IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

Decentralized Probabilistic Text Clustering

Odysseas Papapetrou, Wolf Siberski, and Norbert Fuhr

Abstract—Text clustering is an established technique for improving quality in information retrieval, for both centralized and
distributed environments. However, traditional text clustering algorithms fail to scale on highly distributed environments, such
as peer-to-peer networks. Our algorithm for peer-to-peer clustering achieves high scalability by using a probabilistic approach
for assigning documents to clusters. It enables a peer to compare each of its documents only with very few selected clusters,
without significant loss of clustering quality. The algorithm offers probabilistic guarantees for the correctness of each document
assignment to a cluster. Extensive experimental evaluation with up to 1 million peers and 1 million documents demonstrates the

scalability and effectiveness of the algorithm.

Index Terms—Distributed clustering, text clustering

1 INTRODUCTION

Text clustering is widely employed for automatically
structuring large document collections and enabling
cluster-based information browsing, which alleviates
the problem of information overflow. It is especially
useful in highly distributed environments such as dis-
tributed digital libraries [1] and peer-to-peer (P2P) in-
formation management systems [2], since these envi-
ronments operate on large-scale document collections,
scattered over the network. Existing P2P systems also
employ text clustering to enhance information re-
trieval efficiency and effectiveness [3], [4], [5]. Hence,
a distributed clustering algorithm that scales to large
networks and large text collections is required.

Most existing text clustering algorithms are de-
signed for central execution. They require that clus-
tering is performed on a dedicated node, and are not
suitable for deployment over large scale distributed
networks. Therefore, specialized algorithms for dis-
tributed and P2P clustering have been developed,
such as [6], [7], [8], [9]. However, these approaches
are either limited to a small number of nodes, or they
focus on low dimensional data only.

In this work, we are particularly interested in sys-
tems where the content distribution is imposed by
their nature, such as P2P desktop sharing systems [2],
distributed digital libraries [1], and mainstream file
sharing P2P networks. Clustering in such networks
is challenging, firstly because the data is inherently
distributed and no participant has the capacity, or
willingness, to collect and process all data, and sec-
ondly, because of the high churn rate, affecting avail-

o O. Papapetrou and W. Siberski are with L3S Research Center, Han-
nover, Germany.
E-mail: {papapetrou, siberski}@L3S.de

o N. Fuhr is with the Faculty of Engineering Sciences, University of
Duisburg-Essen, Germany.
E-mail: norbert.fuhr@uni-due.de

o Accepted at 24th April, 2011. Copyright held by IEEE, Transactions
of Knowledge and Data Engineering. The printed version will appear
at http:/fwww.computer.org/portal/web/tkde/

ability of content and of computational nodes. For
these systems, we require a P2P algorithm that can
cluster distributed and highly dynamic text collec-
tions, without overloading any of the participating
peers, and without requiring central coordination.

A key factor to reduce network traffic in these
systems is to reduce the number of required com-
parisons between documents and clusters. Our ap-
proach achieves this by applying probabilistic prun-
ing: Instead of considering all clusters for comparison
with each document, only a few most relevant ones
are taken into account. We apply this core idea to
K-Means, one of the frequently used text clustering al-
gorithms. The proposed algorithm, called Probabilistic
Clustering for P2P (PCP2P), reduces the number of
required comparisons by an order of magnitude, with
negligible influence on clustering quality.

In the following section, we review the basic
algorithms employed by PCP2P. Section 3 gives
an overview of existing distributed clustering ap-
proaches. In Sections 4 and 5 we introduce PCP2P
and the corresponding cost analysis. We present the
probabilistic analysis in Section 6, and show how
PCP2P is parameterized to achieve a desired correct-
ness probability. In Section 7 we experimentally verify
the scalability and quality of PCP2P, with setups of up
to 1 million peers and 1 million documents, using real
and synthetic data. We conclude in Section 8.

2 BACKGROUND

In this section we briefly describe the infrastructure
and algorithms used by PCP2P.

Distributed Hash Tables. PCP2P relies on a Dis-
tributed Hash Table (DHT) infrastructure. DHTs pro-
vide efficient hash table capabilities in a P2P envi-
ronment by arranging peers in the network according
to a specific graph structure, usually a hypercube.
DHTs offer the same functionality as their standard
hash table counterparts, a put (key, value) method,
which associates value with key, and a get (key)
method, which returns the value associated with key.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

Algorithm 1 DKMeans

1: allClusters <+ find AllClusters()
2: for Document d in my documents do
3: for Cluster c in allClusters do

4: Send termVector(d) to ClusterHolder(c)
5: Sim[c] « Retrieve similarity(d,c)

6: end for

7: Assign(d, argmax. Sim[c])

8: end for

Both methods induce a cost of O(log(n)) messages,
where n is the number of peers. Existing DHT in-
frastructures, like Chord [10], P-Grid [11], Pastry [12],
have methods to perform load balancing and to ad-
dress node failures, such that the index does not
suffer from bottlenecks and is robust to churn. Our
implementation uses Chord [10], but any other DHT
could be employed as well.

Document model. Similar to most clustering algo-
rithms, PCP2P represents the documents and clus-
ters using the Vector Space Model [13]. For docu-
ment d and term ¢, we denote the frequency of ¢
in d with TF(t,d). As usual, we apply term stem-
ming and stopword filtering to reduce the document
model sizes and allow for more meaningful clustering.
Since the Vector Space Model represents clusters and
documents as high-dimensional vectors, all standard
norms can be used for computing the vector length.
The ones most interesting for data mining, which are
frequently used for normalizing the term frequencies,
are the L1-Norm and the L2-Norm. The L1-Norm of a
cluster or document z is denoted as |z|; and is defined
as the sum of all term frequencies in the cluster/doc-
ument, |z|; =), TF(t,z). The L2-Norm is denoted
as |z| and defined as |z| = /)., TF(t,).

K-Means Clustering. K-Means, which we approxi-
mate with PCP2P, is one of the most frequently used
clustering algorithms because of its low complexity
(linear in the number of documents) and high clus-
tering quality, particularly for text clustering [14].
The basic K-Means algorithm can be summarized
as follows: (1) Select k£ random starting points as
initial centroids for the k clusters. (2) Assign each
document to the cluster with the nearest centroid. (3)
Recompute the centroid of each cluster as the mean
of all cluster documents. (4) Repeat steps 2-3 until a
stopping criterion is met, e.g., no documents change
clusters anymore.

DKMeans Clustering. A direct distribution of cen-
tralized clustering algorithms does not scale to large
networks. We still sketch such an approach here,
to point out where our optimizations take place.
Like its centralized counterpart, distributed K-Means
(DKMeans) requires maintaining the cluster centroids,
and comparing all documents to all clusters to deter-
mine the best cluster. In DKMeans, the responsibility
of maintaining each cluster centroid is assigned to
a randomly selected peer, called cluster holder. As

in K-Means, each cluster holder selects a random
document as initial centroid. Clustering is performed
as follows (cf. Algorithm 1): A peer first identifies all
cluster holders, e.g., using a DHT index (Line 1). Then,
for each of its documents, it sends its term vector to
each cluster holder for comparison with the centroid
and receives a similarity score (Lines 4, 5). It then
assigns the document to the most similar cluster, by
notifying the respective cluster holder (Line 7).

DKMeans requires that at each clustering iteration,
all documents are sent over the network to all cluster
holders, for comparison. This clearly prohibits the
algorithm to scale. In Section 4 we show how PCP2P
addresses this issue by drastically reducing the num-
ber of required comparisons.

3 RELATED WORK

Several algorithms for parallelizing K-Means have
been proposed, e.g., [15], to harness the power of
multiple nodes for the clustering of large datasets.
These however assume a controlled network or a
shared memory architecture, and are not applicable
for P2P, where these assumptions do not apply.

Several works focus on P2P text clustering [16], [17],
[6], [7], [8], [9], [18]. Eisenhardt et al. [7] proposed one
of the first P2P clustering algorithms. The algorithm
distributes K-Means computation by broadcasting the
centroid information to all peers. However, due to
this centroid broadcasting, it does not scale to large
networks. Hsiao and King [9] avoid broadcasting by
employing a DHT to index all clusters using manu-
ally selected terms. This approach requires extensive
human interaction for selecting the terms, and the
algorithm cannot adapt to new topics.

Hammouda and Kamel [8] propose a hierarchical
topology for distributing K-Means. Clustering starts
at the lowest level of the hierarchy, and the local
solutions are aggregated until the root peer is reached.
This algorithm has the disadvantage that cluster-
ing quality decreases noticeably for each aggregation
level, because of the random grouping of peers at
each level. Therefore, quality decreases significantly
for large networks. Already for a network of 65 nodes
organized in three levels, the authors report a drastic
drop in quality; the entropy measure for clustering
the RCV1 dataset rises to 0.7, compared to 0.35 for a
centralized K-Means. For more levels, the entropy al-
most reaches 1, denoting a random grouping. In [19],
another distributed clustering algorithm is proposed,
where peers exchange cluster summaries containing
extracted key phrases from the cluster. Even though
these summaries are compact, each peer needs to send
them to all other peers, requiring O(n?) messages
for a network of size n. This approach is therefore
only suitable for very small networks (the reported
experiments are with up to 7 nodes, and with less
than 20 thousand documents).

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

The state of the art in P2P clustering is the proposal
of Datta et al. [17], [6]. In particular, the authors
proposed LSP2P and USP2P, two P2P approximations
of K-Means. LSP2P uses gossiping to distribute the
centroids. In an evaluation with 10-dimensional data,
LSP2P achieved an average misclassification error of
less than 3%. However, as we show in Section 7,
when it comes to clustering text, LSP2P fails because
it is based on the assumption that data is uniformly
distributed among the peers, i.e.,, each peer has a
representative set of documents from each cluster.
This assumption clearly does not hold for text collec-
tions in P2P networks. The second algorithm, USP2P,
uses sampling to provide probabilistic guarantees,
which however are also based on the same assump-
tion. Furthermore, USP2P requires a coordinating peer
which gets easily overloaded, since it is responsible
for exchanging centroids with a significant number of
peers, for sampling, e.g., 500 peers out of 5500 peers.

A separate research stream is the usage of clustering
to improve query routing efficiency. Peers are clus-
tered by topic, and queries are primarily routed to
members of the right cluster. The first P2P IR systems
employing this approach were [3], and [4]; however,
they do not use a distributed clustering algorithm,
but perform clustering on a dedicated node. Koloniari
and Pitoura [18] use game-theoretic insights to let
the peers form clusters for improved retrieval perfor-
mance. Papapetrou et al. [5] speed up the maintenance
of distributed inverted indices with peer clustering.
Note that these works — in contrast to general-purpose
P2P clustering algorithms — are focused on efficiency
gains and perform clustering on peer granularity
instead of document level. Therefore they are not
suitable for most other clustering applications.

4 PCP2P: PROBABILISTIC CLUSTERING
FOR P2P

We start with a high-level description of the algo-
rithm, followed by a detailed explanation of each step.

In PCP2P, a peer undertakes up to three different
roles (Fig. 1). First, it serves as document holder, i.e.,
it takes care of clustering its documents. Second, it
participates in the underlying DHT by holding part
of the distributed index, and routing DHT lookup
messages. Third, a peer may become a cluster holder,
i.e.,, maintain the centroid and document assignments
for one cluster.

PCP2P consists of two parallel activities, cluster
indexing and document assignment. Cluster indexing is
performed by the cluster holders. In regular intervals,
these peers create compact cluster summaries and
index them in the underlying DHT, using the most
frequent cluster terms as keys. The second activity,
document assignment, consists of two steps, preselec-
tion and full comparison. In the preselection step, the
peer holding d retrieves selected cluster summaries

Algorithm 2 PCP2P: Clustering the documents

1: for Document d in my documents do
PRESELECTION STEP:
CandClusters < CandidateClustersFromDHT)()
FULL COMPARISON STEP:
RemainingClusters < FilterOut(CandClusters)
for Cluster ¢ in RemainingClusters do
Send termVector(d) to ClusterHolder(c)
Sim[c] < Retrieve similarity(d,c)
end for
Assign(d, cluster with maximum similarity)
end for

»

from the DHT index, to identify the most relevant
clusters (Alg. 2, Line 2). Preselection already filters
out most of the clusters. In the full comparison step, the
peer computes similarity score estimates for d using
the retrieved cluster summaries. Clusters with low
similarity estimates are filtered out (Line 3), and the
document is sent to the few remaining cluster holders
for full similarity computation (Lines 4-7). Finally, d
is assigned to the cluster with the highest similarity
(Line 8). This two-stage filtering algorithm reduces
drastically the number of full comparisons (usually
less than five comparisons per document, indepen-
dent of the number of clusters). Both cluster indexing
and document assignment are repeated periodically
to compensate churn, and to maintain an up-to-date
clustering solution.

The algorithm enables controlling the tradeoff be-
tween the network cost and the clustering quality. In
particular, the cluster indexing activity, as well as the
preselection and full comparison steps, are configured
using the results of a probabilistic analysis, thereby
providing probabilistic guarantees that the resulting
clustering solution exhibits nearly the same quality
as centralized clustering.

In the next section, we further describe the process
of indexing the cluster summaries. In Section 4.2 we
look into the document assignment process, whereas
in Section 4.3 we present three filtering strategies.
Section 4.4 discusses further aspects of the algorithm.

4.1 Indexing of Cluster Summaries

Cluster holders are responsible for indexing the sum-
maries of the clusters in the DHT. Particularly, each
cluster holder periodically recomputes the cluster cen-
troid, using the documents assigned to the cluster at
the time. It also recomputes a cluster summary and
publishes it to the DHT index, using selected cluster
terms as keys. As we explain later, this enables peers
to efficiently identify the relevant clusters for their
documents. For this identification, it is sufficient to
consider the most frequent terms of a cluster ¢ as
keys, ie., all terms ¢ with TF(t,c) > CluTl'Fp,;,(c),
where CluT F,,;n(c) denotes a frequency threshold for
c. We use TopTerms(c) to denote the set of these

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

STEPS DHT Cluster Roles of Peer 1
1. DHT Lookup for top Inverted Index /| DocumentHolder [DH...
terms ofd For each document d:
2. Retrieve all relevant
@ [Term |Freq
clusters E Tonnis| 5
3. Compare d with top]
o ||/ Sports| 3
relevant clusters 3 S Wolley |2
4. Assign d to best cluster 4 = y

“Roles of Peer 6
Docum..| DHT... ClusterHolder
Centroid for Cluster 6

Roles of Peer 2
Docum..; DHT Participant (Clust...
Holder for key ‘tennis’ in

» |Term |Freq cluster inverted index

E (|Tennis [17 Clusters for term ‘tennis’

2 < [Hockey|16 i || Cluster 6 Score:17 Holder:P6 ...
§ Volley |11 \|[Cluster 5 Score:14 Holder:P5 ...

Fig. 1. PCP2P: System overview

terms. Note that TopTerms(c) does not include stop-
words; these are already removed when building the
document vectors. For illustration purposes, for the
remainder of this section we assume that CluT F,,;,(c)
is known. In Section 6 we explain how the optimal
value for this threshold is derived, such that the al-
gorithm satisfies the desired probabilistic guarantees.
The cluster summary includes: (1) all cluster terms
in TopTerms(c) and their corresponding T'F values,
(2) CluTF,,in(c), and, (3) the sum of all term fre-
quencies (the L1-norm), cluster length (the L2-norm),
and number of distinct cluster terms. We choose
not to normalize the term frequencies with inverse
document frequencies (IDF), because of the high cost
associated for maintaining an IDF index over a P2P
network, compared to the low influence in cluster-
ing quality [20]. Nevertheless, existing techniques for
estimating IDF, such as [21], [22], or techniques to
circumvent the lack of IDF, such as using the Inverse
Peer Frequency [23] can also be combined with PCP2P.
To avoid overloading, each cluster holder selects
random peers to serve as helper cluster holders, and
replicates the cluster centroid to them. Their IP ad-
dresses are also included in the cluster summaries, so
that peers can randomly choose a helper for compar-
ing their documents with the cluster centroid with-
out going through the cluster holder. Communication
between the master and helper cluster holders only
takes place for updating the centroids; therefore, load
balancing does not impede the system scalability.

4.2 Document Assignment to Clusters

Each peer is responsible for clustering its documents
periodically. Clustering of a document consists of
two steps: (a) the preselection step, where the most
promising clusters for the document are detected, and,
(b) the full comparison step, where further clusters are
filtered out, and the document is fully compared with
the remaining clusters and assigned to the best one.
Preselection step. Consider a peer p, clustering a
document d. Let TopTerms(d) denote all terms in d
with TF(t,d) > DocTF,in(d), where DocTF,,;,(d)
denotes a frequency threshold for d (we explain how

DocT'F,,;, is derived in Section 6). For each term
t in TopTerms(d), p performs a DHT lookup to
find the peer that holds the cluster summaries for
t (Fig. 1, Step 1). It then contacts that peer directly
to retrieve all summaries published using ¢ as a key
(Step 2). To avoid duplicate retrieval of summaries, p
executes these requests sequentially, and includes in
each request the cluster ids of all summaries already
retrieved. All responses are then merged, and a list
with the retrieved cluster summaries is constructed.
We refer to this list as the preselection list, and denote
it with Cpye.

As we will show later, the summary of the optimal
cluster for d is included in Cp,. with high probability.
This probability can be determined by choosing the
value of DocTF,,;, for each document, and the value
of CluT F,,;y, for each cluster. In Section 6 we explain
how peers decide on these values automatically, such
that the desired probabilistic guarantees are satisfied.

Full comparison step. Peer p then sends the term
vector of d to the candidate cluster holders for per-
forming full document-cluster comparison, and re-
trieves the comparison results (Fig. 1, Step 3). To avoid
sending the document to all cluster holders in C,,. for
comparison, p uses the cluster summaries contained
in Cpre to filter out the clusters not appropriate for
the document at hand. In the following section we
describe three different strategies for this task. Finally,
p assigns d to the most similar cluster, and notifies the
respective cluster holder (Fig. 1, Step 4).

4.3 Filtering Strategies

We propose three different strategies to filter out
clusters from C,,.: (a) Conservative, (b) Zipf-based,
and (c) Poisson-based filtering. All strategies employ
the information contained in the retrieved cluster
summaries to estimate the cosine similarity between a
document and each of the clusters, and to filter out the
unpromising clusters based on this estimation. The
conservative strategy makes a worst-case similarity
estimation, which guarantees that the optimal cluster
from the ones in C,,. will be detected. The Zipf-based
and Poisson-based strategies filter out the clusters
more aggressively, reducing the network cost substan-
tially, at the expense of a small error probability.

Conservative Filtering. This strategy works similar
to Fagin’s No Random Access (NRA) algorithm for
top-k selection [24]: clusters whose maximum possible
score is less than the best already known score are
removed from the candidate clusters.

In our case the actual score is the cosine similarity
between document and cluster centroid, defined as

TF(t,d) x TF(t,
Cos(d,c) = 2; (t’|d)| g " L (1)
te

where |d| and |c| are the corresponding L2-Norms,
and TF denotes the term frequency of the term in
the document/cluster.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

Since the actual value of Cos(d,¢) is not available,
conservative filtering employs the information con-
tained in the cluster summaries to estimate the cosine
similarity between the document and each candidate
cluster, denoted as ECos(d,c). To ensure that the
optimal cluster will not be filtered out, conservative
filtering sets the value of ECos(d, ¢) to the maximum
possible value for the actual similarity Cos(d, ¢).

The similarity estimate relies on term frequency
estimates for all document terms not included in the
cluster summary. It is computed according to the
following constraints: (a) each term not included in
the summary of a cluster ¢ has a term frequency of
at most CluTF,,;n(c) — 1, otherwise it would have
been included in the summary, and, (b) the sum of
all estimated term frequencies in the cluster cannot
exceed the actual cluster length. Precisely, let ¢4, ..., ¢,
denote the terms of d, sorted descending on their
frequency. For cluster ¢ and term ¢, we denote the
estimated term frequency as ETF(t,c).

Then, cosine similarity is estimated as

"\ TF(ty,d) x ETF(t,,c)

ECos(d,c) = ; a1 2)
Particularly for the conservative strategy,
ETF(t;,c) is computed as follows:
TF(tz,c) if t, € TopTerms(c)
ETF(ty,c) = { min(CluT Foin(c) — 1,

le|, — ST(c) — SE(tz,c)) otherwise

where |c|, denotes the L1-Norm of the cluster terms.
ST(c) = X ieropTerms(e) LT F(t; ¢) is the sum of cluster
frequencies for all terms included in TopTerms(c),
and SE(t;,c) = Zz;i ETF(ty,,c) is the sum of all
term frequencies for ¢ estimated up to now.

The filtering process works as follows. Peer p sends
the compressed document vector to the first cluster
holder in Cp.., denoted as cseiected, and retrieves
the actual cosine similarity Cos(d, csejecteq)- It then
removes from Cp,. the summary of cgejected, as well
as the summaries of all clusters with estimated sim-
ilarity ECos(d,c) < Cos(d, cseiecteda). The process is
repeated until Cp,. is empty. The document is finally
assigned to the cluster with the highest cosine sim-
ilarity. Since the expected cosine similarity is never
underestimated, conservative strategy always assigns
the document to the optimal cluster.

For the process to complete faster, the list of clusters
is sorted based on their lower bound for the cosine
similarity. This bound per cluster is computed from
the information included in the corresponding cluster
summary. We call this the partial cosine similarity:

5 TF(t,d) x TF(t,c)

PCos(d,c) = ¥
VteTopTerms(c)

®)

Zipf-based filtering. Although conservative filter-
ing substantially reduces the number of comparisons,

it is based on a worst-case estimate for the cosine
similarity. A more optimistic estimate, which allows
for further reductions, can be derived based on the
assumption that the term frequencies in the cluster
follow a Zipf distribution. A term frequency estimate
for the cosine similarity based on the Zipf distribution
is computed as follows:

TF(ts,c)
min(le|, /(r(t, ¢)° X Hpr(c).s),
lel, = ST (¢) = SE(tz;)

if t, € TopTerms(c)
ETF(t,,c) =

otherwise

DT(c) denotes the number of distinct terms in ¢,
and Hpr(,s the generalized harmonic number of
order DT'(c) of s, i.e., Zi’f;(c) i~*¢. Assuming that term
frequencies follow a Zipf distribution with exponent
s, the expected term frequency of ¢ in ¢ is given by
le|, /(r*xHpr,s), where r(t, c) represents the estimated
rank of ¢ in c. The ranks of missing terms are esti-
mated as follows: the i-th document term that is not
included in TopTerms(c) is assumed to exist in the
cluster centroid, with rank r = |TopTerms(c)| + .

Apart from the definition of ETF(t,c), Zipf-based
filtering is identical to conservative filtering.

Poisson-based filtering. This strategy follows a dif-
ferent approach for pruning the candidate clusters,
which allows for probabilistic guarantees, and for a
tradeoff between clustering quality and network cost.
The strategy is based on the assumption that the score
of each term ¢ across all documents follows a Poisson
distribution, where the score of a term represents
the term frequency normalized on the document’s
length, i.e., TF(t)/|d|. Poisson distribution is often
used, e.g., [25], as it provides a reasonable fit for the
term scores, and it has some convenient properties,
which will be discussed in Section 6.5.

Note that the Poisson distribution model does not
contradict the well accepted Zipf model for term
frequencies within a single cluster, since the two
distributions model two discrete concepts.

Consider peer p, which has already retrieved C,,.
for document d. First, p computes the partial cosine
similarity PCos(d,c) for each cluster ¢ € Cp.. For
the cluster cmap with the best partial cosine sim-
ilarity, it sends d to the cluster holder and com-
putes the full cosine similarity Cos(d, cmaxp). Then, p
estimates the remaining cosine similarity RCos(d, c)
for all other clusters ¢ € Cpe, ie., the difference
between the actual cosine similarity Cos(d, ¢) and the
partial cosine similarity PCos(d, c¢). Instead of estimat-
ing RCos(d,c) directly, which would be inefficient,
the peer computes the Probability Density Function
(PDF) describing RCos(d, ¢), which allows computing
the probability that RCos(d,c) is above a threshold.
In particular, as we show in Section 6.5, RCos(d, c)
follows a Poisson distribution with parameter A =
Zted\TopTerms(c) TF(t7d) X Avgsc(t7CPT€)/|d|/ where

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

AvgSc(t,Cpyre) is defined as:

{TF(t7 c)/|c| if t € TopTerms(c)

CluT Fppin (c)—1
[l

AvgSc(t,Cpre) = Z

otherwise
Ve € Cpre

Using this distribution, peer p can compute the prob-
ability that RCos(d,c) exceeds any value Z € [0,1].
This probability is (Section 6.5):

m

>

| e |

with MaxSc = %@_1

Following, p discards all clusters ¢ € C,. for
which the remaining cosine similarity is less than
the difference diff = Cos(d, cmaxp) — PCos(d,c) with
high probability. In particular, for a required cor-
rectness probability Prys, clusters are discarded if
Pr[RCos(d,c) < diff | > Prgs. The optimal cluster
for the document is therefore kept with a probability
higher than Pry,. Peer p sends d to the remaining
candidate clusters for cosine similarity computation,
and assigns the document to the cluster with the
highest cosine similarity.

Compared to conservative filtering, Poisson-based
filtering discards clusters more aggressively, and thus
reduces the required cosine similarities substantially.
Its main benefits compared to Zipf is that it allows for
controlling the tradeoff between cost and clustering
quality, and provides probabilistic guarantees. There-
fore, it can reduce network usage significantly, while
still exhibiting a low and predictable error probability.

exp(—A) X —

Pr[RCos(d,c) > Z] < ;
i!

4.4 Further aspects

In this section we describe how PCP2P is initialized,
and how it addresses churn.

Initialization. There are different possible ways of
initialization. The easiest one assumes that a peer
from the network starts the algorithm by selecting
k peers randomly to act as cluster holders. These
cluster holders choose one of their documents as
initial centroid, and publish the cluster summary to
the DHT. Then, the initiating peer uses broadcasting
over DHT to notify all participating peers to start
clustering. In a continuously clustering network, e.g.,
[3], initialization incurs only at the begining, and the
clusters are maintained for the lifetime of the network.

Churn. Cluster indexing and document assignment
are repeated periodically to compensate churn. No
synchronization is required between the peers. Clus-
ter holders rebuild the cluster centroids in regular
intervals, i.e., every m minutes. They include in the
centroids only documents that were assigned to them
during the last interval. Therefore, if a peer gets dis-
connected, its documents are automatically removed
from the clusters within the next interval. Peers re-
cluster their documents also every m minutes. Hence,
each document belongs to exactly one cluster at any

time, and cluster centroids are at most m minutes
stale. In case a cluster holder is disconnected unex-
pectedly, one of its helper cluster holders replaces it,
without information loss. If there is no helper cluster
holder, the next peer detecting the absense of the
cluster holder, i.e., a peer that has already clustered a
document to it, becomes the cluster holder, re-seeds
the cluster with one of its documents, and updates
the cluster inverted index accordingly.

5 CoOST ANALYSIS

The network cost is composed of: (a) indexing the
cluster summaries, (b) the preselection step for each
document, and, (c) the full comparison step.

Indexing of the summaries requires performing a
DHT lookup for each term in T'opTerms(c), and pub-
lishing the summaries. The corresponding indexing
cost per cluster is Cost;n,q = O(|TopTerms(c)|xlog(n)),
both with respect to transfer volume and number of
messages. This cost is easily manageable by the cluster
holders, since |T'opTerms(c)| is usually small, e.g., an
average of 66 in the experiments with 100 clusters
presented in Section 7.

The preselection step is executed for each document
d, and causes |TopTerms(d)] DHT lookups, which
translate to a cost of Cost,, = O(|TopTerms(d)| x
log(n)) messages. With respect to transfer vol-
ume, preselection requires O(|TopTerms(d)| x log(n))
for looking up the document TopTerms, and
O(>_.,ec,.. I TopTerms(c;)|) for retrieving the sum-
maries, where C,,. denotes the clusters retrieved at
the preselection step. The cardinality of T'opTerms(d)
is also small. For example, for correctness probability
Prye = 0.8, the average cardinality was 6.6, whereas
for Pry, = 0.95, which yields practically the same
quality as the exact counterpart, it was only 8.9.

Finally, the full comparison step requires sending
the document to all remaining candidate clusters. Let
Cscs denote the set of these clusters for d. The full
comparison step requires Costss = O(|Cy.s|) messages.
With respect to transfer volume, this step incurs a cost
TV Costgs = O(|Ces| x |d|).

The cost of indexing the cluster summaries is neg-
ligible, because the number of clusters is small, and
their summaries are very compact. The dominating
cost, both with respect to number of messages and
transfer volume, is the one incurred for assigning
documents to clusters, namely Costy, + Costgs. Per
document, this cost has the following properties: (a)
it scales logarithmically with the number of peers, be-
cause DHT access cost grows logarithmically, and (b)
it is independent of the size of the document collec-
tion. It also depends on |Cy.s|, which is by definition
at most equal to the number of clusters. Therefore,
the clustering cost per document scales, in the worst
case, linearly with the number of clusters. However,
our experimental evaluation shows that the number
of clusters in Cy., is very small, and independent of

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

the total number of clusters k. Therefore, in practice,
this cost grows at a much slower rate than linear. This
means that PCP2P scales to large networks, and with
large numbers of documents and clusters.

6 PROBABILISTIC ANALYSIS

For Section 4, we have assumed that the optimal
values for CluT F,,;,(¢) and DocT Fy,;,,(d) are known.
We now describe how each peer computes these
values dynamically to satisfy the desired system-
wide clustering quality requirements, expressed using
probabilistic guarantees.

The analysis uses a probabilistic document genera-
tion model [26], [27]. Briefly, the model assumes that
each document belongs to a topic 7, and each topic
7T; is described by a term probability distribution ¢; (a
language model). Composite topics are also possible.
A document of length [belonging to 7; is created by
randomly selecting I terms with replacement from ¢;.
The probability of selecting a term ¢ is given by the
topic distribution ¢;.

6.1

The user initiating the algorithm chooses the desired
system quality, in terms of the required probability
Preorrect that each document is assigned to the optimal
cluster. The other system parameters are determined
automatically from PCP2P. Specifically, Preoprect de-
termines the following three system parameters: (a)
Prinq, which represents the probability that the sum-
mary of each cluster ¢; is indexed in all Top(«, ¢;), (b)
Pryre, expressing the probability that the preselection
step for a document retrieves the optimal cluster for
this document, and, (c) Prys, which is the probability
that the full comparison step retrieves the optimal
cluster. The desired values for these probabilities are
common to all peers, and they are selected automati-
cally such that Prye x Prs > Preoect-

The purpose of the probabilistic analysis is to enable
PCP2P to automatically set Pring, Prpe, and Prys for
the given Pr e, and to configure each step accord-
ingly such that these probabilities are satisfied. First,
during the cluster indexing step, the cluster holder of
each cluster ¢; computes the value of CluTF,,;,(c;)
so that the cluster summary is indexed in all terms
in Top(a, ¢;) with the predefined probability Pr;pg.
In Section 6.3 we show how CluT F,,;, is computed
per cluster such that Pr;,q is satisfied. A document
is clustered correctly when both the preselection and
full comparison step return the best cluster. The two
steps succeed with probabilities Pry. and Prgs, re-
spectively. At the preselection step, the peer holding
document d selects DocT F),,;,(d) so that the optimal
cluster for d is retrieved with probability Pry,. We
explain how DocT F,,,;, is computed in Section 6.4.
Finally, the full comparison step takes place. In this
step, p decides which candidate clusters to filter out

Notations and Overview

k Number of clusters
bq Term distribution of cluster c¢;

Top(cv, ¢s) The set of a terms with highest probability in ¢;
ta i The z term of distribution ¢;, where terms are
sorted by descending probability

Preorrect Desired correctness probability
Pring Probability that the cluster summary is indexed
in all terms in Top(c, ¢;)

Prpre Probability that the preselection step succeeds
Pres Probability that the full comparison step succeeds
TABLE 1
Notations

as non-promising such that the best cluster is found
with probability Prqs. We present the corresponding
probabilistic analysis for this step in Section 6.5.

The following notations are used throughout the
analysis. With C,o := {c1,...,c,} we denote a snap-
shot of clusters on an ongoing clustering. Each cluster
¢i € Cyo follows the language model ¢;. We use
t1[di]s ..., tn[é:] to denote the terms of ¢; sorted by
descending probabilities. With Top(«, ¢;) we denote
the set of a terms with highest probability in ¢;, i.e.,
ti[@i], - .., ta|®:]. Table 1 summarizes the notations.

6.2 Preliminaries

We first derive probabilistic bounds for the estimation
of the term frequency of any term ¢ in a document or
a cluster, given the term frequency distribution of the
document or the cluster. These bounds are required
for the subsequent analysis.

Theorem 1 computes the probability that a term
with a given expected frequency has an actual fre-
quency in the document higher than a given value.

Theorem 1: Given a document d which follows lan-
guage model ¢;. The expected frequency of term ¢
in d according to ¢; is denoted with TF(t,d). For
term t with TAF(t,d) > DocT Fy,ipn, the probabil-
ity of the actual term frequency TF(t,d) exceed-
ing DocTF,;, is at least 1 — exp(—TF(t,d) x (1 —
DocT Frin/TF(t,d))?/2). Furthermore, for a proba-
bility Pry, the frequency of term ¢ in d is at least

[TF(t,d) — \/2 x TF(t,d) x log(+—4—) .

Proof: The proof uses the simplified Chernoff
bound for the lower tail ([28], p. 72), which states
that for any J > 0, the probability of the sum of IV
independent Poisson trials to be less than (1 —¢) x i
is less than exp(—u x §2/2). Symbol p denotes the
expected value for the sum.

We apply the bound to find Pr[TF(t,c;) <
DocT Fy,iy] as follows. For a document d of length
I and for a term ¢, we define binary random variables
Zv,...,Z;, where Z; denotes the event that the i*"
term of d is ¢. As in most language models, we assume
that terms are independent. The expected number of
occurrences of t is denoted by TF(t,d) = ¢;[t] x L.
Then, by Chernoff bounds (lower tail):

Pr(TF(t,d) > DocT Fin) >
1 —exp(—=TF(t,d) x (1 — DocT Fpin,/TF(t,d))?/2)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

For any probability Pry,, the minimum value of
DocT Fy,iy, satisfying Pr[(TF(t,d) > DocTFyn] >
Pr, is:

. R 1
DocT Fin = TF(t,d) — \/2 x TF(t,d) x log(m)
“
Since DocT'F,,;, is a natural number, we take the
floor of the RHS of expression 4 as its value. O
Similarly, Theorem 2 computes the probability of a
term with a given expected term frequency to have a
frequency in the cluster exceeding a given value.

Theorem 2: Given a cluster ¢; which follows lan-
guage model ¢;. The expected term frequency of term
t in ¢; according to ¢; is denoted with TAF(t,ci).
For term t with TAF(t7cZ-) > CluT Fyp, the proba-
bility of the actual term frequency TF(t,¢;) to ex-
ceed CluTF,,;, is at least 1 — exp(=TF(t,¢;) x (1 —
CluT Fppin/TF(t,¢;))?/2). Furthermore, for a proba-
bility Pry, the term frequency of term ¢ in ¢; is at

least | TF(t,c;) — \/2 x TF(t,¢;) x log(1=p:—)].
Proof: We represent clusters as concatenations of
their documents. Since we assume that all documents
in cluster ¢; follow the same language model ¢;, the
cluster also follows ¢;. The equations follow directly

from Chernoff inequality, similar to Theorem 1. O

6.3 Indexing of Cluster Summaries

We now show how cluster holders derive the value
of CluTF;, so that cluster indexing satisfies the
required probabilistic guarantees. Assuming that term
frequencies follow a Zipf distribution (validated, for
example, in [29]) the expected frequency of the a’th
most probable term of ¢; in a given cluster ¢; is
TF(to[di], i) ~ |cil,/(@® x Hy,s) where |¢;|, is the
L1-norm of ¢;, m is the number of distinct terms in c¢;,
and s is the Zipf exponent of ¢, (typically around 1).

Cluster holders are required to publish the cluster
summary using each of the terms in Top(w, ¢;) as a
key, with a probability at least equal to a system-wide
value Pri,g. They find the respective lower bound for
the term frequency of ¢, [¢;] using Theorem 2:

CluT Frin(ta|¢i), ci) = {TAF(ta (@3], ci)—

V2 X TR a0 e x el =) | ©)
All terms t;[¢;] for j < a will have a term fre-
quency in the cluster at least equal to CluT'F},;, with
a minimum probability Pr;. Thus, cluster holders
will detect each term in Top(«, ¢;) with a minimum
probability Pri,g.

In Section 6.6, we describe how the system-wide
values for Pri,y and « are set, and how the Zipf
exponent is estimated.

6.4 Preselection Step

A peer p needs to set the value of DocT'F,,;,, per doc-
ument, which will guarantee that the optimal cluster

for the document is detected in the preselection step
with a probability Pry,. We now describe how this
value is determined.

According to the cluster indexing activity, the clus-
ter holder of ¢; includes in the cluster summary each
term in Top(a, ¢;) with a probability of at least Priy.
Consider a document d which follows ¢;. For the
preselection step to succeed, peer p needs to cor-
rectly identify from d at least one of the terms from
Top(c, ¢;) that were also included in the cluster sum-
mary. In this case, the optimal cluster will be included
in the list of clusters collected in the preselection step.

For a given value of DocT Fy,, and for all j < o,
term t;[¢;] is correctly identified by peer p when
the term frequency of t;[¢;] in d is at least equal
to DocT Fy,in. The probability that this happens is
denoted by Pr[T'F(t,d) > DocT'F,,], and we can
compute it with Theorem 1. Therefore, the probability
that the preselection step succeeds is

Pryre(DocT Fryin) > 1—
[1(= PrTF(t;,d) > DocT Fonin] % Prina) (6)

j=1

Using Eqn. 6, p derives the maximum value of
DocT F i satisfying Pryye(DocT Fryin) > Prye. Then,
it determines the document’s terms with frequency at
least equal to DocT Fy,;,, and executes preselection.

6.5 Full comparison step

The preselection step for d returns a set of candidate
clusters Cp,.. From this list, peer p selects the clusters
that will be fully compared with d, using one of the fil-
tering strategies introduced in Section 4.3. Conserva-
tive filtering always returns the best cluster c,,: from
Cpre, and thus it always assigns d to the best candidate
cluster. For the Poisson-based strategy, we now obtain
probabilistic guarantees that d will be assigned to c,p:.
The Zipf-based strategy does not provide probabilistic
guarantees for the full comparison step.

The analysis assumes that for each term t € d, the
Probability Density Function (PDF) of the term scores
of t in all clusters follows the Poisson distribution,
where term scores are defined as the term frequencies
normalized on the cluster length. In other words,
{TF(t,c1)/|ea|, TF(t,c2)/|cal, ..., TF(t,ck)/|ck|} fol-
low a Poisson distribution. Poisson distribution, be-
sides being a good fit for the term scores, has two
useful properties: (i) Poisson fitting is efficient, as it
only requires finding the average value, and, (ii) the
convolution of k£ Poisson distributions with Ay, ..., A\
is also a Poisson with A = Zle Ai. This second
property is of particular importance, because it allows
us to efficiently compute the PDF of RCos(d,c) by
convoluting the Poisson distributions corresponding
to the normalized term frequencies of all document
terms not found in TopTerms(c).

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

To estimate the PDF of a term ¢, peer p finds the
AvgSc(t,Cpre) value:

AvgSc(t, Cpre) = Z

[N CpTe

CluTFmin(c)—1
el

{TF(t, o)/lel

otherwise

Since Poisson is a discrete distribution, p dis-
cretizes the score range to m equidistant values,
Vo, V1, -y Um—1, With v; = 1 — i x MaxSc(t)/m.
MaxSc(t) refers to the upper bound score of ¢, which
is CZ“TF#“(‘H when ¢ ¢ TopTerms(c). The value of
m represents the resolution of the discretization.

The PDF of RCos(d, c) for ¢ € Cp,. is estimated in a
similar fashion. First, p finds all document terms not
included in TopTerms(c). These terms are the terms
that may contribute to RCos(d, ¢). The contribution of

any of these terms to RCos(d,c) is TE(td) \ TE(tc)

Id] le]
Since the PDF of % is a Poisson, the PDF of the

term’s contribution is also Poisson, with \; = TF‘ ((itl’d) X

AvgSc(t). The PDF of RCos(d, ¢) is the convolution of
the PDFs for all terms ¢ € d\TopTerms(c). We need
to discretize the scores to m equidistant values, using
1 — PCos(d,c) as a maximum. The resulting PDF is:

Pr[RCos(d,c) > v;] <37 e M x o 7)

where A = Zted\TopTerms(c) At
6.6 Algorithm Configuration

In the previous sections we have described the al-
gorithm without focusing on how the user sets the
parameters, and what implications these parameters
have. As in standard K-Means, a user can freely select
the number of clusters k. In addition, she can con-
figure the acceptable correctness probability Preorrect
for her application. All other parameters are derived
automatically, as follows.

First, a few sampled documents are collected from
the network and are used to estimate the Zipf distri-
bution skew. The algorithm computes the remaining
values as follows. By default, « is set to 10 and Prj,4 to
0.9, since the algorithm adapts to these values to sat-
isty the probabilistic guarantees. The values of Pry,
and Pry; are set as follows. In conservative filtering,
the full comparison step is always correct, therefore
Pryre = Preome satisfies the probabilistic guarantees.
For Zipf-based filtering we only provide probabilistic
guarantees for the preselection step, and these are
achieved by setting Prye = Preorrect- For Poisson-based
filtering, Pryy = Pris = v/ Preorect clearly satisfies the
probabilistic guarantees. The algorithm then derives
DocT'Fpin and CluT Fy;y, as explained earlier, to
satisfy the desired probabilistic guarantees.

The previous combination of « and the probability
values is not the only satisfying combination. All
combinations satisfying the constraint Prys X Pry,e >
Preorrect satisfy the probabilistic guarantees; the opti-
mal combination of o, Priw, Prpe, and Prgs is the

if ¢t € TopTerms(c)

one that minimizes the cost. Preliminary experiments
show that such an optimization could reduce the cost
further by around 10%. Part of our future work is to
efficiently identify the configuration that minimizes
the cost.

7 EXPERIMENTAL EVALUATION

PCP2P was experimentally evaluated with up to 1
million peers and 1 million documents. The exper-
iments had the following objectives: (a) to evaluate
the quality and efficiency of PCP2P with different
network configurations and multiple datasets, (b) to
compare the algorithm with the state-of-the-art algo-
rithm for P2P clustering, as well as with the standard
centralized counterpart, (c) to examine the scalability
of PCP2P, with respect to network size, number of
documents and number of clusters, and, (d) to assess
the effects of load balancing. We now describe the
evaluation methodology, datasets, and measures.

Evaluation measures. Efficiency was evaluated us-
ing the following criteria: (a) number of messages, (b)
transfer volume, and, (c) number of document-cluster
comparisons per clustering iteration.

Clustering quality was evaluated using the stan-
dard quality measures of entropy, purity, and normal-
ized mutual information (NMI) [30], [13], which com-
pare the clustering results against human-generated
document classifications. Furthermore, since PCP2P
approximates standard K-Means, as an approxima-
tion quality metric we measured the number of doc-
ument assignments differing from the standard K-
Means clustering solution. Precisely, if Csor denotes
the standard K-Means clustering solution, then the
approximation quality is:

1
Ap(csolv Csol’) = N Z maxarg; |Ci N C;|

Datasets and Methodology. We simulated net-
works of up to one million documents and peers.
The experiments were conducted on three datasets,
a synthetic dataset generated according to the well-
accepted Probabilistic Topic Model, and two real-
world datasets, the REUTERS Corpus Volume 1
(RCV1), and MEDLINE, the largest standard text col-
lections which include a human-generated classifica-
tion. RCV1 includes more than 800,000 categorized
newswire articles, pre-processed with stopword filter-
ing and stemming. MEDLINE on the other hand con-
tains information for more than 11 million citations
with abstracts, categorized according to the MeSH
vocabulary. To be able to apply the standard quality
measures, we have used a subset of the two collec-
tions, taking all articles and abstracts that belonged to
exactly one class. This resulted in approximately 140
thousands articles for RCV1 categorized in 53 classes
and 130 thousands abstracts for MEDLINE, belonging
to 40 classes. To systematically examine the effect of
the collection’s characteristics on the algorithm, and to

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

0.305 ¢ ‘ ‘ ‘ ‘ ‘ 1 0.36
> 'Y
0.300 ¥ £ 099 0.34
S
.. 0295 | & o9 .. 032t
o o o
S 0290 | 2 097 | 2030t
& E E
0.285 | g 096 [.o 0.28 |
0.280 g osos¢ 0.26 |
0.275 & : : : : : 0.94 | : : : : : 0.24 — —
076 0.8 084 0.88 0.92 0.96 076 0.8 0.84 0.88 0.92 0.96 25 50 75 100 125 150 175 200

Correctness Probability Prpe

K-Means, DKMeans

Correctness Probability Prpe

Conservative ——

Number of Clusters

lef e @ e

Poisson e fzfeen

Fig. 2. Quality: a. Entropy, b. Approximation quality, c. Entropy for different number of clusters

evaluate it with a significantly larger dataset, we have
also used synthetic document collections (SYNTH)
with a size of 1.4 million documents each. These
collections were created according to the Probabilistic
Topic Model proposed in [27], from 200 composite lan-
guage models, with different term distribution skews.

Unless otherwise noted, peer collections were cre-
ated by partitioning the datasets uniformly to all
peers. Churn was simulated by selecting a percentage
of peers at each iteration, and replacing them with
new peers, carrying new documents. The number of
documents at each iteration, after churn, was 100,000
for the real-world datasets, and 1 million for the
SYNTH dataset. Results are presented for 20% churn;
the outcome was similar for other churn factors.

PCP2P was compared with two other distributed
clustering algorithms: (a) LSP2P [6], the state-of-the-
art in P2P clustering, and, (b) DKMeans, a distribu-
tion of K-Means over P2P (see Section 2). Note that
DKMeans produces exactly the same results as K-
Means, and therefore constitutes a good comparison
baseline. We did not include other P2P clustering algo-
rithms in the comparison, e.g., [7], [8], since these do
not scale to large networks, and to high-dimensional
data like text, as discussed in Section 3.

We present average results after 40 repetitions of
each experiment. Owing to the continuous churn, the
algorithms never finish, i.e., the cluster centroids do
not converge. This is also the case for real-world
setups, where network contents change continuously.
However, the quality results of all algorithms stabilize
after about 15 iterations. Therefore, the algorithms are
let to run for 20 iterations, before we measure their
network cost and quality per iteration.

7.1 Quality

The quality of PCP2P is influenced by the correctness
probability, the number of clusters, and the dataset
characteristics (number of documents and term distri-
bution skew). The network size and the distribution
of documents to peers do not have any effect on the
quality, since each document is clustered individually.
Therefore, the results reported in this section are also
representative of networks of different sizes, as well
as of different document distribution models.

Correctness probability. To examine the effect of
the correctness probability Pry,, we executed PCP2P
on a network of 10,000 peers, configured with Prp,
in the range of 0.76 to 0.98. Fig. 2a. corresponds to
the entropy measure for the RCV1 collection, whereas
Fig. 2b. plots the approximation quality. Table 2 (Part
L), summarizes the results for purity and NMI. As
expected, the quality of all PCP2P variants increases
with the correctness probability. Conservative PCP2P
yields the best quality, since it never filters out poten-
tial optimal clusters. The Poisson and Zipf-based vari-
ants yield comparable quality. For probabilities higher
than 0.9, all variants closely approximate DKMeans.
Also note that the resulting approximation quality is
always higher than the one expected by the proba-
bilistic guarantees, since the guarantees define upper
bounds for the number of errors. The experimental
results with MEDLINE and SYNTH had similar out-
comes, and are summarized in Table 2 (Part IV.).

Number of clusters. As shown in Fig. 2c., the
number of clusters also affects the quality of all
algorithms. This is expected, considering that the
computation of the quality measures depends on the
number of clusters. However, the quality of PCP2P is
always very close to the maximum quality delivered
by DKMeans, even for the configuration with 200
clusters. Summarizing, the quality of PCP2P does not
decrease with an increase of the number of clusters.

Dataset characteristics. To verify the applicability
of PCP2P for different text corpora, we have used the
SYNTH collection, which enabled us to manipulate
its characteristics. All algorithms were executed on a
network with a fixed number of peers, progressively
increasing the number of documents up to 1 million.
Table 2 (Part IL.) presents key results of this experi-
ment. Our first observation is that collection size does
not have a significant effect on clustering quality;
the minor fluctuations (between 0.164 and 0.168 for
entropy) are due to the different document collections
clustered at each configuration, and not due to an
algorithmic factor. As such, the PCP2P quality always
remains very close to the quality of DKMeans, even
for the largest collection with one million documents.

The term frequency distribution skew of the dataset
is also an important factor for the quality of PCP2P,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

since the algorithm relies on the fact that term fre-
quencies follow the Zipf distribution. Although it
is widely accepted that document collections follow
the Zipf distribution, different document collections
exhibit different distribution skews [29]. For example,
the RCV1 collection has a skew of 0.55 and MEDLINE
has a skew of 0.59. Other values, typically around
1.0, are also frequently reported in the literature, e.g.,
in [29], [31]. To evaluate the influence of the skew on
PCP2P, we have used the SYNTH collections (subset
of 100,000 documents) generated with different Zipf
skew factors, between 0.5 and 1.4. The results, summa-
rized in Table 2 (Part IV.), confirm that PCP2P adapts
to the collection skew and delivers high-quality clus-
tering in all cases.

Summary. A large set of experiments with different
collections of up to 1 million documents and peers
confirmed that all PCP2P variants closely approxi-
mate the solution of K-Means, as predicted by the
theoretical analysis. The proposed algorithms are not
influenced by the network size, the number of doc-
uments, and the distribution of documents to peers,
and successfully adapt to the collection characteristics
to deliver high-quality solutions.

7.2 Efficiency and scalability

We now investigate the effect on efficiency of the
correctness probability, the network and collection
characteristics, as well as the number of clusters.
Furthermore, we examine the additional cost imposed
by load balancing.

Correctness probability. Figures 3a. and b. show
the number of messages and transfer volume per
clustering iteration, in correlation to Pry.. The results
correspond to the fotal cost of a network of 100,000
peers, with the RCV1 collection. All PCP2P variants
generate an order of magnitude less messages than
DKMeans, with Poisson and Zipf-based PCP2P being
the most efficient. Concerning transfer volume, con-
servative filtering requires between 17% and 27% of
the transfer volume of DKMeans, whereas Zipf-based
and Poisson-based filtering require between 15% and
22%. Note that the Poisson variant already provides
90% correctness probability with 6% messages and
17% of the transfer volume of DKMeans. The num-
ber of document-cluster comparisons, which trans-
lates to computational cost for the cluster holders, is
also substantially reduced compared to the baseline:
the conservative strategy requires at most 12% of
the DKMeans comparisons, whereas the Poisson and
Zipf-based variants require below 1%, even for the
highest investigated probabilistic guarantees, which
deliver practically the same quality as DKMeans.

Interestingly, the influence of increasing the correct-
ness probability on network cost is more noticeable
for high Pry,. values. For example, we see only minor
cost fluctuations for Pry, in the range of 0.76 to 0.88,

Setup Quality Cost
Alg. Entr. NMI Pur. Msgs Tr. Vol.
x10° (Gb)
L. Vary probability guarantees. RCV1, 100 clusters, 10,000 peers
P7’pre
N/A KMeans 0.279 0.524 0.689 186 13.2
Cons. 0.294 0.506 0.682 12.2 2.4
0.8 Poisson 0.299 | 0.503 | 0.679 10.8 1.98
Zipf 0.295 | 0.506 | 0.682 10.8 1.98
Cons. 0.286 | 0.516 | 0.689 13.7 2.7
0.9 Poisson 0.289 0.513 0.687 12.1 2.24
Zipf 0.286 0.516 0.689 12.1 223
Cons. 0.278 | 0.525 | 0.694 23.9 3.66
0.98 Poisson 0.281 0.523 0.692 21.8 3.03
Zipf 0.280 0.524 0.693 21.7 3
II. Vary #documents. SYNTH, exp.=1.0, Prp,.=0.9, 100,000 peers
Documents
KMeans 0.165 0.906 0.490 186.2 10.17
100000 Cops. 0.165 | 0.906 | 0.490 3.68 0.22
Poisson 0.165 | 0.905 | 0.489 3.67 0.22
Zipf 0.165 | 0.906 | 0.490 3.67 0.22
KMeans | 0.165 | 0.905 | 0.484 266.6 21.17
500000 Cons. 0.166 | 0.905 | 0.483 1791 1.08
Poisson 0.167 0.904 0.483 17.82 1.08
Zipf 0.165 | 0.905 | 0.485 17.85 1.08
KMeans 0.164 0.907 0.484 367.1 3491
Cons. 0.163 | 0.907 | 0.485 34.78 2.08
1000000 | poisson | 0.164 | 0906 | 0.485 | 3461 | 207
Zipf 0.165 | 0.905 | 0.482 34.67 2.07
III. Vary #peers. SYNTH, Pr;...=0.9, 100 clusters
Peers
KMeans | 0.164 | 0.907 | 0.481 367.1 3491
100000 Cons. 0.164 0.907 0.485 34.78 2.08
Poisson 0.164 0.906 0.485 34.61 2.07
Zipf 0.165 | 0.905 | 0.482 34.67 2.07
KMeans 0.164 0.907 0.481 1147.58 69.80
500000 Colns. 0.164 0.907 0.485 41.38 242
Poisson 0.164 0.906 0.485 41.27 244
Zipf 0.165 | 0.905 | 0.482 41.29 244
KMeans | 0.164 | 0.907 | 0.481 [2194.16 116.59
Cons. 0.164 0.907 0.485 43.78 2.57
1000000 Poisson 0.164 0.906 0.485 43.67 2.56
Zipf 0.165 | 0.905 | 0.482 43.72 2.56
IV. Vary collection characteristics. Prp,.=0.9, 100,000 peers
Collection (100,000 documents)
KMeans 0.557 0.222 0.373 186.2 12.58
MED Cons. 0.566 | 0.212 | 0.367 15.98 2.64
LINE Poisson 0.570 | 0.208 | 0.362 13.11 1.87
Zipf 0.568 0.210 0.365 13.09 1.89
KMeans | 0.170 | 0.899 | 0.491 186.2 11.81
22{53315 Cons. 0.170 0.899 0.493 15.93 1.09
T Poisson 0.169 0.899 0.497 15.42 0.99
Zipf 0.169 0.899 0.494 15.44 1
KMeans 0.165 0.906 0.490 186.2 10.17
2:531}{) Cons. 0.165 | 0.906 | 0.490 3.68 0.22
T Poisson 0.165 | 0.905 | 0.489 3.67 0.22
Zipf 0.164 0.906 0.490 3.67 0.22
KMeans | 0.164 | 0.907 | 0.487 186.2 9.47
SYN31H4 Cons. 0.163 0.907 0.489 3.55 0.21
P-=2% | poisson | 0.163 | 0907 | 0489 | 355 021
Zipf 0.163 | 0.908 | 0.489 3.55 0.21
TABLE 2

Detailed experimental results

whereas the cost increase in the range of 0.9 to 0.98 be-
comes more significant. This behavior is also observed
on MEDLINE and SYNTH, and is consistent with
all cost measures. This is a frequently observed be-
havior of algorithms offering probabilistic guarantees.
However, even for very high probabilistic guarantees,
PCP2P yields significant network savings compared
to DKMeans, inducing manageable network cost. In-
dicatively, the cost for clustering RCV1 with Pry, =
0.98 in 10,000 peers is below 385 Kbytes per peer,
per reclustering period (Table 2, Part 1.). According to
recent Google statistics [32], this is comparable to the
average transfer volume required to retrieve a single
web-page, with its associated resources (320 Kbytes).

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

: : : : : o : : : 16 : — :
@ 24 r DKMeans: 186 million msgs g 3.6 | DKMeans: 13.17 GBytes % 14 E‘-._‘ DKMeans: 186 million msgs
c 22 = c \
S a S
= 032 =
E2 o A E
0 18 £28 O
) 3)
gl 224 L g

14 L o
2 220 kg « s
12 [< o H#*

ISP I =
10 L L L L L L 1'6 L L L L L L L L L L L
076 08 084 0.88 092 0.96 076 08 084 0.88 092 0.96 0.6 0.8 1 1.2 1.4

Correctness Probability Prpe

K-Means, DKMeans

Correctness Probability Prpe

Conservative ——

Collection Characteristic Exbonent

Poisson efagees Zipf - @ -

Fig. 3. Efficiency: a. # messages, b. Transfer volume, c. varying skew

Network size. For evaluating the effect of the num-
ber of peers on PCP2P, we distributed the datasets to
networks of different sizes, and measured the cost for
conducting the clustering. In Figure 4a. and Table 2
(Part III.) we present the results for the SYNTH col-
lection, since this was the largest and allowed us to
simulate networks of up to one million peers. We see
that the cost for PCP2P increases only logarithmically
with network size, while cost for DKMeans increases
linearly. This behavior is expected, and in accordance
with the cost analysis; the only factor changing with
network size for PCP2P is the DHT access cost,
which grows only logarithmically. On the other hand,
DKMeans cost increases linearly since each peer needs
to communicate with all cluster holders, independent
of the number of documents it carries. Similar results
were observed on the other two collections.

Number of clusters. To examine the effect of the
number of clusters to the efficiency of PCP2P, we
repeated the clustering of the three collections on a
network of 100,000 peers with up to 200 clusters. Fig-
ure 4b. shows the number of messages in correlation
to the number of clusters for the RCV1 collection.
Clearly, all PCP2P variants scale favorably with the
number of clusters. For example, for 25 clusters, the
conservative variant induces 12 million messages,
whereas for 200 clusters it causes only 3 million ad-
ditional messages. The Poisson-based variant causes
between 11.7 to 12.2 million messages in the same
cluster range, whereas Zipf-based PCP2P causes 11.6
to 12.2 million messages. The same scale-up properties
are observed with respect to the transfer volume and
number of comparisons, not presented due to space
limitations. This essentially means that the network
cost of PCP2P is only slightly affected by the number
of clusters, making the algorithm scalable for a wide
range of setups and requirements.

Dataset characteristics. Similar to the quality ex-
periments, the SYNTH collection was used to evalu-
ate the effects of the collection characteristics to the
efficiency of PCP2P. Table 2 (Part II.) includes the
results corresponding to different dataset sizes, for
a fixed network size of 100,000 peers. As predicted
from the cost analysis, PCP2P scales linearly with
the collection size with respect to all cost measures.

2000 400
1000 350
200

s (millions)

%
g 250

% 8 200

=2 i=2]

= 40 g 150

5 38 8 100

ﬁ 36 # 50

s o ety

* 200 400 600 800 1000 25 50 75 100 125 150 175 200

Network Size (thousands) Number of Clusters

K-Means, DKMeans
Poisson e fzd-

Conservative ——

Fig. 4. Number of messages: a. varying network sizes,
b. varying number of clusters

DKMeans also scales linearly, but has a significantly
larger cost overall due to a larger constant factor.
Figure 3c. and Table 2 (Part IV.) displays the net-
work cost, for varying distribution skew, and for
Prye = 0.9. We see that for the same quality level,
PCP2P cost is substantially reduced for higher skews.
This behavior is expected: with higher skews, the
first few most frequent terms of documents and clus-
ters are sufficient for finding the candidate clusters,
and PCP2P requires fewer comparisons for satisfying
the probabilistic guarantees. For commonly reported
skew values (around 1.0), the number of messages
is reduced by two orders of magnitude compared to
DKMeans. Nonetheless, even for a skew as low as 0.5,
the cost of both PCP2P variants is already an order
of magnitude lower than the DKMeans cost. Recall
that the quality remains unaffected by the skew factor
(Section 7.1), since the algorithm adapts to the skew
factor to satisfy the probabilistic guarantees.
Cost/quality tradeoff. Figures 5a.-b. plot the cost
induced by the proposed algorithms in correlation to
the achieved quality. The results correspond to the
RCV1 collection, clustered over a network of 100,000
peers to 100 clusters, and the data points are deter-
mined by varying the probability P, in the range
of 0.76 to 0.98. As expected, increasing the proba-
bilistic guarantees yields an increase of the network
cost, but also results to better clustering solutions for
all examined PCP2P variants. Importantly, all PCP2P
variants already approximate the exact algorithm with
an approximation quality of 0.98, requiring less than
15 million messages, i.e., one order of magnitude
less cost than DKMeans. Note that this approxima-
tion quality is already satisfactory for all practical

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

N
IN
N
I

DKMeans: 186 million msgs

DKMeans: 186 million msgs
B=) entropy=0.279 »

N
N
N
N

N
=3
N
<]

N
@
=
@

i
=Y
[
=)

i
=

Messages (millions)
=
S

Messages (millions)

N
~
.
Ny

* Y Qe ao8 R

i
5]
=
o

028 0.285 029 0.295 03 0.96 0.97 0.98 0.99
Entropy Approximation Quality

Conservative —+— Poisson -z} Zipf @
Fig. 5. Cost/quality tradeoff for PCP2P
0.65 -
0.60 toper e 038 [LSEoom) e
0.55 0.36 | LSP2P(zipf) =
g 0s0 Zox "
S 045 g
& 040 & 032

0.35 0.30 4
0.30
025

0

10 20 30 40 50 200 400 600 800 1000
Classes per peer Network Size
K-Means, DKMeans Conservative —+—
Poisson e fede Zipf - - @ -

Fig. 6. Quality of PCP2P and LSP2P: a. varying
the number of classes per peer, and, b. varying the
document distribution to peers

concerns of P2P applications. A further increase of
the correctness probability induces a small quality
increase, albeit with additional network cost. We
also see that for high network budgets, conservative
PCP2P offers a better cost/quality tradeoff compared
to the Zipf-based and Poisson-based variants. Similar
to the previous results (Fig 2a.-b.), Zipf-based and
Poisson-based PCP2P have comparable performance,
with Poisson-based performing better with respect to
accuracy. With respect to entropy, the two variants do
not show significant difference.

Load balancing. As explained in Section 4.1, cluster
holders employ load balancing to avoid overload-
ing. Load balancing incurs a small network overhead
for synchronizing the centroids between the cluster
holders and their helpers. To examine this additional
overhead, we have configured the load balancing
threshold such that the load of each cluster holder
never exceeds twice the average expected load, and
repeated all experiments. The overhead in all exam-
ined configurations was less than 100 additional mes-
sages, and less than 10 Mbytes total. Therefore, load
balancing does not impede the efficiency of PCP2P.

Summary. All PCP2P variants scale well with the
number of clusters and peers, and enable network
savings which often exceed one order of magnitude
compared to DKMeans for achieving practically the
same quality. A configuration mechanism based on
probabilistic guarantees enables fine tuning of the
involved cost/quality tradeoffs, and load balancing
at the cluster holders ensures that all peers have
manageable load with negligible network overhead.

13
Classes Peers Messages Entropy
per peer (millions) Uniform Binomial Zipf
200 0.2 0.455 0457 0.468
4 1000 12 0.494 0496 0.535
10000 18.0 0.622 0.624 0.655
200 0.2 0.297 029 0317
ALL 1000 12 0.347 0.349 0.386
10000 18.0 0.505 0.506 0.515
TABLE 3

Performance of LSP2P
7.3 Comparison with other algorithms

PCP2P was also compared with LSP2P, the state of the
art in P2P clustering. A preliminary testing of LSP2P
with low-dimensional synthetic data verified the good
results presented in [6], but also revealed a strong
correlation of the algorithm’s quality to the way the
documents were distributed to the peers. Therefore,
our further experiments focus on the effect of the
document distribution to the compared algorithms.

Real-world peer collections are often multi-
thematic, similar to real persons’ interests. Some
users may be well-focused, having very specific
documents of only one topic. Other users may
focus on a couple of non-related topics, and yet
others may collect lots of diverse documents. We
simulated all such users by using the document
classification. Peers were creating their collections by:
(a) randomly selecting ¢ random categories/classes
from the reference classification, and, (b) randomly
selecting j documents for each class, ending up with
i X j different documents.

We first examine the influence of the number of
classes i assigned to each peer during the creation
of the peer collections. Figure 6a. plots the quality of
the compared algorithms, when used on a network
of 1000 peers for clustering the RCV1 collection. The
number of clusters was set to 100, and PCP2P was
configured with Pry, = 0.9. The quality of DKMeans
and PCP2P is independent of the number of classes
per peer, since these algorithms handle each docu-
ment individually. On the other hand, LSP2P requires
that each participating peer carries documents from
almost all classes to perform well. This is clearly
a limiting factor for the applicability of LSP2P for
text corpora, since it cannot be expected that real-
world users have such a high variation of personal
documents. In fact, in real-world networks, the num-
ber of possible classes and clusters might be even
higher than the ones investigated here, aggravating
the problem. The experiments with MEDLINE and
SYNTH also confirmed this limitation of LSP2P.

We also examine the scalability of the algorithms,
by varying the network size. To alleviate the pre-
mentioned limitation of LSP2P that each peer requires
a very diverse document collection, the documents
were assigned to the peers randomly, ignoring the
document classes. With respect to the number of
documents per peer, we tested three different dis-
tributions: (a) a Zipf distribution, with skew equal

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

to 1, (b) a binomial distribution, with average equal
to 100,000/n, where n denotes the number of peers,
and, (c) a uniform distribution with the same average.
These distributions are frequently considered in the
literature for modeling the size of the peer collections.

Figure 6b. plots the quality of the compared algo-
rithms. We see that uneven document distributions,
such as the Zipf distribution, create additional prob-
lems to LSP2P, which become more apparent for larger
networks. The quality of PCP2P on the other hand
remains unaffected from the documents distribution.
Similar results were also observed with the MEDLINE
and the SYNTH collection.

Concerning network cost, LSP2P has the advantage
that its peers exchange cluster-granularity data in-
stead of document-granularity data. Therefore, LSP2P
is more efficient than, or comparable to PCP2P, with
respect to network cost (Table 3). Unfortunately, the
limitation of LSP2P on large networks, and its require-
ment that all peers have documents from all classes,
makes the algorithm unsuitable for most real-world
scenarios.

Summary. LSP2P, the state-of-the-art in P2P clus-
tering, is sensitive to the distribution of documents to
peers, requiring that each peer has documents from
all classes. Furthermore, it does not yield satisfactory
results in large networks. PCP2P does not suffer from
these limitations, thereby substantially outperforming
LSP2P in real-world setups.

8 CONCLUSIONS

We presented PCP2P, the first scalable P2P text clus-
tering algorithm. PCP2P achieves a clustering qual-
ity comparable to standard K-Means, while reducing
communication costs by an order of magnitude. We
provided a probabilistic analysis for the correctness of
the algorithm, and showed how PCP2P adapts to sat-
isfy the required probabilistic guarantees. Extensive
experimental evaluation with real and synthetic data
confirm the efficiency, effectiveness and scalability of
the algorithm, and its appropriateness for text collec-
tions with a wide range of characteristics.

Our future work focuses on adapting the reclus-
tering period to the network characteristics, i.e., the
peer churn and the expected cluster shift, for further
reducing the periodic reclusterings. Furthermore, we
work towards a P2P IR method based on clustering,
similar to [3], [4], but based on a fully distributed
clustering infrastructure.

REFERENCES

[1] Y. Ioannidis, D. Maier, S. Abiteboul, P. Buneman, S. Davidson,
E. Fox, A. Halevy, C. Knoblock, F. Rabitti, H. Schek, and
G. Weikum, “Digital library information-technology infras-
tructures,” Int | Digit Libr, vol. 5, no. 4, pp. 266 — 274, 2005.

[2] P. Cudré-Mauroux, S. Agarwal, and K. Aberer, “Gridvine:
An infrastructure for peer information management,” IEEE

Internet Computing, vol. 11, no. 5, 2007.
[3] J. Lu and J. Callan, “Content-based retrieval in hybrid peer-

to-peer networks,” in CIKM, 2003.

(4]
(5]

(6]

(7]

(8]

(9]

[10]

[11]

(12]

(13]

[14]

[15]

(16]

(17]
(18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]
[28]
[29]

[30]

[31]

(32]

J. Xu and W. B. Croft, “Cluster-based language models for
distributed retrieval,” in SIGIR, 1999.

O. Papapetrou, W. Siberski, and W. Nejdl, “PCIR: Combining
DHTs and peer clusters for efficient full-text P2P indexing,”
Computer Networks, vol. 54, no. 12, pp. 2019-2040, 2010.

S. Datta, C. R. Giannella, and H. Kargupta, “Approximate
distributed K-Means clustering over a peer-to-peer network,”
IEEE TKDE, vol. 21, no. 10, pp. 1372-1388, 2009.

M. Eisenhardt, W. Miiller, and A. Henrich, “Classifying docu-
ments by distributed P2P clustering.” in INFORMATIK, 2003.
K. M. Hammouda and M. S. Kamel, “Hierarchically dis-
tributed peer-to-peer document clustering and cluster sum-
marization,” IEEE Trans. Knowl. Data Eng., vol. 21, no. 5, pp.
681-698, 2009.

H.-C. Hsiao and C.-T. King, “Similarity discovery in structured
P2P overlays,” in ICPP, 2003.

I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakr-
ishnan, “Chord: A scalable peer-to-peer lookup service for
internet applications,” in SIGCOMM, 2001.

K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic,
M. Hauswirth, M. Punceva, and R. Schmidt, “P-Grid: a self-
organizing structured P2P system,” SIGMOD Record, vol. 32,
no. 3, pp. 29-33, 2003.

A. I T. Rowstron and P. Druschel, “Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer
systems,” in IFIP/ACM Middleware, Germany, 2001.

C. D. Manning, P. Raghavan, and H. Schtze, Introduction to
Information Retrieval. Cambridge University Press, 2008.

M. Steinbach, G. Karypis, and V. Kumar, “A comparison of
document clustering techniques,” in KDD Workshop on Text
Mining, 2000.

G. Forman and B. Zhang, “Distributed data clustering can be
efficient and exact,” SIGKDD Explor. Newsl., vol. 2, no. 2, pp.
34-38, 2000.

S. Datta, K. Bhaduri, C. Giannella, R. Wolff, and H. Kargupta,
“Distributed data mining in peer-to-peer networks,” IEEE
Internet Computing, vol. 10, no. 4, pp. 18-26, 2006.

S. Datta, C. Giannella, and H. Kargupta, “K-Means clustering
over a large, dynamic network,” in SDM, 2006.

G. Koloniari and E. Pitoura, “A recall-based cluster formation
game in P2P systems,” PVLDB, vol. 2, no. 1, pp. 455-466, 2009.
K. M. Hammouda and M. S. Kamel, “Distributed collabora-
tive web document clustering using cluster keyphrase sum-
maries,” Information Fusion, vol. 9, no. 4, pp. 465-480, 2008.
O. Papapetrou, W. Siberski, F. Leitritz, and W. Nejdl, “Ex-
ploiting distribution skew for efficient P2P text clustering,”
in DBISP2P, 2008.

H. F. Witschel, “Global term weights in distributed environ-
ments,” Inf. Process. Manage., vol. 44, no. 3, pp. 1049-1061, 2008.
R. Neumayer, C. Doulkeridis, and K. Nervég, “Aggregation
of document frequencies in unstructured P2P networks,” in
WISE, 2009.

E. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D. Nguyen,
“PlanetP: Using Gossiping to Build Content Addressable Peer-
to-Peer Information Sharing Communities,” in HPDC, 2003.
R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algo-
rithms for middleware,” in PODS, 2001.

M. Theobald, G. Weikum, and R. Schenkel, “Top-k query
evaluation with probabilistic guarantees,” in VLDB, 2004.

C. H. Papadimitriou, H. Tamaki, P. Raghavan, and S. Vempala,
“Latent semantic indexing: a probabilistic analysis,” in PODS,
1998.

M. Steyvers and T. Griffiths, Handbook of Latent Semantic Anal-
ysis. Lawrence Erlbaum, 2007, ch. Probabilistic Topic Models.
R. Motwani and P. Raghavan, Randomized Algorithms. Cam-
bridge University Press, 1995.

C. Blake, “A comparison of document, sentence, and term
event spaces,” in ACL, 2006.

Y. Zhao and G. Karypis, “Empirical and theoretical compar-
isons of selected criterion functions for document clustering,”
Machine Learning, vol. 55, no. 3, pp. 311-331, 2004.

G. K. Zipf, Human Behavior and the Principle of Least-Effort.
Cambridge, MA: Addison-Wesley, 1949.

S. Ramachandran, “Web metrics: Size
and number of resources,” available at
http://code.google.com/speed/articles /web-metrics.html,
May, 2010.

