
UCYMICRA: Distributed Indexing of the Web Using 
Migrating Crawlers 

Odysseas Papapetrou, Stavros Papastavrou, George Samaras 

Computer Science Department, University of Cyprus,  
75 Kallipoleos Str., P.O.Box 20537 

{cs98po1, stavrosp, cssamara}@cs.ucy.ac.cy 

Abstract. Due to the tremendous increase rate and the high change frequency 
of Web documents, maintaining an up-to-date index for searching purposes 
(search engines) is becoming a challenge. The traditional crawling methods are 
no longer able to catch up with the constantly updating and growing Web. Real-
izing the problem, in this paper we suggest an alternative distributed crawling 
method with the use of mobile agents. Our goal is a scalable crawling scheme 
that minimizes network utilization, keeps up with document changes, employs 
time realization, and is easily upgradeable. 

1   Introduction 

Indexing the Web has become a challenge due to the Web’s growing and dynamic na-
ture. A study released in late 2000 reveals that the static and publicly available Web 
(also mentioned as surface web) exceeds 2.5 billion documents while the deep Web 
(dynamically generated documents, intranet pages, web-connected databases etc) is 
almost three orders of magnitude larger [20]. Another study shows that the Web is 
growing and changing rapidly [17, 19], while no search engine succeeds coverage of 
more than 16% of the estimated Web size [19]. 

Web crawling (or traditional crawling) has been the dominant practice for Web in-
dexing by popular search engines and research organizations since 1993, but despite 
the vast computational and network resources thrown into it, traditional crawling is no 
longer able to catch up with the dynamic Web. Consequently, popular search engines 
require up to 6 weeks in order to complete a crawling cycle for the non-paying sites 
[1]. Moreover, the centralized gathering nature of traditional crawlers and the lack of 
cooperation between major commercial search engines are two more reasons toward 
that. 

The absence of a scalable crawling method triggered some significant research in 
the past few years. For example, Focused Crawling [6] was proposed as an alternative 
method but it did not introduce any architectural innovations since it relied on the 
same centralized practices of traditional crawling. As a first attempt to improve the 
centralized nature of traditional crawling, a number of distributed methods have been 
proposed (Harvest [4, 5], Grub [14]) and are discussed later on. 

In this paper, we propose the UCYMicra, a distributed methodology for crawling 
the Web with the use of mobile agents. The driving force behind UCYMicra is the 
employment of mobile agents migrating from the search engine to the Web servers, 
and remaining there to crawl and monitor Web documents for updates. UCYMicra 



utilizes related concepts on Distributed Crawling introduced earlier in [4, 11, 12], to 
suggest a complete distributed crawling strategy aligned with the characteristics of 
mobile agents, aiming at (a) minimizing network utilization by avoiding the transmis-
sion of unnecessary data between Web servers and the search engine site, (b) keeping 
up with document changes by performing on-site monitoring that allows fast updates 
on the search engine database, (c) avoiding unnecessary overloading of the Web serv-
ers by employing time realization, and (d) being upgradeable at run time. 

This introduction is followed by a description of the shortcomings caused by tradi-
tional crawling, and Section 3 describes related work. In Section 4, we present our 
crawling methodology and in Section 5 evaluate its performance. In Section 6, we 
discuss the advantages of our method, and we conclude in Section 7 with a reference 
to our ongoing work. 

2   The Problem with the Traditional Crawling 

For the last decade, single-sourced (or centralized) Web Crawling has been the driv-
ing force behind the most popular commercial search engines. The Google [3] and the 
AltaVista [15] search engines employ an incremental farm of local running crawlers 
in order to reach a daily dose of a few hundred millions downloads per day, while the 
allocation of more computational resources is often announced. 

However, with the great expansion of the web, especially in the past four years, the 
traditional crawling model appears inadequate to adjust to the new facts since crawl-
ers are no longer able to download documents with the daily rate required to maintain 
an updated index of the web. A relatively recent survey suggests that no search engine 
succeeds coverage of more than 16% of the estimated web size [19].  

More specifically, the traditional crawling model fails for the following reasons: 
• The task of processing the crawled data introduces a vast processing bottleneck at 

the search engine site. Distributed processing of data (at the remote Web servers), 
which would have alleviated the bottleneck, is not available through the current 
HTTP protocol used by crawlers. Current practices to alleviate this bottleneck are 
focused in the addition of more computational resources. However, the latter com-
plicates resources coordination and increases the network traffic and cost. 

• The attempt to download thousands of documents per second creates a network and 
a DNS lookup bottleneck. While the latter bottleneck can be partially removed us-
ing a local DNS cache, the former can only be alleviated by constantly adding 
more network resources. 

• Documents are usually downloaded by the crawlers uncompressed increasing in 
this way the network bottleneck. In general, compression is not under full facilita-
tion since it is independent from the crawling task and cannot be forced by the 
crawlers1. In addition, crawlers download the entire contents of a document, in-
cluding useless information such as scripting code and comments, which are rarely 
necessary for the document processing. 

                                                           
1 Document compression before transmission is not always available in Web servers. Web 

server administrators disable compression to save computational resources 



• The vast size of the Web makes it impossible for crawlers to keep up with docu-
ment changes. The re-visiting frequency for non-sponsored documents, in some of 
the biggest commercial search engines, varies from 4 to 6 weeks. As a result, 
search engines deliver old content in search queries. 

Moreover, the current crawling model has negative consequences for the complete 
Internet infrastructure: 
• The simultaneous execution of many commercial crawlers generates huge non-user 

related Internet traffic and tends to overload public Web servers, Domain Name 
servers, and the underlying Internet infrastructure (routers and networks). 

• Not every crawler employs time realization. At peak time, web-servers may be 
“bombed” with HTTP GET requests generated by a Web crawler. Consequences 
may vary from a simple delay to a complete denial of service. 

3   Related Work 

In this Section, we discuss previous work done on achieving better Web coverage. 
First, we discuss Focused Crawling, a methodology where Web Crawlers limit their 
search on a particular topic. We then elaborate on Parallel and Distributed Crawling 
work. 

3.1   Focused Crawling 

Focused crawling [6] was introduced as an alternative to traditional crawling and 
aimed at (a) alleviating the scalability setback, and (b) improving search results. 
Driven by a specific topic (namely a set of keywords), focused crawling targets and 
monitors only a small fraction of the Web and therefore achieves high-quality index-
ing on a specific subject. More specifically, focused crawlers download and process 
only the links that their content is expected to be relevant to the topic of interest. 

Significant research has been done in focused crawling with several suggestions 
for algorithms that filter the URLs and drive the crawlers [7, 10]. However, focused 
crawling suffers from the same scalability problems with traditional crawling since 
they both target the same expanding and constantly changing Web. 

3.2   Parallel and distributed crawling 

The concept of parallel and distributed crawling refers to multiple crawling units run-
ning at the same time. In parallel crawling [9], the crawling units run within the local 
environment of a single company, whereas in distributed crawling, the crawling units 
are geographically spread. Parallel and distributed crawling is a natural evolution to-
ward accelerating crawling. 

Mercator [15], an experimental parallel crawling architecture that was used later on 
in AltaVista’s Search Engine 3, was attacking the scalability problem of crawling by 
adding more parallel crawlers on the local network. In addition, parallel crawling 
techniques have been used in the academic version of Google, while sufficient re-



search has been done for more efficient task scheduling and distribution of the crawl-
ing task in [9]. 

Despite the falling prices in hardware and lower connectivity rates, however, paral-
lel distribution of the crawling task within local resources fails to keep pace with the 
growing Web due to its centralized nature. Downloading of documents and DNS 
lookup share the same network resources. In addition, coordination of the crawling 
units and resource management generate a significant network overhead. 

To resolve the problems of parallel crawling, non-local distribution of the crawling 
units was introduced. The first well-documented research dates in early 1994 with the 
Harvest Information Discovery and Access System [4, 5]. The Harvest prototype was 
running gatherers (brokers) at the information sources sites (namely the Web servers). 
Gatherers not only collected data through HTTP and FTP, but they also filtered and 
compressed data before transmitting it to a centralized database. Unfortunately, while 
similar software is still used for efficient in-house crawling, the Harvest project failed 
to become accepted due to lack of flexibility, and administrative concerns. 

Grub [14], a recently launched project under the Open-source license, implements 
a distributed crawling methodology in a way similar to the SETI project [22]. Distrib-
uted crawlers collect and process data from local and remote sources and send infor-
mation to the search engine for updates. However, the control of the whole architec-
ture is centralized since a central server defines which URLs are to be crawled by 
which distributed crawlers. 

J. Hammer and J. Fiedler in [11, 12] initiated the concept of Mobile Crawling by 
proposing the use of mobile agents as the crawling units. According to Mobile Crawl-
ing, mobile agents are dispatched to remote Web severs for local crawling and proc-
essing of Web documents. After crawling a specific Web server, they dispatch them-
selves either back at the search engine machine, or at the next Web server for further 
crawling. While the model offers speed and efficiency compared to current crawling 
techniques, important issues are to be resolved such as (a) a more efficient resource 
management (which is recognized from the writers as important future work), and (b) 
a more decentralized control of the architecture. In addition, this methodology re-
quires from the mobile agents to constantly move through the Internet since there is 
no notion of the ‘parking agent’. The absence of a parked/stationed agent at the Web 
server site precludes an immediate way of promptly monitoring the Web server’s 
documents for changes. 

The Google Search Appliance [13], a recently launched commercial package by 
Google, offers local crawling and processing of a company’s Web and document 
servers by plugging into the local network a Linux computer. This hardware/software 
solution, however, comes at a great cost and installation overhead. Furthermore, a 
closed Linux box is an approach that could not serve more that one search engine si-
multaneously, meaning that a similar package from another search engine would de-
mand another similar box plugged in the local network. 



4   The UCYMicra Crawling System 

We introduce UCYMicra, a crawling system that utilizes concepts similar to those 
found in Mobile and distributed Crawling introduced in [11, 12, 4].  UCYMicra ex-
tends these concepts and introduces new ones in order to build a more efficient model 
for distributed Web crawling, capable of keeping up with Web document changes in 
real time. UCYMicra proposes a complete distributed crawling strategy by utilizing 
the mobile agents technology. The goals of UCYMicra are (a) to minimize network 
utilization (b) to keep up with document changes by performing on-site monitoring, 
(c) to avoid unnecessary overloading of the Web servers by employing time realiza-
tion, and (d) to be upgradeable at run time. 

The driving force behind UCYMicra is the utilization of mobile agents that migrate 
from the search engine to the Web servers, and remain there to crawl, process, and 
monitor Web documents for updates. Since UCYMicra requires that a specific mobile 
agents platform be running at the Web Server to be crawled, it is currently running 
under a distributed voluntary academic environment spanning in a number of conti-
nents. In the rest of this Section, we examine the architecture and functionality of 
UCYMicra. 

4.1   Architecture of UCYMicra 

UCYMicra consists of three subsystems, (a) the Coordinator subsystem, (b) the Mo-
bile Agents subsystem, and (c) a public Search Engine that executes user queries on 
the database maintained by the Coordinator subsystem (the discussion of the public 
Search Engine is not in the scope of this paper).  

 

Fig. 1. Architecture of UCYMicra 

 
 



The Coordinator subsystem resides at the Search Engine site and is responsible of 
maintaining the search database. In addition, it administers the Mobile Agents subsys-
tem, which is responsible for crawling the Web. The Mobile Agents subsystem is di-
vided into two categories of mobile agents namely the Migrating Crawlers (or Mobile 
Crawlers) and the Data Carries. The former are responsible for on-site crawling and 
monitoring of remote Web servers, and the latter for transferring the processed and 
compressed information from the Migrating Crawlers back to the Coordinator subsys-
tem. Figure 1 illustrates the high-level architecture of UCYMicra. 

4.2   The Coordinator Subsystem 

Running locally to the search engine database, the Coordinator subsystem is primarily 
responsible of keeping it up-to-date by integrating fresh data received from the Mo-
bile Agents subsystem. Second, but not less important, the Coordinator monitors the 
Mobile Agents subsystem in order to ensure its flawless operation. More specifically, 
the Coordinator subsystem: 
1. Provides a publicly available Web-based interface through which Web server 

administrators can register their Web servers for participating in UCYMicra. 
2. Creates and dispatches one Migrating Crawler for a newly registered Web server. 
3. Monitors the lifecycle of the Migrating Crawlers in order to ensure their flawless 

execution. 
4. Receives the Data Carriers in order to process their payload and integrate the result 

in the search engine database. 
To avoid a potential processing bottleneck, the Coordinator is implemented to run dis-
tributed on several machines that collaborate with a simplified tuplespaces model 
(similar with Linda’s distributed model described in [2]). 

4.3   The Mobile Agents Subsystem 

The Mobile Agents subsystem is the distributed crawling engine of our methodology 
and it is divided into two categories of Java mobile agents, (a) the Migrating Crawl-
ers, and (b) the Data Carriers (the initial code of both agents resides at the Coordina-
tor System where it is accessible for instantiation and dynamic installation). 

In addition to its inherent mobile capabilities [8], a Migrating Crawler is capable of 
performing the following tasks at the remote site: 
1. Crawling: A Migrating Crawler can perform a complete local crawling either 

though HTTP or using the file system in order to gather the entire contents of the 
Web server. 

2. Processing: Crawled Web documents are stripped down into keywords, and key-
words are ranked to locally create a keyword index of the Web server contents. 

3. Compression: Using Java compression libraries, the index of the Web server con-
tents is locally compressed to minimize transmission time between the Migrating 
Crawler and the Coordinator subsystem. 



4. Monitoring: The Migrating Crawler can detect changes or additions in the Web 
server contents. Detected changes are processed, compressed and transmitted to the 
Coordinator subsystem. 

A Data Carrier is a mobile agent dedicated in transferring processed and compressed 
data from a Migrating Crawler to the Coordinator subsystem for updating the search 
database. The choice of using mobile agents for data transmission over other network 
APIs (such as RMI, CORBA or sockets) is the utilization of their asynchronisity, 
flexibility and intelligence in order to ensure the faultless transmission of the data. 

4.4   Deployment of UCYMicra 

Figure 2 illustrates how UCYMicra works. A registration procedure is required for a 
Web server to participate under the UCYMicra crawling system. The Coordinator 
subsystem provides the interface through which Web server administrators can define 
the registration parameters. Those parameters are divided into (a) the basic network 
information of the Web server to be crawled, and (b) the configuration options of the 
Migrating Crawler and the Data Carriers. 

 

Fig. 2. UCYMicra at Work 

 
 
 
The configuration options provide the Web server administrator with the ability to 

customize the behavior of the Migrating Crawler prior to its creation and relocation to 
the Web server site. More specifically, the Web server administrator defines2: 

                                                           
2 The Web server administrator can also modify the configuration options at run time, in order 

to change the behavior of the Migrating Crawlers 



1. The time spans in which the Migrating Crawler is allowed to execute. Web server 
administrators might wish that the crawling and processing of data be executed 
during off-peak hours. 

2. The sleep time between successive crawls used in monitoring the Web server con-
tents for changes or additions. Web servers with frequent changes might consider 
having a smaller sleep time. 

3. The maximum packet size allowed of processed data for the Migrating Crawler to 
hold before dispatching it to the Coordinator subsystem for integration into the 
search database. 

4. The maximum time-to-hold the processed data (packets) before dispatching it to 
the Coordinator subsystem. This parameter was introduced in order to avoid the 
case where processed data may become outdated before dispatching it to the Coor-
dinator subsystem. Data may stall at the Migrating Crawler until the maximum 
packet size allowed is reached, in which case a data carrier is created, assigned the 
data, and dispatched. 

5. Whether the Migrating Crawler will perform the crawling directly on the file sys-
tem or through HTTP. For the former method, the absolute path(s) of the Web 
documents is provided. This method is recommended for Web servers with static 
Web content. For the second method, the Web server’s URL(s) is provided and it is 
recommended for Web servers with dynamic content. Moreover, a combination of 
the above two can be used. 

Following a successful registration of a Web server, the Coordinator subsystem cre-
ates a new instance of a Migrating Crawler and updates it with the registration op-
tions. The Migrating Crawler is then allowed to dispatch itself to the Web server. 

Upon arrival at the Web server, the Migrating Crawler parks and suspends itself 
until the beginning of a pre-configured time span for execution arrives. For the first 
crawl, the Migrating Crawler will load, and process all the available Web documents 
at the Web server. Processing may include removal of useless html comments, script-
ing code, or even local extraction of keywords and ranking for each keyword (based 
on its occurrence frequency and other properties i.e. position on the document, font 
size and color). The processed data is being compressed and stored in memory until a 
data packet with the maximum allowed size can be assembled. 

A Data Carrier agent is created for every packet assembled, or when the time-to-
hold of a packet expires. Data carriers will then dispatch themselves to the Coordina-
tor subsystem where they deliver their payload. 

After the first crawl is completed and the Coordinator subsystem has updated the 
search database, the parked Migrating Crawler monitors the contents of the Web 
server for changes or additions of new documents. For documents retrieved through 
the file system, the last update time is used whereas for documents retrieved through 
HTTP, a conditional HTTP GET is used (using the If-Modified-Since header [16]). In 
either case, when the Migrating Crawler detects an update or an addition, it crawls 
and processes the affected documents, and transmits the new documents’ index to the 
Coordinator subsystem. The transmission follows the rules defined in the pre-
mentioned parameters (3) and (4), set by the Web server administrator. 



4.5   Security in UCYMicra 

Security is always an important aspect in every distributed system. In UCYMicra, se-
curity concerns are twofold: 
• First, a secure runtime environment must be provided to Web server that will host 

the Migrating Crawlers. Such a runtime must guarantee that the migrating crawlers 
have access only to the necessary resources of their host, both software and hard-
ware. 

• Second, the runtime must also guarantee that the host machine has no access to the 
Migrating Crawler’s processing code and data, in this way preventing malicious al-
tering of the processing results. 

Since the scope of this paper is to provide proof of concept for our crawling method-
ology, UCYMicra still does not employ security. Mobile Agents Security [23, 25], as 
well as the protection of the mobile agents themselves [18, 21] is a well-researched 
topic. It should be straightforward to embed security mechanisms in UCYMicra and 
this is part of our ongoing work. 

5   Evaluating UCYMicra 

5.1   Initial Experiments 

We have performed an initial set of experiments in order to evaluate the performance 
of the UCYMicra crawling system against traditional crawling. We measure perform-
ance in terms of (a) size of data transmitted across the Internet, and (b) total time re-
quired, for the complete crawling of a given set of documents. For the time being, we 
study only this two obvious metrics and do not experiment with parameters such as 
document change frequency or update latency. 

As opposed to the size of data transmitted metric that can be easily calculated in 
both approaches, the total time required metric was difficult to calculate, and de-
pended of the experimental setup. This was mainly due to the following parameters 
that are beyond our control: (a) the network condition, under which our experiments 
were performed, and (b) the processing power and the load of the participating web 
servers during the experiments. We include, however, our time measurements in this 
paper to provide an additional insight on comparing the two approaches. 

For the traditional crawling, the total time required metric stands for the time 
elapsed from the moment we feed the crawler’s URL queue with the URLs to be 
crawled until all URLs have been successfully crawled and integrated into the search 
database. For UCYMicra, this is the time elapsed from the moment the Migrating 
Crawlers are dispatched from the Coordinator subsystem to the web servers that host 
the URLs to be crawled, until all the crawled contents of the URLs are carried by the 
Data Carriers back to the Coordinator subsystem and integrated into the search data-
base. 

Since it was not feasible to include commercial Web servers in our experiments, 
we have employed a set of ten Web servers within our voluntary distributed academic 
environment that span in several continents. Each Web server was hosting an average 



of 200 Web documents with an average document size of 25 Kbytes. The previous 
numbers yield 46.2 Mbytes of document data to be crawled by both the traditional 
crawling and the UCYMicra approach. 

For the traditional crawling experiment, we have developed our own Java-based, 
multi-threaded crawling system and installed it on our own server machine. To trigger 
the crawler, we fed its URL queue with the addresses of the participating Web serv-
ers, and immediately the crawler started executing. Please note that in this experi-
ment, the documents were downloaded uncompressed. In general, compression be-
tween a traditional crawler and a Web server is independent from the crawling task 
since a traditional crawler cannot enforce it. 

For the UCYMicra evaluation, we have developed and installed the Coordinator 
Subsystem on our server machine. The Migrating Crawlers and Data Carriers were 
developed using the Voyager Platform [24] and their bytecode was installed on the 
server machine. Additionally, we have installed the Voyager Runtime on each avail-
able Web server machine to be crawled. For practical reasons, we did not require 
from an administrator to register every participating Web server. Instead, we auto-
matically registered all the participating Web servers under reasonable registration pa-
rameters. 

After the experiment was initiated, Migrating Crawlers were initialized and dis-
patched to every registered Web server to locally perform crawling, processing and 
compression of documents (one Crawler per Web server). Each Migrating Crawler 
initiated a number of Data Carriers that transferred the processed and compressed data 
back to the Coordinator Subsystem for integration within the search database. 

46.9

2.6

0

10

20

30

40

50

D
at

a 
Tr

an
sf

er
ed

 (M
B)

Traditional
Crawling

UCYMicra
Crawling

 

Fig. 3. Size of transferred data. UCYMicra outperforms traditional crawling by approximately 
generating 20 times less data 

 
Figure 3 displays the size of transferred data by both the approaches in the experi-

ment. Please note that in the 2.6 MB of data that UCYMicra generates, the code of the 
Migrating Crawlers and the Data Carriers that were dispatched to move the data is in-
cluded, while in the traditional crawling, we include the data size of the HTTP re-



quests and HTTP response headers. UCYMicra outperforms traditional crawling by 
generating 20 times less data. This is due to the following reasons: 
• The Migrating Crawlers of UCYMicra crawl and process (with the same process-

ing algorithm that the traditional crawler uses) the Web documents locally to the 
Web server. In this way, only the ranked keyword index of the Web server contents 
is transmitted to the Coordinator subsystem. In the traditional crawling approach, 
the crawler downloads the complete contents of a Web server. 

• Before transmission to the Coordinator subsystem, the index of the Web server 
contents can always be compressed. A traditional crawler may request but cannot 
force a Web server to compress its contents before download. Unless the Web 
server has compression modules installed and enabled, the documents are delivered 
uncompressed. 

 

763

70

0
100
200
300
400
500
600
700
800

C
om

pl
et

io
n 

Ti
m

e 
(s

ec
on

ds
)

Traditional
Crawling

UCYMicra
Crawling

 
Fig. 4. Total time required for crawling. UCYMicra outperforms traditional crawling by an or-
der of magnitude 

Figure 4 displays the total time required by both the approaches to perform crawling. 
Similar to the previous results, UCYMicra requires one order of magnitude less time 
than the traditional approach to complete crawling. This is due to the following rea-
sons: 
• UCYMicra moves less data than the traditional approach and, therefore, requires 

less time. 
• Processing of the Web documents is done in parallel by the Migrating Crawlers. 

5.2   Analytical Experiments 

To better understand the meaning of the results of our initial experiments, we per-
formed an analytical second set of experiments by running one more variation of the 
traditional crawling approach, and three more variations of UCYMicra. The new tra-
ditional crawling variation downloads the Web documents compressed. As mentioned 
before, traditional crawlers cannot force the Web servers to compress documents, 
however, we were able to perform this experiment since we had control over the par-
ticipating Web servers. 



In the three new UCYMicra variations, the Migrating Crawlers differ in perform-
ing: 
1. Neither data processing nor compression. In this variation, the Migrating Crawlers 

transmit to the Coordinator subsystem the entire contents of a Web server unproc-
essed (no keyword index generated) and uncompressed. This variation emulates 
traditional crawling by using the Data Carriers to move the data instead of the re-
mote HTTP GET requests and HTTP response headers. In this case, none of the 
capabilities of the Migrating Crawlers is exploited (other than continuous monitor-
ing). 

2. Data processing but not compression. In this variation, the Migrating Crawlers 
transmit to the Coordinator subsystem the uncompressed keyword index. 

3. Compression but no data processing. In this variation, the Migrating Crawlers 
transmit to the Coordinator subsystem the entire contents of a Web server com-
pressed but not processed. 

46.9

6.9

48.1

13.3
8.1

2.6

0
5

10
15
20

25
30

35
40
45

50

D
at

a 
Tr

an
sf

er
ed

 (M
B)

Traditional Crawling
Traditional Crawling Compressed
UCYMicra: Uncompressed Unprocessed
UCYMicra: Uncompressed Processed
UCYMicra: Compressed Unprocessed
UCYMicra: Compressed Processed

 

Fig. 5. Analytical performance results for size of transferred data 

Figure 5 displays the analytical performance results for size of transferred data 
along with the initial performance results of Figure 3. Column 1 displays the initial 
results for the traditional crawling (with no compression). Column 6 displays the ini-
tial results for UCYMicra (with both processing and compression). 

 As seen in the results, it is clear that UCYMicra has to perform either processing 
(Column 4) or compression (Column 5) in order to outperform traditional crawling. 
However, both must be performed (Column 6: the original UCYMicra) in order to 
outperform the variation of the traditional crawling that downloads the Web docu-
ments compressed (Column 2). 



The UCYMicra unprocessed-uncompressed variation (Column 3) that emulates 
traditional crawling is outperformed by traditional crawling (Column 1).  This is be-
cause the execution code of all the Data Carriers that are dispatched to move the data 
is added to the total data size, which finally exceeds that of the traditional crawling. 

Figure 6 displays the analytical performance results for the total time required for 
crawling. 

763

610 414

190
106 70

0

100

200

300

400

500

600

700

800

C
om

pl
et

io
n 

Ti
m

e 
(m

s

Traditional Crawling
Traditional Crawling Compressed
UCYMicra: Uncompressed Unprocessed
UCYMicra: Uncompressed Processed
UCYMicra: Compressed Unprocessed
UCYMicra: Compressed Processed

 

Fig. 6. Analytical performance results for total time required for crawling 

In spite of the small size of transferred data that the traditional crawling with com-
pression variation generates, our analytical experiments still prove its inefficiency in 
downloading Web documents with subsequent HTTP GET requests (Column 2). Even 
in the absence of remote compression and processing, UCYMicra outperforms the 
traditional crawling variation (with compression) since it transmits Web documents in 
a batched manner using the Data Carriers (Column 3). 

6   Advantages of UCYMicra 

As seen in the previous Section, UCYMicra outperforms traditional crawling without 
compression by a factor of ten in network utilization and total time required to per-
form crawling. Besides the performance gains, UCYMicra is a scalable distributed 
crawling architecture based on the mobile agents technology. More specifically, by 
delegating the crawling task to the mobile agent units, UCYMicra: 
• Eliminates the enormous processing bottleneck from the search engine site. Tradi-

tional crawling requires that additional machines be plugged in to increase process-



ing power, a method that comes at a great expense and cannot keep up with the 
current Web expansion rate and the document update frequency. 

• Reduces the use of the Internet infrastructure and subsequently downgrades the 
network bottleneck by an order of magnitude. By crawling and processing Web 
documents at their source, we avoid transmission of data such as HTTP header in-
formation, useless HTML comments, and JavaScript code. In addition, data is 
compressed before transmission, which is an option that cannot be forced by tradi-
tional crawlers. 

• Keeps up with document changes. Migrating Crawlers monitor Web document for 
changes at their source and updates are immediately dispatched to the Coordinator 
subsystem. With traditional crawling, several weeks may pass before a Web site is 
revisited. 

• Employs Time Realization. Migrating Crawlers do not operate on their hosts dur-
ing peak time. As mentioned earlier, our approach requires from the administrator 
to define the permissible time spans for the crawlers to execute. 

• Is upgradeable at real time. Newly developed crawling, processing, or compression 
code can be deployed over the entire UCYMicra since its crawling architecture is 
based on Java mobile agents. 

7   Conclusions and Future Work 

In this paper, we have presented a distributed crawling approach based on mobile 
agents. Our approach is streamlined not only in improving crawling performance, but 
also in handling Web document updates by performing onsite monitoring. UCYMicra 
presents a complete distributed crawling architecture that is efficient, flexible and 
quite scalable. 

Our ongoing work focuses in extending UCYMicra to support a hybrid crawling 
mechanism that borrows technology from both the traditional and the fully distributed 
crawling system. Such a hybrid crawling system will support a hierarchical manage-
ment structure that considers network locality, and will be able to perform traditional 
crawling in a completely distributed manner. Efficient algorithms for work delega-
tion, administration, and result integration are currently under development. 

8   References 

1. Altavista Search Engine, Basic submit, Available at http://addurl.altavista.com/addurl/new 
2. S. Ahuja, N. Carriero and D. Gelernter: Linda and Friends. IEEE Computer 19 (8), 1986, pp. 

26-34. 
3. S. Brin, and L. Page: The Anatomy of a Large-Scale Hypertextual Web Search Engine. In 

WWW7, Brisbaib, April 1998. 
4. C. M. Brown, B. B. Danzig, D. Hardy, U. Manber, and M. F. Schwartz: The harvest infor-

mation discovery and access system. In WWW2, Chicago, October 1994. 
5. C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F. Schwartz: Harvest: A 

Scalable, Customizable Discovery and Access System. Technical Report CU-CS-732-94, 
Department of Computer Science, University of Colorado, August 1995. 



6. S. Chakrabarti, M. van den Berg, B. Dom. Focused Crawling: A New Approach to Topic-
Specific Web Resource Discovery. WWW8 / Computer Networks 31(11-16): 1623-1640 
(1999). 

7. S. Chakrabarti, K. Punera, and M. Subramanyam: Accelerated Focused Crawling through 
Online Relevance Feedback. In WWW2002, Hawaii, May 2002. 

8. D. Chess, C. Harrison, and A. Kershenbaum: Mobile Agents: Are They A Good Idea? IBM 
research. 

9. J. Cho, H. Garcia-Molina, Parallel Crawlers: In WWW2002, Hawaii, May 2002. 
10. M. Diligenti, F. Coetzee, S. Lawrence, C. L. Giles, and M. Gori: Focused Crawling Using 

Context Graphs. VLDB 2000: 527-534. 
11. J. Fiedler and J. Hammer: Using the Web Efficiently: Mobile Crawling. In Proc. of the  

Seventeenth Annual International Conference of the Association of Management 
(AoM/IAoM) on Computer Science, Maximilian Press Publishers, pp. 324-329. San Diego, 
CA, August 1999. 

12. J. Fiedler and J. Hammer: Using Mobile Crawlers to Search the Web Efficiently. Interna-
tional Journal of Computer and Information Science, 1:1, pp. 36-58, 2000. 

13. Google Search Appliance. Available at http://www.google.com/services/. 
14. Grub Distributed Internet Crawler. Available at www.grub.org. 
15. A. Heydon, M. Najork: Mercator: A Scalable, Extensible Web Crawler. Compaq Systems 

Research Center. In WWW9, Amsterdam, May 2000. 
16. Hypertext Transfer Protocol – HTTP/1.0, specification. Available at http://www.w3.org/. 
17. B. Kahle: Achieving the Internet. Scientific American, 1996. 
18.G. Karjoth, N. Asokan, C. Gulcu: Protecting the Computation Results of Free Roaming 

Agents. Second International Workshop on Mobile Agents, MA'98, LNCS-1477, 1998. 
19. S. Lawrence, C. Lee Giles: Accessibility of information on the web. Nature, 400(6740):107 

–109, July 1999. 
20. P. Lyman, H. Varian, J. Dunn, A. Strygin, and K. Swearingen: How much information? 

Available at http://www.sims.berkeley.edu/how-much-info. 
21. T. Sander and C. F. Tschudin: Towards Mobile Cryptography. In Proc. of the 1998 

IEEE Symposium on Research in Security and Privacy, USA. 
22. SETI: Search for Extraterrestrial Intelligence. Available at 

http://setiathome.ssl.berkeley.edu/. 
23. V. Varadharajan. Security enhanced mobile agents: ACM Conference on Computer and 

Communications Security 2000: 200-209 
24. Voyager Web site, by ObjectSpace. Available at 

http://www.recursionsw.com/products/voyager/voyager.asp. 
25. N. Yoshioka, Y. Tahara, A. Ohsuga, S. Honiden: Security for Mobile Agents. AOSE 2000: 

223-234. 
 


