinary tetrahedra.

Let e1 and e2 be the edges they share with H, and let e be the common
edge of F1, F2. Then set

d1) cF1\e1 = cF1\e1 + c̃1, where c̃1 is the vector obtained from U t
dĉ

(k)
F1

by
removing the components corresponding to points in e1, where Ud is
the matrix in (7.3);

d2) cF2\(e∪e2) = cF2\(e∪e2) + c̃2, where c̃2 is the vector obtained from

U t
dĉ

(k)
F2

by removing the components corresponding to points in e∪e2;

It is easy to see that Algorithm 8.2 involves at most O(Nd3) copying operations
and O(nP d

4) floating point operations. The computational cost of Algorithm 8.3
is O(d3(m+mP d)) operations (of which only O(mP d

4) are multiplications), where
m ≤ N is the number of hexahedra and ordinary tetrahedra for which ĉ(k) 6= 0,
and mP ≤ nP is the number of pyramids with ĉ(k) 6= 0.

8.2. Computing the load vector

The load vector L generated by the basis functions {ψξ}ξ∈M, has the components

Lξ =

∫

Ω

ψξ(x)f(x) dx, ξ ∈ M.

To compute it, we observe that

ψξ|Ωk
=

∑

ζ∈DΩk

A
(k)
ζξ ψ

Ωk

ζ , k = 1, . . . , N, (8.1)

where

ψΩk

ζ :=





ψd,T
ζ if Ωk is an ordinary tetrahedron T ∈ TO,

ψ2d,T
ζ if Ωk is an interface tetrahedron T ∈ TI ,

ψd,H
ζ if Ωk is a hexahedron H ∈ H.

24



This implies
L = AtL̂, (8.2)

where the vector L̂ consists of the blocks L̂(k), k = 1, . . . , N , (element level load
vectors) with entries

L̂
(k)
ζ :=

∫

Ωk

ψΩk

ζ (x)f(x) dx, ζ ∈ DΩk
.

Recall that the domain points ζ ∈ DΩk
are indexed by the elements ν of either

Id
3 or J d

3 , where d := (d, d, d). Therefore we also write L̂
(k)
ν := L̂

(k)
ζν

for the sake
of brevity. Using the mappings φT or φH (if needed), we obtain the following
representations for the entries of L̂(k), where in general for any mapping φ, we
write Jφ for its corresponding Jacobian matrix.

Lemma 8.4. (Element level load vectors.)
1) If Ωk is an ordinary tetrahedron T ∈ TO, then

L̂(k)
ν = µd

ν(f, T ), ν ∈ Id
3 .

2) If Ωk is an interface tetrahedron T ∈ TI , then

L̂(k)
ν = µ2d

ν (f(φT ) detJφT
, T0), ν ∈ I2d

3 .

3) If Ωk is a hexahedron H ∈ H, then

L̂(k)
ν = µd

ν (f(φH) detJφH
, H0), ν ∈ J d

3 .

Proof: Consider the case where Ωk is an interface tetrahedron T ∈ TI . Then
∫

T

ψ2d,T
ν (x)f(x) dx =

∫

T0

B2d,T
ν (λ)f(φT (λ)) detJφT

(λ) dλ

= µ2d
ν (f(φT ) detJφT

, T0).

The other cases are similar.

Using this lemma, we can now formulate an algorithm for assembling the load
vector.

Algorithm 8.5. Assembly of the load vector L.
1) Use Lemma 8.4 to compute element level load vectors L̂(k), k = 1, . . . , N , where

the BB-moments are obtained using Algorithm 3 of [3] for both ordinary and
interface tetrahedra, and Theorem 6 of [3] for hexahedra.

2) Compute L according to (8.2), using Algorithm 8.3.

Clearly, the computational cost of the first step of this algorithm is O(Nd4),
and that of the second step isO(d3(N+nP d)), which gives the total cost asO(Nd4),
that is O(d) per component of L.

25



8.3. Computing the mass matrix

The entries of the mass matrix M are given by

Mξζ =

∫

Ω

ψξ(x)ψζ(x)f(x) dx, ξ, ζ ∈ M.

In view of (8.1),
M = AtM̂A, (8.3)

where M̂ is the block-diagonal n̂× n̂ matrix

M̂ = diag(M̂ (1), . . . , M̂ (N)),

whose blocks M̂ (k) are the element level mass matrices with entries

M̂
(k)
ξζ :=

∫

Ωk

ψΩk

ξ (x)ψΩk

ζ (x)f(x) dx, ξ, ζ ∈ DΩk
.

Lemma 8.6. (Element level mass matrices.)
1) If Ωk is an ordinary tetrahedron T ∈ TO, then

M̂ (k)
νκ =

(
ν+κ
ν

)
(
2d
d

) µ2d
ν+κ(f, T ), ν, κ ∈ Id

3 .

2) If Ωk is an interface tetrahedron T ∈ TI , then

M̂ (k)
νκ =

(
ν+κ
ν

)
(
4d
2d

) µ4d
ν+κ(f(φT ) detJφT

, T0), ν, κ ∈ I2d
3 .

3) If Ωk is a hexahedron H ∈ H, then

M̂ (k)
νκ =

(
ν+κ
ν

)(
2ddddddddd−ν−κ

ddddddddd−ν

)

(
2d
d

)3 µ2ddddddddd
ν+κ(f(φH) det JφH

, H0), ν, κ ∈ J ddddddddd
3 .

where we recall that ddddddddd = (d, d, d).

Proof: If Ωk = T ∈ TO or TI , then

M̂ (k)
νκ =

∫

T

Bd
ν(x)B

d
κ(x)f(x) dx, ν, κ ∈ Id

3 ,

or, respectively,

M̂ (k)
νκ =

∫

T0

B2d
ν (λ)B2d

κ (λ)f(φT (λ)) detJφT
(λ) dλ, ν, κ ∈ I2d

3 ,

26



and the statements follow by the product formula

Bn
νB

m
κ =

(
ν+κ
ν

)
(
n+m
n

)Bn+m
ν+κ , ν ∈ In

3 , κ ∈ Im
3 . (8.4)

If Ωk = H ∈ H, then

M̂ (k)
νκ =

∫

H0

Bd

ν (λ)B
d

κ (λ)f(φH(λ)) detJφH
(λ) dλ, ν, κ ∈ J d

3 ,

and we use

Bnnnnnnnnn
νB

mmmmmmmmm
κ =

(
ν+κ
ν

)(
n+mn+mn+mn+mn+mn+mn+mn+mn+m−ν−κ

nnnnnnnnn−ν

)
(
n+mn+mn+mn+mn+mn+mn+mn+mn+m
nnnnnnnnn

) Bn+mn+mn+mn+mn+mn+mn+mn+mn+m
ν+κ , ν ∈ J nnnnnnnnn

3 , κ ∈ Jmmmmmmmmm
3 . (8.5)

For the purpose of efficient implementation we make the following observation.

Lemma 8.7. The formula in part 3 of Lemma 8.6 can be written in the form

M̂ (k)
νκ = σν1,κ1

σν2,κ2
σν3,κ3

µ2ddddddddd
ν+κ(f(φH) detJφH

, H0), ν, κ ∈ J ddddddddd
3 , (8.6)

where ν = (ν1, ν2, ν3), κ = (κ1, κ2, κ3) and

σnm :=

(
n+m
n

)(
2d−n−m

d−n

)
(
2d
d

) , 0 ≤ n,m ≤ d. (8.7)

The matrix σ can be easily precomputed with O(d2) cost. Its d2 storage
requirement is negligible in comparison to the O(d6) storage of M̂ (k) or even the
O(d3) storage requirement of the moments µ2ddddddddd

ν (f(φH) detJφH
, H0). Thus, assuming

that the moment vector is known, M̂ (k) can be computed according to (8.6) with
just three multiplications per entry.

Algorithm 8.8. Assembly of the mass matrix M .
1) For each k = 1, . . . , N :

a) If Ωk is an ordinary tetrahedron T ∈ TO, then use Algorithm 3 of [3] to
compute the BB moments µ2d

ν (f, T ), ν ∈ I2d
3 , and assemble the element

level mass matrix M̂ (k) of Lemma 8.6 using Algorithm 6 of [3].
b) If Ωk is an interface tetrahedron T ∈ TI , then use Algorithm 3 of [3] to

compute the BB moments µ4d
ν (f(φT ) det JφT

, T0), ν ∈ I4d
3 , and assemble

the element level mass matrix M̂ (k) of Lemma 8.6 using Algorithm 6 of
[3].

c) If Ωk is a hexahedron H ∈ H, then use Theorem 6 of [3] to compute the
BB moments µ2ddddddddd

ν (f(φH) det JφH
, H0), ν ∈ J 2d2d2d2d2d2d2d2d2d

3 , and assemble the element

level mass matrix M̂ (k) of Lemma 8.6 using (8.6).

27



2) Compute M̃ := AtM̂ by applying Algorithm 8.3 to the columns of M̂ . Note
that ĉ(k) in the notation of that algorithm can only be nonzero if the current
column of M̂ contains some entry of M̂ (k).

3) Compute M = (AtM̃ t)t, of (8.3) by applying Algorithm 8.3 to the rows of M̃ .
The vector ĉ(k) can be nonzero only if the current row of M̃ corresponds to a
domain point ξ in Ωk if Ωk is either a hexahedron or an ordinary tetrahedron,
or in Ωk∪R if Ωk is an interface tetrahedron and R is the face of the hexahedron
containing a face of Ωk.

The computational cost of the first step is O(Nd4) for the computation of
the moment vectors, and O(Nd6) for the element level mass matrices. The second
and third steps involve O(d7nP ) multiplications and O(d6(N + nPd)) additions. If
nPd = O(N), then the overall cost is optimal because the sparse matrix M has
O(Nd6) entries. The storage requirement is O(Nd6) for all element level mass
matrices, and O(Nd6) for the sparse matrices M̃ and M . The moments need to be
stored temporarily in Step 1, but this requires only O(d3) storage space.

8.4. Computing the stiffness matrix

The entries of the stiffness matrix S are given by

Sξζ =

∫

Ω

∇tψξ(x)F (x)∇ψζ(x) dx, ξ, ζ ∈ M,

where F : Ω → IR3×3 is a given matrix function and ∇ (∇t) is the column (row)
gradient operator. Hence

S = AtŜA, (8.8)

where Ŝ is the block-diagonal n̂× n̂ matrix Ŝ = diag(Ŝ(1), . . . , Ŝ(N)), whose blocks
Ŝ(k) are the element level stiffness matrices with entries

Ŝ
(k)
ξζ =

∫

Ωk

∇tψΩk

ξ (x)F (x)∇ψΩk

ζ (x) dx, ξ, ζ ∈ DΩk
.

Lemma 8.9. (Element level stiffness matrices.)
1) If Ωk is an ordinary tetrahedron T ∈ TO, then

Ŝ(k)
νκ = d2

4∑

i,j=1

(
ν−ei+κ−ej

ν

)
(
2d−2
d−1

) ∇tλTi µ
2d−2
ν−ei+κ−ej

(F, T )∇λTj , ν, κ ∈ Id
3 ,

where ei is the i-th unit vector in IR4, and λTi is the i-th barycentric coordinate
of x w.r.t. T . Here we adopt the usual convention whereby the terms with µn

ξ

for which ξ /∈ In
3 are ignored in the sum.

2) If Ωk is an interface tetrahedron T ∈ TI , then

Ŝ(k)
νκ = 4d2

4∑

i,j=1

(
ν−ei+κ−ej

ν

)
(
4d−2
d−1

) ∇tλT0
i µ4d−2

ν−ei+κ−ej
(F̃T , T0)∇λ

T0
j , ν, κ ∈ I2d

3 ,

28



with
F̃T := J−1

φT
F (φT )J

−t
φT

det JφT
,

where J−t denotes the transpose of the inverse matrix of J , and ∇tλT0
1 =

(1, 0, 0), ∇tλT0
2 = (0, 1, 0), ∇tλT0

3 = (0, 0, 1), ∇tλT0
4 = (−1,−1,−1).

3) If Ωk is a hexahedron H ∈ H, then for ν, κ ∈ J ddddddddd
3 ,

Ŝ(k)
νκ = d2

3∑

i,j=1

[(ν−ei+κ−ej
ν−ei

)(
2ddddddddd−ν−κ

ddddddddd−ν

)
(
2ddddddddd−ei−ej

ddddddddd−ei

) µ
2ddddddddd−ei−ej
ν−ei+κ−ej

(F̃H
ij , H0)

−

(
ν−ei+κ
ν−ei

)(
2ddddddddd−ν−κ−ej

ddddddddd−ν

)
(
2ddddddddd−ei−ej

ddddddddd−ei

) µ
2ddddddddd−ei−ej
ν−ei+κ (F̃H

ij , H0)

−

(
ν+κ−ej

ν

)(
2ddddddddd−ν−ei−κ

ddddddddd−ν−ei

)
(
2ddddddddd−ei−ej

ddddddddd−ei

) µ
2ddddddddd−ei−ej
ν+κ−ej

(F̃H
ij , H0)

+

(
ν+κ
ν

)(
2ddddddddd−ν−ei−κ−ej

ddddddddd−ν−ei

)
(
2ddddddddd−ei−ej

ddddddddd−ei

) µ
2ddddddddd−ei−ej
ν+κ (F̃H

ij , H0)
]
,

where
F̃H := J−1

φH
F (φH)J−t

φH
det JφH

,

and ei is the i-th unit vector in IR3.

Proof: If Ωk = T ∈ TO, then

Ŝ(k)
νκ =

∫

T

∇tBd
ν(x)F (x)∇B

d
κ(x) dx, ν, κ ∈ Id

3 ,

and if T ∈ TI , then

Ŝ(k)
νκ =

∫

T0

∇tB2d
ν (λ)F̃T (λ)∇B2d

κ (λ) dλ, ν, κ ∈ I2d
3 .

The statements of the theorem follow by (8.4) in view of the gradient formula

∇Bd,T
ν (x) = d

4∑

i=1

Bd−1,T
ν−ei (x)∇λTi , (8.9)

compare equation (44) of [3].
If Ωk = H ∈ H, then

Ŝ(k)
νκ =

∫

H0

∇tBd

ν (λ)F̃
H(λ)∇Bd

κ (λ) dλ, ν, κ ∈ J d
3 ,

and we use (8.5) and

∇Bd

ν (λ) = d
3∑

i=1

(
Bd−ei

ν−ei
(λ)−Bd−ei

ν (λ)
)
ei. (8.10)

For the purposes of an efficient implementation, we make the following obser-
vation.

29



Lemma 8.10. The formula in part 3 of Lemma 8.9 can be rewritten as

Ŝ(k)
νκ = 2dσν1,κ1

σν2,κ2
σν3,κ3

3∑

i,j=1

[
αijµ

2ddddddddd−ei−ej
ν−ei+κ−ej

(F̃H
ij , H0)− βijµ

2ddddddddd−ei−ej
ν−ei+κ (F̃H

ij , H0)

− γijµ
2ddddddddd−ei−ej
ν+κ−ej

(F̃H
ij , H0) + δijµ

2ddddddddd−ei−ej
ν+κ (F̃H

ij , H0)
]
,

where ν = (ν1, ν2, ν3), κ = (κ1, κ2, κ3), σ is given by (8.7),

αij =
2dνiκj

(νi+κi)(νj+κj)
, βij =

2dνi(d−κj )

(νi+κi)(2d−νj−κj)
,

γij =
2d(d−νi)κj

(2d−νi−κi)(νj+κj)
, δij =

2d(d−νi)(d−κj )

(2d−νi−κi)(2d−νj−κj)
,

if i 6= j, and

αii =
(2d−1)νiκi

(νi+κi)(νi+κi−1)
, βii =

(2d−1)νi(d−κi)
(νi+κi)(2d−νi−κi)

,

γii =
(2d−1)(d−νi)κi

(2d−νi−κi)(νi+κi)
, δii =

(2d−1)(d−νi)(d−κi)
(2d−νi−κi)(2d−νi−κi−1)

.

Assuming that the moment vectors are known, Ŝ(k) can be computed in the
above form with O(1) floating point operations per entry.

Algorithm 8.11. Assembly of the stiffness matrix S.
1) For each k = 1, . . . , N :

a) If Ωk is an ordinary tetrahedron T ∈ TO, then use Algorithm 3 of [3]
to compute the BB moments µ2d−2

ν (F, T ), ν ∈ I2d−2
3 , and assemble the

element level stiffness matrix Ŝ(k) of Lemma 8.9 using Algorithm 6 of [3].
b) If Ωk is an interface tetrahedron T ∈ TI , then use Algorithm 3 of [3] to

compute the BB moments µ4d−2
ν (F̃T , T0), ν ∈ I4d−2

3 , and assemble the

element level stiffness matrix Ŝ(k) of Lemma 8.9 using Algorithm 6 of [3].
c) If Ωk is a hexahedron H ∈ H, then for all i, j ∈ {1, 2, 3} use Theorem 6 of

[3] to compute the BB moments

µ2ddddddddd−ei−ej
ν (F̃H

ij , H0), ν ∈ J
2d2d2d2d2d2d2d2d2d−ei−ej
3 ,

and assemble the element level stiffness matrix Ŝ(k) of Lemma 8.9 using
Lemma 8.10.

2) Compute S̃ := AtŜ by applying Algorithm 8.3 to the columns of Ŝ. The vector
ĉ(k) in the notation of that algorithm can only be nonzero if the current column
of Ŝ contains any entries of Ŝ(k).

3) Compute S = (AtS̃t)t, according to (8.8), by applying Algorithm 8.3 to the
rows of S̃. The vector ĉ(k) can be nonzero only if the current row of S̃ cor-
responds to a domain point ξ in Ωk when Ωk is either a hexahedron or an

30



ordinary tetrahedron, or in Ωk ∪ R when it is an interface tetrahedron and R
is the face of the hexahedron containing a face of Ωk.

The computational and storage cost of the assembling the stiffness matrix is
O(d6(N + nPd)), that is O(1) per nonzero entry if nPd = O(N). This can be
seen in the same way as for the mass matrix in Section 8.4. For a discussion of
assembling stiffness matrices one element at a time, see [26,27].

8.5. Matrix free finite element implementation via BB moments

Iterative methods, such as the conjugate gradient method do not require computa-
tion and storage of the system matrices if the matrix-vector multiplication can be
implemented without doing so. As pointed out in Sect. 4.4 of [3], this also amounts
to the computation of BB moments. Indeed, let the current iterate u be expressed
as a linear combination of the basis functions ψξ of S0

d(△),

u =
∑

ξ∈M

cξψξ.

Then, for example, the product Sc of the stiffness matrix S with the coefficient
vector c is given by

Sc = AtŜAc.

Splitting the vector ĉ = Ac of length n̂ into blocks ĉ(k) = {ĉ
(k)
ξ }ξ∈DΩk

, k = 1, . . . , N ,
we obtain

c̃ := Ŝĉ,

where c̃ consists of the blocks c̃(k) = Ŝ(k)ĉ(k), k = 1, . . . , N . With

u(k) :=
∑

ξ∈DΩk

ĉ
(k)
ξ ψΩk

ξ , k = 1, . . . , N,

we get for all ξ ∈ DΩk

(Ŝ(k)ĉ(k))ξ =

∫

Ωk

∇tψΩk

ξ (x)F (x)∇u(k)(x) dx,

which, with the help of the gradient formulae (8.9) and (8.10), can be easily ex-
pressed in terms of several moments of the following types:

µd−1
ν (F∇u(k), T ), ν ∈ Id−1

3 , if Ωk = T ∈ TO,

µ2d−1
ν (F̃T∇{u(k)(φT )}, T0), ν ∈ I2d−1

3 , if Ωk = T ∈ TI ,

µddddddddd−ei
ν (F̃H∇{u(k)(φH)}, H0), ν ∈ J ddddddddd−ei

3 , i = 1, 2, 3, if Ωk = H ∈ H.

Note that the values of the vector-polynomials ∇u(k) or ∇{u(k)(φT )} at the Stroud
points in T or T0, respectively, as needed for the above moment computations, can
be efficiently computed with the help of Algorithm 1 of [3] in O(d4) operations.
The same count applies to the evaluation of ∇{u(k)(φH)} at the tensor-product
Gauss points in H0 performed by the analogous (and simpler) method. Since the
moments themselves require O(d4) operations, we arrive at a total cost of O(Nd4)
for the computation of the product Ŝĉ. Finally, Sc is computed as the product Atc̃.
We summarize the computation of Sc in the following algorithm.

31



Algorithm 8.12. Matrix-vector product Sc.

1) Use Algorithm 8.2 to compute ĉ = Ac.

2) Compute c̃ = Ŝĉ as described above.

3) Compute Sc = Atc̃ using Algorithm 8.3.

By taking into account the discussion of the cost of Algorithms 8.2 and 8.3 at
the end of Section 8.1, we see that the total cost of Algorithm 8.12 is O(Nd4), and
its storage requirement is O(Nd3).

We refer the reader to Section 3.4 of [3] for information on how Bernstein-Bézier
moments can be used for solving non-linear equations.

§9. A nodal minimal determining set for S0
d(△)

Let
N := {γξ}ξ∈Dd,△

,

where Dd,△ is the set of domain points described in (5.1), and where γt is the linear
functional that produces the value of a function at the point t, that is γtf = f(t) .

Theorem 9.1. The set N is a nodal minimal determining set for S0
d(△), and in

particular, for any function f ∈ C(Ω), there exists a unique s ∈ S0
d(△) such that

γξs = γξf, all ξ ∈ Dd,△.

Proof: If H is a hexahedron, then we can find a tensor-product polynomial p ∈
Qd that interpolates the values f(ξ), ξ ∈ Dd,H , at the (d + 1)3 domain points
φ−1
H (ξ) ∈ Dd,H0

. This determines the B-coefficients of s|H = p ◦ φ−1
H . Similarly, for

each ordinary tetrahedron T , we can find a polynomial p ∈ Pd that interpolates
f at the

(
d+3
3

)
domain points in T . This determines the B-coefficients of s|T , see

Theorem 5.38 in [21]. Now suppose T is an interface tetrahedron. If Fi, i = 1, 2,
is a face of T shared with an ordinary tetrahedron Ti, then we get all coefficients
of a bivariate polynomial pi of total degree 2d by Lemma 7.2, and evaluate it at
all domain points in D2d,Fi

. Similarly, for the face F3 shared with a hexahedron
H, we obtain the coefficients of a bivariate polynomial p3 of total degree 2d by
Lemma 7.3, and evaluate it at all domain points in D2d,φ−1

T
(F3)

. Now, a polynomial

p ∈ P2d is determined by the interpolation at the domain points in D2d,T0
as follows:

p(φ−1
T (ξ)) = pi(ξ) for all ξ ∈ Fi ∩ D2d,T , i = 1, 2, p(φ−1

T (ξ)) = p3(φ
−1
H (ξ)) for all

ξ ∈ F3 ∩ D2d,T , and p(φ
−1
T (ξ)) = f(ξ) for all remaining ξ ∈ D2d,T . Finally, we set

s|T = p ◦φ−1
T . Theorem 5.3 ensures that the function s defined in this way belongs

to S0
d(△), and that the interpolation problem has a unique solution.

There is a natural dual basis associated with the nodal minimal determining
set N . In particular, for each ξ ∈ M, we define ℓξ to be the unique spline in S0

d(△)
such that

ℓξ(η) = δξ,η, all η ∈ Dd,△. (9.1)

32



The basis {ℓξ}ξ∈M is different from the one constructed in Theorem 6.2. We refer
to it as a Lagrange basis. These basis functions have the same support as the
basis functions in the set Ψ of Theorem 6.2, and could also be used to compute
with S0

d(△). However, due to the advantages of the Bernstein–Bézier approach for
computations, we recommend using the basis Ψ.

§10. Approximation power of S0
d(△)

We conclude the paper with a result showing how well smooth functions can be
approximated by S0

d(△). Given f ∈ C(Ω), we define

If :=
∑

ξ∈Dd,△

f(ξ) ℓξ,

where the ℓξ are the Lagrange basis functions of the previous section. Then by
(9.1), If interpolates f at all domain points in Dd,△. Moreover, if f |R = 0 for a
boundary edge or face R of △, then also If |R = 0.

Now given an integer m and a real number 1 ≤ q ≤ ∞, let Wm
q (Ω) be the

usual Sobolev space with associated seminorm

|f |m,q,Ω :=





[∑
|α|=m ‖Dαf‖qq,Ω

]1/q
, if 1 ≤ q <∞,

max|α|=m ‖Dαf‖Ω, if q = ∞,

and norm
‖f‖m,q,Ω := max

0≤k≤m
|f |k,q,Ω.

Here α = (α1, α2, α3) is understood as a multi-index, and Dα := Dα1
x Dα2

y Dα3
z .

We also need the shape parameter associated with ordinary tetrahedra in △
defined by

κO△ := max
T∈TO

|T |

ρT
,

where |Ωk| denotes the diameter of Ωk, and ρT is the radius of the largest ball that
can be inscribed in T . We set

|△| = max
1≤k≤N

|Ωk|.

Recall that a bijective mapping φ : G0 → G with G0, G domains in IRn is
said to be m-smooth if all components of φ and φ−1 are m times continuously
differentiable [1]. Let

‖Dφ‖k,∞,G0
:= max

1≤i≤n
max
|α|=1

‖Dαφi‖k,∞,G0
, 0 ≤ k ≤ m− 1.

For any mapping φ, we write Jφ for its Jacobian. We will need the following
extension of Theorem 3.41 of [1].

33



Lemma 10.1. Let f ∈ Wm
q (G), 1 ≤ q ≤ ∞, m ≥ 1, and let φ : G0 → G be

m-smooth. Then for any α ∈ ZZn
+ with |α| = m,

‖Dα(f ◦ φ)‖q,G0
≤ K‖Jφ‖

−1/q
∞,G0

∑

β≤α

|β|6=0

(1 + ‖Dφ‖|β|m−|β|,∞,G0
)‖Dβf‖q,G,

where K depends only on m and n.

Proof: By the chain rule

Dα(f ◦ φ) =
∑

β≤α

|β|6=0

Mαβ(φ) · (D
βf) ◦ φ,

where Mαβ(φ) is a polynomial of degree not exceeding |β| in derivatives of orders
between 1 and m− |β|+1 of the functions φi, see the proof of Theorem 3.41 of [1].
Since the coefficients of this polynomial only depend on α, β, it follows that

‖Mαβ(φ)‖∞,G0
≤ K(1 + ‖Dφ‖

|β|
m−|β|,∞,G0

),

where K depends only on m and n. In addition, for q <∞ a substitution delivers
the Jacobian factor,

∫

G0

|Dβf(φ(y))|q dy =

∫

G

|Dβf(x)|q|Jφ−1(x)| dx ≤ ‖Jφ‖
−1
∞,G0

∫

G

|Dβf(x)|q dx.

To factor out the influence of the different sizes of the domains G0 and G, we
introduce the mappings

φ̄ : Ḡ0 → G, Ḡ0 := |G|G0, φ̄(y) := φ(|G|−1y),

φ̂ : Ĝ→ G0, Ĝ := |G|−1G, φ̂(y) := φ−1(|G|y),

derived from a mapping φ : G0 → G.

Lemma 10.2. Under the hypotheses of Lemma 10.1,

‖Dα(f ◦ φ)‖q,G0
≤ K|G|m−n/q|φ̂|

n/q

1,∞,Ĝ
(1 + ‖Dφ̄‖mm−1,∞,Ḡ0

)‖f‖m,q,G, (10.1)

and

‖Dαf‖q,G ≤ K|G|−m+n/q|φ̄|
n/q

1,∞,Ḡ0
(1 + ‖Dφ̂‖m

m−1,∞,Ĝ
)‖f ◦ φ‖m,q,G0

, (10.2)

where K depends only on m and n.

Proof: To show (10.1), we use the identity

‖Dα(f ◦ φ)‖q,G0
= |G|m−n/q‖Dα(f ◦ φ̄)‖q,Ḡ0

,

34



apply Lemma 10.1 with φ replaced by φ̄, and take into account that

‖Dφ̄‖
|β|

m−|β|,∞,Ḡ0
≤ ‖Dφ̄‖mm−1,∞,Ḡ0

, 0 < |β| ≤ m,

and φ̄−1(x) = |G|φ̂(|G|−1x), which implies

‖Jφ̄‖
−1
∞,Ḡ0

= ‖Jφ̄−1‖∞,G = ‖Jφ̂‖∞,Ĝ ≤ |φ̂|n
1,∞,Ĝ

.

Similarly, (10.2) follows by an application of Lemma 10.1 with φ replaced by φ̂, and
taking into account the identities

‖Dαf‖q,G = |G|−m+n/q‖Dα(f ◦ φ ◦ φ̂)‖q,Ĝ, φ̂−1(x) = |G|−1φ̄(|G|x).

We define the shape parameters associated with hexahedra in H by

κH,m := max{‖Dφ̄H‖m−1,∞,H̄0
, ‖Dφ̂H‖m−1,∞,Ĥ}, H ∈ H,

and set

κH△,m := max
H∈H

κH,m.

Similarly, we define the shape parameters associated with interface tetrahedra in TI
by

κT,m := max{‖Dφ̄T ‖m−1,∞,T̄0
, ‖Dφ̂T ‖m−1,∞,T̂ }, T ∈ TI ,

and set

κI△,m := max
T∈TI

κT,m.

We note that this definition is consistent with the notion of the shape parameter
of an ordinary tetrahedra since in the case when φT is an affine mapping,

κT,m ≤ K
|T |

ρT
,

where K is an absolute constant. Indeed, let φT (x) = Ax + b for some A =
[ai,j]

3
i,j=1 ∈ IR3×3 and b ∈ IR3. Then

κT,m = max{|T |−1 max
i,j

|ai,j|, |T |max
i,j

|bi,j|},

where B = [bi,j]
3
i,j=1 = A−1, and the bound follows in view of Theorem 3.1.3 of

[13], which says that ‖A‖2 ≤ |T |/ρT0
and ‖B‖2 ≤ |T0|/ρT .

We recall that H, TO, and TI are the sets of hexahedra, ordinary tetrahedra,
and interface tetrahedra in the partition △R.

35



Theorem 10.3. Suppose f ∈ Wm
q (Ω) with 3/q < m ≤ d + 1 for some q ≥ 1,

and all mappings φH , H ∈ H and φT , T ∈ TI , are bijective and m-smooth. Given
an element Ωk of △R, we define Ω̃k = Ωk if Ωk ∈ H ∪ TO. If Ωk is an interface
tetrahedron, we define Ω̃k = Ωk ∪H ∪T1 ∪T2, where H ∈ H is the hexahedron and
T1, T2 ∈ TO are the two ordinary tetrahedra that share a face with Ωk. Then

‖Dα(f − If)‖q,Ωk
≤ K|Ω̃k|

m−|α|‖f‖m,q,Ω̃k
, 1 ≤ k ≤ N, (10.3)

for all α with |α| < m. The constantK depends only on d and the shape parameters
κO△, κH△,m and κI△,m.

Proof: Clearly, If is well defined since Wm
q (Ω) ⊂ C(Ω) by Sobolev embedding as

soon as m > 3/q. If Ωk = T ∈ TO, then (10.3) holds with a constant depending
only on d and |T |/ρT , and even with the seminorm |f |m,q,T rather than the norm
‖f‖m,q,T on the right hand side. This follows by standard estimates of the error of
polynomial interpolation, see e.g. Theorem 4.4.4 in [10].

Let Ωk be a hexagon H. Then the estimates of the error of tensor-product
polynomial interpolation, see e.g. Theorem 4.6.11 in [10], imply

‖Dα[(f − If) ◦ φH ]‖q,H0
≤ K1|f ◦ φH |m,q,H0

, |α| < m,

with a constant K1 depending only on d (since m ≤ d+1). Since φH is m-smooth,
it follows by (10.1) that

|f ◦ φH |m,q,H0
≤ K2|H|m−3/q‖f‖m,q,H, (10.4)

where K2 depends only on d and κH,m. Similarly, by (10.2)

‖Dα(f − If)‖q,H ≤ K3|H|−|α|+3/q‖(f − If) ◦ φH‖|α|,q,H0

where K3 depends only on d and κH,m. Combining the last three inequalities leads
to (10.3).

It remains to consider the case when Ωk is an interface tetrahedron T in TI .
For i = 1, 2, let Fi be the face of T shared with the ordinary tetrahedron Ti, and let
F3 be the face shared with the hexahedron H. Furthermore, let pi = If |Ti

∈ Pd,
i = 1, 2, and p3 = If ◦ φH ∈ Qd. By Corollary 4.4.7 in [10],

‖f − pi‖∞,Ti
≤ K4|Ti|

m−3/q|f |m,q,Ti
, i = 1, 2,

where K4 depends only on d and |Ti|/ρTi
. In particular

|f(ξ)− pi(ξ)| ≤ K4|Ti|
m−3/q|f |m,q,Ti

, for all ξ ∈ Fi ∩ D2d,T , i = 1, 2.

By Theorem 4.6.11 in [10],

‖f ◦ φH − p3‖∞,H0
≤ K5|f ◦ φH |m,q,H0

,

36



where K5 depends only on d. Hence

|f(ξ)− p3(φ
−1
H (ξ))| ≤ K5|f ◦ φH |m,q,H0

, for all ξ ∈ F3 ∩ D2d,T .

Let I0 : C(T0) → P2d denote the polynomial interpolation operator with interpo-
lation nodes in D2d,T0

, and let p = If ◦ φT and p̃ = I0(f ◦ φT ). Then p, p̃ ∈ P2d

and, by the definition of If ,

(p̃− p)(φ−1
T (ξ)) =





f(ξ)− pi(ξ), if ξ ∈ Fi ∩ D2d,T , i = 1, 2,
f(ξ)− p3(φ

−1
H (ξ)), if ξ ∈ F3 ∩ D2d,T ,

0, if ξ ∈ D2d,T \ (F1 ∪ F2 ∪ F3).

Now

p̃− p = I0(p̃− p),

and in view of the boundedness of the operator I0 : C(T0) → C(T0) and the Markov
inequality, there exists a constant K6 depending only on d such that

‖Dα(p̃− p)‖q,T0
≤ K6 max

ξ∈D2d,T

|(p̃− p)(φ−1
T (ξ))|.

By Theorem 4.4.4 in [10],

‖Dα(f ◦ φT − p̃)‖q,T0
≤ K7|f ◦ φT |m,q,T0

, |α| < m,

where K7 depends only on d. Hence

‖Dα[(f − If) ◦ φT ]‖q,T0
≤ ‖Dα(f ◦ φT − p̃)‖q,T0

+ ‖Dα(p̃− p)‖q,T0

≤ K7|f ◦ φT |m,q,T0
+K6

(
K4

2∑

i=1

|Ti|
m−3/q|f |m,q,Ti

+K5|f ◦ φH |m,q,H0

)
.

Taking into account (10.4) and Lemma 10.2 which implies

|f ◦ φT |m,q,T0
≤ K8|T |

m−3/q‖f‖m,q,T ,

and the following inequality

‖Dα(f − If)‖q,T ≤ K9|T |
−|α|+3/q‖(f − If) ◦ φT ‖|α|,q,T0

,

with constants K8, K9 depending only on d and κT,m, we arrive at (10.3).

37



§11. Remarks

Remark 1. In addition to pyramids, prismatic elements are often helpful in cre-
ating interfaces between hexahedra and tetrahedra, see e.g. [19]. Bernstein-Bézier
shape functions for them can be easily constructed as described in Sect. 5 of [3],
using tensor products of triangle and univariate shape functions.

Remark 2. Given the B-coefficients of a spline s ∈ S0
d(△), Algorithm 8.2 shows

how to convert it to a collection of tensor-product and tetrahedral Bézier volumes,
which are standard objects in Computer Aided Design. This can be helpful in
visualizing the spline.

Remark 3. The problem of defining suitable shape functions for pyramids is com-
plex as it turns out to be impossible to use polynomials, or even any C1 functions
on a reference pyramid with a square base, see [29]. To deal with a pyramid P ,
several authors proposed the use of rational polynomials [7,8,15,23], while others
[9,11,19,22,29] prefer to split the pyramid into two or more pieces, each of which is
an image of the reference tetrahedron T0. We follow the latter approach.

Remark 4. The THP partitions introduced in Sect. 2 are examples of 3D mixed
meshes consisting of hexahedra and quadratic tetrahedral Bernstein–Bézier vol-
umes, where two or more quadratic tetrahedra share faces with subsets of a face
of a hexahedron, and/or have a hanging edge inside the face of a hexahedron. 3D
mixed meshes are natural 3D analogs of the TR-meshes discussed in [28] which
consist of a mixture of triangles and rectangles, where hanging vertices are allowed.
In principle, the interface between hexahedral and tetrahedral meshes can be filled
with quadratic tetrahedra in a more flexible way without the restriction that their
pairs form pyramids. This may be beneficial for quality mesh generation. To be
practical, such 3D mixed meshes should not be completely arbitrary, and in partic-
ular should not allow cycles which greatly complicate the 2D case of mixed meshes
discussed in [28].

Remark 5. Our methods can be easily extended to the case where the pyramid
is subdivided into four interface tetrahedra by splitting its base using two crossing
hanging edges as suggested in [22]. Indeed, as in the case of one hanging edge,
we can transform the tensor-product B-form of degree d into triangle B-forms of
degree 2d on each of the four pieces of the base of the pyramid, and we can deal
with the tetrahedra sharing faces with the pyramid by degree raising while defining
the shape functions with the help of the B-forms of degree 2d in the four interface
tetrahedra.

Remark 6. We can reduce the dimension of the space S0
d(△) without reducing

the approximation order of the method by setting PT := {p ◦ φ−1
T : p ∈ P} for any

interface tetrahedron T , where P is any subspace of P2d such that a) Pd ⊂ P and
b) the restriction of P to the face F of the interface tetrahedron T shared with
a hexahedron includes all bivariate tensor-product polynomials of degree d. It is
easy to see that the smallest possible dimension for P is

(
d+2
3

)
+ (d+ 1)2 if we for

38



example extend the Bernstein basis for Pd with respect to T by
(
d+1
2

)
Bernstein

polynomials of degree up to 2d associated with the face F that are needed to
ensure b). A further reduction of the dimension of S0

d(△) can be achieved by
imposing higher order smoothness conditions across the common face of the pair
of interface tetrahedra that form a pyramid. However, any construction of this
type would be significantly more difficult to use than the straightforward choice
P = P2d suggested in this paper. In particular, Algorithms 8.2 and 8.3 needed for
the efficient implementation relying on BB-moments would be much more complex.
If the number of pyramids in a THP partition is very small comparing to the
total number of elements (which is expected due to their role as interface elements
between hexahedra and tetrahedra), then the savings from using a smaller space PT

do not reduce the overall cost of the method by a significant amount. Moreover,
all of the extra basis functions allowed by our construction are supported on a
pyramid, and therefore can be dealt efficiently with by the standard techniques of
static condensation of internal degrees of freedom, see e.g. Sect. 4.2.3 of [18].

Remark 7. As required in the hp-method, different polynomial degrees can be used
on different tetrahedra and hexahedra. In this case the global degrees of freedom can
be handled with the help of degree raising, similar to Lemma 7.2, or following the
scheme suggested in [2]. Moreover, anisotropic tensor-product polynomial spaces

Q(n,m,ℓ) = span {B
(n,m,ℓ)
ijk : 0 ≤ i ≤ n, 0 ≤ j ≤ m, 0 ≤ k ≤ ℓ}

can be used on hexahedra if PH is replaced by {p ◦ φ−1
H : p ∈ Q(n,m,ℓ)}. In fact, in

Sect. 7 we have provided the formulae for the general degree raising matrices Rn,m

and tensor-product/total-degree polynomial transformation matrices T k,s needed
for the implementation of the generalized transformation matrices arising in the
methods based on varying degrees on tetrahedra and anisotropic hexahedra.

Remark 8. It is also possible to use serendipity elements (see [5]) on hexahedra.
To this end, the expansion of the degree d serendipity polynomials in terms of the
tensor-product Bernstein polynomials would need to be implemented.

Remark 9. In the case d = 1, the restriction of S0
d(△) to a pyramid coincides

with the space suggested in [9,19,29]. For d = 2 the dimension of this restriction
is 19, whereas the quadratic space in [9] has 14 degrees of freedom. Note that two
out of five additional basis functions are supported on one interface tetrahedron
each, and three are associated with the common face of the interface tetrahedra
and supported on the pyramid. The quadratic pyramidal element of [29] has 13
degrees of freedom because it uses a serendipity space on the base of the pyramid.
The higher order pyramidal elements of [9] provide an example of the element with
reduced dimension discussed in Remark 6.

Remark 10. We have avoided the ‘reference pyramid’ approach of [9,19,29] because
this eliminates the need for any separate ‘pyramidal BB moments’ by resorting
directly to the standard tetrahedral moments.

39



Remark 11. The development of finite elements of H(div) and H(curl) type for
THP partitions that take full advantage of Bernstein–Bézier techniques would be of
considerable practical interest. However, while suitable bases have been developed
for the 2D case (see [4]), the development of Bernstein–Bézier bases for H(div) and
H(curl) conforming spaces on pure tetrahedral triangulations in 3D is still in a
state of flux.

Remark 12. Using the partition of unity property of Bernstein polynomials and
the product formula (7.5), we get

p :=
∑

ν∈In
2

cνB
n,F
ν =

∑

ν∈In
2 , λ∈Im−n

2

cνB
n,F
ν Bm−n,F

λ =
∑

ν∈In
2 , λ∈Im−n

2

cν

(
ν+λ
ν

)
(
m
n

) Bm,F
ν+λ ,

which implies that the B-coefficients c̃ of p as a polynomial of degree m are given
by

c̃µ =
∑

ν∈In
2

ν≤µ

(
µ
ν

)
(
m
n

)cν , µ ∈ Im
2 .

This shows that the matrix Rn,m in (7.2) is given by

Rn,m
µ,ν =

{
Mn,m−n

ν,µ−ν , if ν ≤ µ,
0, otherwise,

where Mn,m−n is the trinomial matrix described in (7.6).

Remark 13. The convective matrix V with entries

Vξζ =

∫

Ω

ψξ(x)f(x)∇ψζ(x) dx, ξ, ζ ∈ M,

where f : Ω → IR3 is a given vector function, can be treated in a similar way to the
mass and stiffness matrices, compare Sect. 4.3 of [3].

Remark 14. The transformation matrix A defined in Sect. 8.1 maps the B-
coefficients of a spline in S0

d(△) to the vector of all coefficients of the individual
shape functions. Thus, it is essentially a mapping from S0

d(△) to a space of piece-
wise functions with no continuity between the pieces. The transformation matrices
used in [26,27] are a little different since they map coefficients of a spline in a smooth
subspace of C0 splines to coefficients of a C0 spline.

References

1. Adams, R. A. and J. F. Fournier, Sobolev Spaces, Academic Press, Amsterdam,
2003.

40



2. Ainsworth, M., Pyramid algorithms for Bernstein-Bézier finite elements of high,
nonuniform order in any dimension, SIAM J. Scient. Computing 36 (2014),
A543–A569.

3. Ainsworth, M., G. Andriamaro, and O. Davydov, Bernstein-Bézier finite ele-
ments of arbitrary order and optimal assembly procedures, SIAM J. Scient.
Computing 33 (2011), 3087–3109.

4. Ainsworth, M., G. Andriamaro, and O. Davydov, A Bernstein-Bézier basis for
arbitrary order Raviart-Thomas finite elements, Constr. Approx. 41 (2015),
1–22.

5. Arnold, Douglas N. and Gerard Awanou, The serendipity family of finite ele-
ments, Foundations of Computational Mathematics 11 (2011), 337–344.

6. Baudouin, Tristan Carrier, Jean-Francois Remacle, Emilie Marchandise, Fran-
cois Henrotte, and Christophe Geuzaine, A frontal approach to hex-dominant
mesh generation, Advanced Modeling and Simulation in Engineering Sciences
1:8 (2014), 1–30.

7. Bedrosian, G., Shape functions and integration formulas for three-dimensional
finite element analysis, International Journal for Numerical Methods in Engi-
neering 35 (1992), 95–108.

8. Bergot, Morgane, Gary Cohen, and Marc Duruflé, Higher-order finite elements
for hybrid meshes using new nodal pyramidal elements, Journal of Scientific
Computing 42 (2010), 345–381.

9. Bluck, M. J. and S. P. Walker, Polynomial basis functions on pyramidal el-
ements, Communications in Numerical Methods in Engineering 24 (2008),
1827–1837.

10. Brenner, S. C. and L. R. Scott, The Mathematical Theory of Finite Element
Methods, Springer-Verlag, New York, 2002.

11. Chan, J. and T. Warburton, A comparison of high order interpolation nodes
for the pyramid, SIAM J. Sci. Comput. 37 (2015), A2151–A2170.

12. Ciarlet, P.G., Basic error estimates for elliptic problems, in: P.G. Ciarlet and
J.L. Lions, eds., Handbook of numerical analysis, Vol. II: Finite Element Meth-
ods (Part 1), North-Holland, Amsterdam, 1991, pp.17–351.

13. Ciarlet, P.G., The Finite Element Method for Elliptic Problems, 2nd edition,
Society for Industrial and Applied Mathematics, Philadelphia, 2002.

14. Erickson, Jeff, Efficiently hex-meshing things with topology, Discrete & Com-
putational Geometry 52 (2014), 427–449.

15. Fuentes, F., B. Keith, L. Demkowicz, and S. Nagaraj, Orientation embedded
high order shape functions for the exact sequence elements of all shapes, Com-
put. Math. Appl. 70 (2015), 353–458.

16. Goldman, R. N. and D. J. Filip, Conversion from Bézier rectangles to Bézier
triangles, Computer-Aided Design 19 (1987), 25–27.

41



17. Hoschek, J. and D. Lasser, Fundamentals of Computer Aided Geometric De-
sign, AK Peters, Wellesley, MA, 1993.

18. Karniadakis, George Em and Spencer J. Sherwin, Spectral/hp Element Meth-
ods for Computational Fluid Dynamics. 2nd edition, Oxford University Press,
Oxford, 2005.

19. Knabner, P. and G. Summ, The invertibility of the isoparametric mapping for
pyramidal and prismatic finite elements, Numer. Math. 88 (2001), 661-681.

20. Knabner, P., S Korotov, and G. Summ, Conditions for the invertibility of
the isoparametric mapping for hexahedral finite elements, Finite Elements in
Analysis and Design 40 (2003), 159–172.

21. Lai, M. J. and L. L. Schumaker, Spline Functions on Triangulations, Cambridge
University Press, Cambridge, 2007.

22. Liu, Liping, Kevin B. Davies, Michal Krezek, and Li Guan, On higher order
pyramidal finite elements, Adv. Appl. Math. Mech. 3 (2011), 131–140.

23. Nigam, Nilima and Joel Phillips, High-order conforming finite elements on
pyramids, IMA J. Numer. Anal. 32 (2012), 448–483.

24. Nigam, Nilima and Joel Phillips, Numerical integration for high order pyrami-
dal finite elements, ESAIM Math. Model. Numer. Anal. 46 (2012), 239–263.

25. Owen, Steve and Sunil Saigal, Formation of pyramid elements for hexahedra
to tetrahedra transitions, Computer Methods in Applied Mechanics and Engi-
neering 190 (2001), 4505–4518.

26. Schumaker, L. L., Computing bivariate splines in scattered data fitting and
the finite element method, Numerical Algorithms 48 (2008), 237–260.

27. Schumaker, L. L., Spline Functions: Computational Methods, SIAM, Philadel-
phia, 2015.

28. Schumaker, L. L. and Lujun Wang, Spline Spaces on TR-meshes with hanging
vertices, Numer. Math. 118 (2011), 531–548.

29. Wieners, Christian, Conforming discretizations on tetrahedrons, pyramids,
prisms and hexahedrons, manuscript, 1997.

42


