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Abstract

Vision-language models (VLMs) excel in zero-shot

recognition but their performance varies greatly across

different visual concepts. For example, although CLIP

achieves impressive accuracy on ImageNet (60-80%), its

performance drops below 10% for more than ten concepts

like night snake, presumably due to their limited pres-

ence in the pretraining data. However, measuring the fre-

quency of concepts in VLMs’ large-scale datasets is chal-

lenging. We address this by using large language models

(LLMs) to count the number of pretraining texts that con-

tain synonyms of these concepts. Our analysis confirms

that popular datasets, such as LAION, exhibit a long-tailed

concept distribution, yielding biased performance in VLMs.

We also find that downstream applications of VLMs, includ-

ing visual chatbots (e.g., GPT-4V) and text-to-image models

(e.g., Stable Diffusion), often fail to recognize or generate

images of rare concepts identified by our method. To mit-

igate the imbalanced performance of zero-shot VLMs, we

propose REtrieval-Augmented Learning (REAL). First, in-

stead of prompting VLMs using the original class names,

REAL uses their most frequent synonyms found in pretrain-

ing texts. This simple change already outperforms costly

human-engineered and LLM-enriched prompts over nine

benchmark datasets. Second, REAL trains a linear clas-

sifier on a small yet balanced set of pretraining data re-

trieved using concept synonyms. REAL surpasses the previ-

ous zero-shot SOTA, using 400× less storage and 10,000×
less training time!

1. Introduction

Vision-language models (VLMs) such as CLIP [35]

play a pivotal role in mainstream multimodal systems, in-

cluding visual chatbots [23, 31] and text-to-image genera-

tion [3, 36]. Their efficacy largely stems from their web-

scale image-text pretraining datasets like LAION [37, 38]

that cover a wide range of visual concepts.

Imbalanced performance of VLMs. Despite their

strong capabilities in visual understanding, VLMs often ex-
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(a) freq. of ImageNet concepts (b) freq. vs. zero-shot accuracy

(c) Popular multimodal systems like visual chatbots and generative mod-
els struggle with tailed concepts. An example is the night snake,
a rare class found by our method on ImageNet.

Figure 1. Vision-language models (VLMs) inherit long tails

from their pretraining data. (a) VLMs’ pretraining datasets,

such as LAION-400M [37] and LAION-2B [38], exhibit long-

tailed distributions for visual concepts defined in downstream

tasks like ImageNet [10]. We sort the 1K ImageNet classes accord-

ing to their frequency in LAION-400M calculated with our con-

cept frequency estimation method (cf. Fig. 2). (b) For zero-shot

recognition, OpenCLIP models [16] trained on LAION-400M and

LAION-2B respectively yield per-class accuracies that strongly

correlate with the long-tailed concept frequencies (binned on a

log-scale). Interestingly, other VLMs such as CLIP [35] and

MetaCLIP [49] (trained on private data) also show similar im-

balanced performances, likely because their web-scraped pretrain-

ing datasets follow similar long-tailed distributions of the real

world. (c) Our method helps identify rare concepts, such as the

night snake, which is one of the most tailed ImageNet concepts.

We show that state-of-the-art multimodal systems, including GPT-

4V [50], LLaVA [23], DALL-E 3 [41], and SD-XL [2], all fail to

recognize or generate it. The supplement shows more examples.

hibit biased performance in downstream tasks. For instance,

in zero-shot visual recognition tasks (which do not use train-

ing samples), CLIP [35] achieves up to 80% mean accuracy

across 1K semantic classes on ImageNet [10] but less than
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<10% on specific classes such as night snake (Fig. 1b).

This motivates us to explore why VLMs are imbalanced, a

crucial yet ever-neglected issue.

Why do VLMs exhibit imbalanced performance? It

is commonly believed that foundational VLMs inherit bi-

ases [27] from web-scale pretraining data. However, we

find no direct evidence linking VLMs’ imbalanced perfor-

mance to the concept distribution in pretraining data, likely

because there is no such tool for measuring concept fre-

quency in large multimodal datasets like LAION [37].

Concept frequency estimation. Estimating class fre-

quency in a typical classification dataset is straightforward,

where counting class occurrences using annotated labels

is sufficient. However, estimating concept frequency in

VLMs’ pretraining datasets is more complex because their

free-form texts (or captions) contain significant lexical vari-

ations, e.g., a sneaker might also be called a running

shoe or a trainer. To address this, we leverage off-the-

shelf large language models (LLMs). Fig. 2 illustrates our

approach, which begins by asking an LLM (such as Chat-

GPT [31]) to enumerate all synonyms for a specific concept.

We then use string matching to find all pretraining texts that

contain the concept or its synonyms. However, due to lin-

guistic ambiguity, the initially retrieved texts may contain

irrelevant phrases, such as “tiger shark in water”

for the target concept tiger (a mammal). We again use

an LLM to filter out such irrelevant texts, and conduct hu-

man studies to verify the accuracy of our frequency mea-

sure. Our method for calculating concept frequency un-

veils three key insights: (1) it confirms that VLMs’ pretrain-

ing data is indeed long-tailed (Fig. 1a); (2) it shows VLMs

perform better on well-represented concepts and worse on

under-represented ones (Fig. 1b); and (3) it explains why

recent multimodal systems (e.g., GPT-4Vision and DALL-

E 3 in Fig. 1c) struggle with rare concepts. Our analysis also

provides technical insights to counteract the bias in VLMs,

leading to state-of-the-art zero-shot performance in down-

stream tasks such as image recognition.

State-of-the-art zero-shot recognition. Motivated

by our frequency estimation, we introduce REtrieval-

Augmented Learning (REAL) to mitigate biased perfor-

mance of zero-shot VLMs. REAL has two variants. First,

observing that some synonyms are more frequent in VLM’s

pretraining data than the original concept names, we pro-

pose REAL-Prompt. Specifically, we replace given con-

cept names with their most frequent synonyms. For exam-

ple, cash machine is replaced with ATM, which is ten

times more frequent in LAION (Fig. 3). This minor change

already surpasses costly human-engineered [35] and LLM-

enriched prompts like CuPL [34] (cf. Table 1). Second, in-

spired by retrieval-augmented strategies [12, 19, 20, 24, 44],

we introduce REAL-Linear, which reuses relevant pre-

training data to better adapt VLMs without using data from

downstream tasks. The key idea is to retrieve a small, bal-

anced set of images from pretraining data to train a robust

linear classifier [22]. In contrast to prior arts [24, 44] that

perform costly feature-based retrieval by running VLMs to

compute image or text features, our method implements

text-based retrieval via string matching, achieving a signif-

icant boost in efficiency. As a result, our REAL resound-

ingly outperforms the recent retrieval-augmented SOTA,

REACT [24], using 400× less storage and 10,000× less

training time (cf. Table 1 and 3)!

Contributions. We summarize our major contributions.

• We propose a method for estimating the frequency of

visual concepts in VLMs’ large-scale pretraining data.

Our analysis, for the first time, exposes long-tailed

concept distributions in popular datasets like LAION

and reveals systematic failures of VLMs [2, 23, 41, 50]

in handling rare concepts.

• We propose REAL to address the biased performance

of zero-shot VLMs. REAL establishes a new state-

of-the-art in zero-shot recognition through its efficient

prompting and retrieval-augmented training strategies.

2. Related Works

Biases in foundation VLMs. Pretrained on large-scale

multimodal datasets [4, 8, 45], VLMs often exhibit biases

related to gender, race, and geography [27], leading to im-

balanced predictions in downstream tasks [1, 29]. Recent

studies [39, 47, 52] seek to mitigate imbalanced predic-

tions of VLMs by training on additional data from down-

stream tasks. Despite these efforts, there is no analysis

of the imbalances within the pretraining data itself. Our

study presents the first examination of VLMs’ pretrain-

ing datasets, revealing a long-tailed distribution of con-

cepts that closely correlates with VLMs’ imbalanced per-

formance. Our analytical tool also identifies rare concepts

that VLMs have insufficiently learned, thereby preventing

biases in downstream applications.

Prompting VLMs for zero-shot recognition. VLMs

excel in zero-shot recognition tasks, where only the names

of target concepts are provided without corresponding train-

ing images. CLIP [35] shows that putting given con-

cept names in human-engineered prompt templates, such

as “a photo of a {class}” and “a demonstration of a

{class}”, often enhances zero-shot recognition. LLM-

enriched approaches like DCLIP [28] and CuPL [34] create

class-specific prompts by appending rich visual descriptions

generated by LLM, for example, “a tiger, which has sharp

claws”. While most works focus on refining prompt tem-

plates [25, 40, 51], they use the provided class names as

is. A recent work [32] suggests that prompting with com-

mon English names instead of Latin scientific names im-

proves zero-shot recognition of fine-grained species. Dif-

ferently, our REAL-Prompt replaces given class names
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Figure 2. Using large language models (LLMs) to estimate con-

cept frequency in a VLM’s pretraining dataset. We conduct

the frequency estimation using publicly available LAION [37]

datasets. First, since a visual concept can be expressed in various

ways, we ask an LLM (e.g., ChatGPT [31]) to enumerate all its

synonyms to search for potentially relevant pretraining texts. For

example, for tiger, we retrieve all captions that contain not only

“tiger” but also its synonyms such as “Panthera tigris”.

Second, we filter out irrelevant captions that do not refer to the tar-

get concept by its definition. For example, although “tiger shark

swimming in water” contains “tiger”, it actually refers to a type

of shark, not the animal tiger as defined by “Panthera tigris,

a large, striped Asian cat”. We conduct the filtering process by

querying an LLM Llama-2 [42] (cf. Section 3).

with their most common synonyms found in the pretrain-

ing texts. This simple change outperforms existing methods

with much less ChatGPT querying costs. Moreover, our ap-

proach can be combined with existing prompt templates to

further improve performance.

Retrieval-augmented strategy. Introduced in the

natural language processing (NLP) literature, this strat-

egy addresses challenging tasks such as knowledge-based

question-answering [12, 19] by retrieving relevant facts

from an external knowledge source (e.g., the Internet or a

pretraining dataset) to ground LLMs on the most accurate,

up-to-date information. To improve zero-shot visual recog-

nition, recent works [20, 24, 44] finetune VLMs on images

retrieved from VLMs’ pretraining datasets. While meth-

ods like REACT [24] are effective, they demand significant

computing resources, including hundreds of GPU hours

and extensive memory for large-batch contrastive finetun-

ing. In contrast, our REAL-Linear uses fast string match-

ing to retrieve data based on concept synonyms, thus avoid-

ing costly VLM-based feature extraction. Moreover, we

train a parameter-efficient linear classifier atop the frozen

VLM [22], which significantly enhances efficiency. Our

method not only sets a new state-of-the-art in zero-shot

recognition, but also opens avenues for retrieval-augmented

research within a modest computational budget.

3. The Long-Tailed Concept Distribution

This section outlines our approach for estimating con-

cept frequency in VLM’s pretraining data and presents our

key findings from the analysis.

3.1. Concept Frequency Estimation

The foremost challenge in estimating concept frequency

is the sheer size of a VLM’s pretraining dataset. For ex-

ample, the popular open-source LAION-400M [38] dataset

(used for training OpenCLIP [16]) takes ∼10TB of physical

storage space. Instead, we estimate concept frequency di-

rectly from pretraining texts, eliminating the need to down-

load images. This allows us to download only the text meta-

data, requiring only ∼60GB space for LAION-400M. Next,

we proceed with the following two steps (cf. Fig. 2).

Step 1: Deriving synonyms for target concepts. A

well-known issue in NLP is lexical variation, meaning that

a concept can be expressed in multiple ways. For exam-

ple, “sneaker” can be referred to as “running shoes”

or “athletic footwear”, and “tiger” may also be

called “Panthera tigris”. To account for lexical vari-

ation, we first derive a list of synonyms1 for a given visual

concept. To do so, we turn to an off-the-shelf LLM (e.g.,

ChatGPT [31]), by querying a simple question “What are

some common ways of referring to {concept}?”. Then, we

use string matching to retrieve all pretraining texts contain-

ing these synonyms. This matching process is remarkably

efficient — it takes only 5 hours to retrieve 400M pretrain-

ing texts from the LAION-2B dataset for ImageNet’s 1K

concepts. Importantly, these derived concept synonyms can

also be used to improve downstream zero-shot recognition,

which we discuss in Sec. 4.

Step 2: Filtering out irrelevant pretraining texts. Us-

ing simple string matching may be inaccurate because it

could retrieve irrelevant captions due to linguistic ambigu-

ities. For instance, the concept “tiger”, defined as “Pan-

thera tigris, a large, striped Asian cat”, might appear in

irrelevant contexts in the retrieved captions such as “tiger

shark swimming in water” and “Tiger Woods, a famous golf

player”. In these retrieved texts, the “tiger” actually refers

to a shark species and a celebrity, respectively. To tackle

these ambiguities at an affordable cost, we utilize the state-

of-the-art open-source LLM Llama-2 [42]. For each re-

trieved text, we ask:

Does {concept} in the {caption}
refer to {definition}?

In real-world applications, concepts are typically defined in

the labeling policies of downstream tasks [6, 11]. In this

work, to align with standard benchmarks, we adopt defini-

tions from Elevater [21]. Finally, retrieved captions that are

identified as irrelevant to the target concept by the LLM are

excluded. We only count the remaining retrieved text to es-

timate concept frequency.

1For simplicity, we use the term “synonyms” in a broader sense to en-

compass all forms of lexical variation, including but not limited to tradi-

tional synonyms, idiomatic expressions, and different phrasings that con-

vey the same or similar meanings.
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Figure 3. Demonstration of REAL-Prompt, which replaces the given concept names (e.g., “cash machine”) with their most frequent

synonyms (e.g., “ATM”) in the prompt template, e.g., “a photo of {concept}”. REAL-Prompt uses an LLM (ChatGPT) to obtain a list

of synonyms for a given concept, followed by string matching to identify the most frequently occurring ones in pretraining texts. We

demonstrate REAL-Prompt on some ImageNet concepts with their most frequent synonyms, frequencies (in LAION-400M), and per-

class accuracies (OpenCLIP ViT-B/32). The simple name change in prompts significantly improves zero-shot recognition. We detail the

procedure for REAL-Prompt in Sec. 4.1 and compare against prior works in Table 1.

3.2. Discussions and Remarks

Human-in-the-loop validation. As VLMs’ pretraining

data does not contain ground-truth concept labels, we per-

form manual validation to ensure LLM performs well in fil-

tering the irrelevant texts. To do so, we first construct a

small validation set by downloading a balanced set of pre-

training data (32 image-text pairs per concept). Then, for

each concept, we tune the concept definitions for Llama-

2 till reaching >85% retrieval precision on the validation

set. In particular, since [21] releases multiple definitions

per concept, we select the best ones that lead to the high-

est precision over the validation set. For example, the class

samoyed in ImageNet refers to a dog breed; we find the

definition “a breed of large white herding dog with a thick

coat, native to the Ural Mountains” to be more precise than

others, e.g., “a member of a people inhabiting northwestern

Siberia”. To facilitate future research, we will open-source

our code for LLM-based analysis and release all concept

synonyms and filtered captions.

The prevalent long tails in VLMs. Our analysis re-

veals an ever-neglected long-tailed distribution of visual

concepts (from standard benchmarks like ImageNet [10])

within widely-used pretraining datasets like LAION-400M

and LAION-2B (cf. Fig. 1a). Additionally, we plot per-

class zero-shot accuracies of OpenCLIP models (pretrained

on LAION), establishing a strong correlation between the

long-tailed distribution of concepts and the imbalanced per-

formance of VLMs (cf. Fig. 1b). We also plot the per-

class accuracies of CLIP [35] and MetaCLIP [49], which

are trained on private datasets. Interestingly, they show sim-

ilar imbalanced performance across ImageNet’s concepts,

likely because Internet data follows a similar long-tailed

distribution. We observe the same trend across eight more

benchmarks (cf. Table 7), e.g., Flowers [30] and Pets [33].

Notably, our frequency estimation method helps find rare

(tailed) concepts that challenge popular multimodal systems

including the state-of-the-art GPT-4Vision [31] and DALL-

E 3 [41] (cf. Fig. 8 and 9). In sum, our analysis shows that

long-tailed issues are prevalent in VLMs.

Are long tails inevitable in large-scale data cura-

tion? Despite the imbalanced performance of CLIP [35]

and MetaCLIP [49], their pretraining datasets are actually

created using a “balanced” sampling strategy. Specifically,

they define 500K word phrases as web search queries to

collect approximately equal numbers of image-text samples

for each. However, our analysis indicates that these datasets

(which are not fully disclosed to the public) might not be as

balanced as intended. We identify key insights into the ob-

served imbalances by examining [49]’s query statistics:

• Internet data are naturally long-tailed: Despite bal-

anced sampling in [49], the resulting distribution is

still long-tailed. For example, while each search query

is capped at 20K images, the average is around ∼1.2K

images per query. In fact, we find that over half

of the queries, such as “tailed frog” (a frog),

“gyromitra” (a fungus), and “poke bonnet” (a

traditional hat), have less than 50 samples, likely be-

cause these concepts are rare on the web.

• Limitations of query-based balancing: Balancing

per query does not guarantee a balanced distribu-

tion of concepts. For example, [49] inadvertently in-

clude overlapping queries such as “sneaker” and

“running shoes”, which can lead to the overrep-

resentation of certain concepts. Moreover, samples re-

trieved for a single query often contain other concepts.

For instance, samples featuring “keyboard” may

also frequently include “mouse” and “computer”.
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As curating a perfectly balanced pretraining dataset is chal-

lenging, we recommend that researchers acknowledge the

presence of long tails and prioritize addressing VLM’s im-

balanced performances in downstream applications.

4. Retrieval-Augmented Learning

To address the biased performance of VLMs in zero-shot

recognition, we propose REtrieval-Augmented Learning

(REAL), which improves performance without using any

data from downstream tasks by retrieving pretraining data

relevant to the target concepts. REAL has two variants:

REAL-Prompt and REAL-Linear. REAL-Prompt is a novel

prompting strategy that replaces the original concept name

with its most frequent synonym found in pretraining texts.

REAL-Linear retrieves images relevant to the concepts

from the pretraining data to form a more balanced subset

for training a robust linear classifier. Below we elaborate on

these two methods.

4.1. REAL-Prompt for Zero-Shot Prompting

In our analysis, we discover that some synonyms for a

concept might appear more frequently in pretraining texts

than the concept itself. Therefore, we propose using the

most frequent synonym of a concept to construct prompts.

Specifically, we utilize an LLM (ChatGPT [31]) to enumer-

ate all synonyms for each concept. Next, we count their in-

dividual frequencies in the pretraining texts by string match-

ing. We use the most frequent synonym of each concept

in the prompt to construct an off-the-shelf classifier Wzs

for zero-shot recognition following CLIP [35]. This simple

change leads to significantly better zero-shot accuracy than

using the original concept names (cf. Fig. 3) released by

[35], which are hand-crafted over one year. As shown in

Table 1, our approach also outperforms recent LLM-based

prompting methods that use additional visual descriptors

along with the given concept names (e.g., DCLIP [28] and

CuPL [34]).

Synonym filtering using OpenCLIP’s text encoder.

ChatGPT sometimes generates noisy synonyms. For ex-

ample, for “tiger”, it lists “big cat” as a synonym,

which could be easily confused with another ImageNet

class “tabby cat”. To address this, we use OpenCLIP’s

text encoder to filter out synonyms that might be confused

with other downstream concepts. We retain only those syn-

onyms that have the highest cosine similarity scores with

their original class names. This filtering step is fully auto-

mated, ensuring a fair comparison with [28, 34] that per-

form LLM-based prompting without human input. We

show that this step is crucial to REAL-Prompt’s perfor-

mance in Table 15.

Figure 4. Flowchart of REAL-Linear. First, it uses all syn-

onyms of the given concepts to retrieve a class-balanced sub-

set of pretraining images (e.g., 500 images per class from the

dataset LAION-400M). Next, it learns a linear classifier W atop

the frozen VLM using cross-modal adaptation [22], and then en-

sembles it with the off-the-shelf classifier Wzs, whose weights are

text prompt embeddings based on the most frequent synonyms.

4.2. REAL-Linear for Linear Classifier Training

To further improve performance, REAL-Linear finetunes

on images retrieved from pretraining data that are relevant

to target concepts, as illustrated in Fig. 4.

Step 1: Retrieving data using concept synonyms.

For each concept, we retrieve pretraining data (LAION)

whose textual captions contain any concept synonyms from

REAL-Prompt. Then, we sort the retrieved data by the

cosine similarity between their captions and the averaged

text features (generated by OpenCLIP’s text encoder using

all concept synonyms). We select an equal number of the

top-ranked images per concept (e.g., 500) to ensure a class-

balanced dataset.

Step 2: Training a robust linear classifier. To address

the potential domain gap between the pretraining data and

the downstream task, we construct a robust linear classi-

fier W using cross-modal adaptation [22]. Concretely, we

learn a linear classifier W atop VLM’s embeddings of the

retrieved images and concept names, and then ensemble

it with the zero-shot classifier Wzs (i.e., REAL-Prompt):

W̄ = W +Wzs.

REAL-Linear’s exceptional efficiency. REAL-Linear

is significantly more efficient than the state-of-the-art RE-

ACT [24] and can be done using only academic-scale com-

puting resources. Unlike REACT, which requires down-

loading the whole pretraining dataset and running VLMs to

extract features for all pretraining images and texts, REAL-

Linear processes only pretraining texts via string matching.

As a result, it can process all LAION-400M captions in one

hour, whereas REACT needs 250 GPU hours just for fea-

ture extraction. In addition, REACT’s contrastive training
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Table 1. REAL outperforms existing methods on standard zero-shot recognition datasets. Within the zero-shot prompting paradigm,

our REAL-Prompt that prompts with the most frequent synonyms of visual concepts (using OpenAI’s templates [35]) outperforms existing

prompting approaches that adopt the original concept names, such as DCLIP [28] and CuPL [34]. Within the retrieval-augmented learning

paradigm (without using any data from downstream tasks), our REAL-Linear retrieves a class-balanced subset of pretraining data (500

examples per concept from LAION-400M), learns a linear classifier ensembled with the zero-shot classifier used by REAL-Prompt. REAL-

Linear rivals the recent method REACT [24] (which retrieves 10K examples per concept), and importantly, uses 5% of REACT’s retrieved

images and 1% of its compute as detailed in Table 3. We highlight the best accuracy in bold and underline the second best numbers.

Method ImageNet Flowers Cars Aircraft Pets Food DTD EuroSAT Avg

Zero-Shot

Prompting

prompt template

“{concept}” 60.7 63.8 78.1 12.6 83.3 80.1 48.8 28.6 57.0

“a photo of {concept}” 62.5 66.5 77.2 15.8 84.0 80.3 52.8 36.6 59.5

OpenAI templates [35] 62.9 68.0 79.2 16.7 86.7 80.9 54.5 51.5 62.6

DCLIP [28] 62.1 — — — 84.6 80.1 51.9 36.8 —

CuPL [34] 63.7 65.8 80.0 17.8 87.4 79.5 59.1 — —

REAL-Prompt 63.6 76.6 82.7 18.0 88.8 81.0 59.9 57.5 66.0

Retrieval

Augmented

REACT (10K) [24]

Locked-Text 65.7 73.1 88.5 24.5 89.2 81.8 49.8 51.1 65.5

Gated-Image 64.2 72.3 88.1 24.8 89.5 83.0 51.4 45.4 64.8

REAL-Linear (500) 65.9 78.8 84.4 29.6 89.5 81.4 61.5 51.5 67.8

demands extensive resources to ensure performance, e.g.,

large batch size (4,096) and long training (256 GPU hours

on 16 V100 GPUs). In contrast, our linear-probing ap-

proach trains in minutes on a modest GPU (12GB). Table 3

compares the efficiency between REACT and REAL.

5. Experimental Results

We show the state-of-the-art performance of REAL for

zero-shot recognition, outperforming existing prompting

and retrieval-augmented methods across standard bench-

marks. We ablate the design choices of REAL, reveal-

ing technical insights that contribute to its superior perfor-

mance. We show that REAL can be combined with existing

methods for even better results. Moreover, we show that

REAL-Prompt improves image generation of rare concepts

using text-to-image models like DALL-E 3 and SD-XL.

5.1. Experimental setup

Datasets and metric. We report mean per-class accu-

racy on standard classification benchmarks, including Ima-

geNet [10], Flowers [30], Cars [18], Aircraft [26], Pets [33],

Food [5], DTD [9], EuroSAT [13], and CUB [43]. More-

over, we use variants of ImageNet to study the out-of-

distribution (OOD) robustness of our methods, including

ImageNet-V2 [17], ImageNet-Adversarial [15], ImageNet-

Rendition [14], and ImageNet-Sketch [46]. Table 6 details

these datasets.

Compared methods. We compare against state-of-the-

art zero-shot recognition methods for VLMs. We report var-

ious prompting strategies that directly use the given concept

names, including prompt templates such as “{concept}”,

“a photo of {concept}”, and OpenAI’s hand-engineered

templates [35]. We also compare with LLM-based prompt-

Table 2. REAL boosts both head and tail performance. We

show that REAL-Prompt and REAL-Linear (500 retrieved ex-

amples per concept) achieve consistent improvement across all

classes over the baseline using OpenAI templates [35]. On each

dataset, we define the tail as the 20% least frequent classes and the

rest as the head, and report the averaged per-class accuracy over

nine standard zero-shot recognition datasets (including CUB [43]).

We report detailed improvements on each dataset in Table 8.

Method
ImageNet Avg of 9 datasets

Head Tail Head Tail

LAION

400M

OpenAI templates 64.8 55.2 65.7 52.5

REAL-Prompt 65.4+0.6 56.2+1.0 67.8+2.1 56.9+4.4

REAL-Linear 67.8+3.0 58.9+3.7 72.5+6.8 56.0+3.5

LAION

2B

OpenAI templates 68.0 61.0 68.6 58.4

REAL-Prompt 68.2+0.2 61.6+0.6 69.8+1.2 61.8+3.4

REAL-Linear 69.8+1.8 64.8+3.8 76.2+7.6 63.6+5.2

ing methods, DCLIP [28] and CuPL [34], which uses GPT

to generate visual descriptions for constructing prompts. Fi-

nally, we compare our method with the retrieval-augmented

SOTA REACT [24] that retrieves data using VLMs’ fea-

tures and performs contrastive finetuning. We report two

variants of REACT: Locked-Text and Gated-Image.

Implementation details. In this work, we ablate on

a series of OpenCLIP VLMs [7, 16], which are publicly

available along with their two pretraining datasets, namely

LAION-400M [37] and LAION-2B [38]. We report the per-

formance of OpenCLIP ViT-B/32 architecture in the main

paper and show that REAL generalizes to other architec-

tures in Table 13. For our REAL-Linear that learns a linear

classifier, we simply use the hyperparameters provided by

prior work [22, 48]. We use a single GeForce RTX 2080 Ti

(12GB) to train all the models and allocate 50GB of storage

to host retrieved data for all the nine benchmark datasets.
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5.2. Results

Using frequent synonyms improves zero-shot recog-

nition. Table 1 (top half) compares REAL-Prompt (based

on OpenAI’s prompt templates) against other prompting-

based methods like DCLIP [28] and CuPL [34], which use

GPT to generate visual descriptions. REAL-Prompt sig-

nificantly outperforms them simply by replacing the orig-

inal concept names with their most frequent synonyms.

This highlights the need to reconsider concept names in

prompts. REAL-Prompt is also much cheaper because it

queries ChatGPT for synonyms, which are shorter than the

rich visual descriptions queried by DCLIP and CuPL. For

every 1K concepts, DCLIP and CuPL generate 50K ($0.5)

and 500K ($5) tokens using ChatGPT, respectively, while

REAL-Prompt only requires 10K tokens ($0.1).

REAL-Linear achieves the state-of-the-art. Ta-

ble 1 (bottom half) compares our REAL-Linear against

the retrieval-augmented SOTA REACT [24]. REAL-

Linear achieves ∼3% higher accuracy averaged across eight

benchmarks than REACT, while using only 500 retrieved

images per concept compared to REACT’s 10K. Impor-

tantly, REAL-Linear is significantly more efficient (cf. Ta-

ble 3): it requires ∼1% of REACT’s computes, making it

more accessible to the research community. It also outper-

forms another recent method NeuralPriming [44] under its

experimental setup (cf. Table 10).

REAL improves accuracy on tail classes. Table 2

shows that REAL boosts performance for both tail (least

frequent 20%) and head (the rest 80%) classes on ImageNet

and all nine datasets. For more specific improvements on

each dataset, see Table 8.

REAL benefits existing zero-shot methods. Our meth-

ods can be readily applied with existing methods to further

improve performance. Table 4 shows that REAL-Prompt’s

most frequent synonyms can be applied on any prompt tem-

plates, including LLM-enriched ones like DCLIP [28] and

CuPL [34]. Likewise, REAL-Linear can be applied on top

of REACT’s finetuned OpenCLIP models, which achieves

even better performance as shown in Table 5.

Ablation studies for REAL-Linear. To understand

REAL-Linear’s superior performance, we conduct several

experiments, with key insights summarized below. Ta-

ble 9 shows that using all concept synonyms, as opposed to

just the original concept names, can help retrieve more di-

verse pretraining data, improving the averaged accuracy by

4%. Table 11 demonstrates that learning the linear classifier

with both text and image features using cross-modal WiSE-

FT [22, 48] leads to a 6.4% increase compared to linear

probing with only image features. Lastly, Table 12 shows

that increasing the retrieval size from 100 to 500 per con-

cept yields a modest accuracy improvement of 0.9%. Based

on this, we adopt 500 as the standard retrieval size for our

experiments.

Table 3. Compute cost comparison between REACT [24] and

our REAL-Linear. We compare the resources required for each

method on the ImageNet experiment. Clearly, REAL-Linear (re-

trieving 500 pretraining images per concept) uses much less com-

pute than REACT, e.g., retrieving 1000× less images, using 400×
less storage and 10,000× less training time.

Stage Resource
REACT

[24]

REAL

(500)
Relative Cost

Retrieval

retrieved examples 400M 0.5M 0.1%

time 200 hrs 6 hrs 3%

storage 10 TB 25 GB 0.25%

Learning

training images 10M 0.5M 5%

time 256 hrs 2 mins 0.01%

# of learned parameters 87M 0.5M 0.6%

GPU memory 256 GB 2 GB 0.8%

Improving image synthesis using REAL-Prompt.

Fig. 5 shows that, while state-of-the-art generative models

such as DALL-E 3 [41] and SD-XL [2] may fail to gen-

erate correct images for some rare concepts (identified by

our frequency estimation on LAION-400M), replacing the

rare concepts used in prompts with their most frequent syn-

onyms (found by REAL-Prompt) can help generate more

accurate images. More qualitative examples can be found

in Fig. 10 and 11.

5.3. Discussions

Broad impacts. Our work has positive societal impacts.

Our concept frequency estimation method explains why

VLMs are biased (or imbalanced) by confirming the long-

tailed distribution of concepts in their pretraining data. By

identifying concepts that VLMs have insufficiently learned,

we can implement targeted measures to prevent unfair or

biased predictions related to these concepts.

Limitations and future work. We acknowledge several

limitations in our methods. First, while we offer a method

to estimate concept frequency, we cannot accurately eval-

uate its precision and recall due to the absence of ground-

truth annotations of the pretraining data. Second, our es-

timation method relies only on the textual captions which

may overlook other visual concepts that are present in the

images but not in their captions. Lastly, filtering ambiguous

captions using off-the-shelf LLMs for each caption-concept

pair is time-consuming. We expect the future work to ad-

dress these limitations.

6. Conclusions

We investigate the critical yet ever-neglected long-tailed

issues of Vision-Language Models (VLMs). We use large

language models (LLMs) to estimate concept frequency in

VLMs’ large-scale multimodal pretraining data, uncovering

long-tailed distributions for concepts used in downstream

tasks. Crucially, we demonstrate a strong correlation be-
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Figure 5. Improving image generation using REAL-Prompt. We show two rare concepts identified by our frequency estimation where

DALL-E 3 and SD-XL struggle to generate accurate images: bank swallow (top, a bird from the CUB dataset) and thorn apple

(bottom, a flower from the Flowers dataset). Using their original names, both DALL-E 3 and SD-XL incorrectly render the bird’s colors.

Additionally, DALL-E 3 erroneously adds thorns to the flower, while SD-XL depicts an apple with literal thorns. Instead, using the most

frequent synonyms (sand martin for bank swallow, datura for thorn apple) as found by REAL-Prompt results in both systems

generating accurate images. See more examples in Fig. 10 and 11.

Table 4. Improvements using REAL-Prompt with existing prompting methods. Our REAL-Prompt can be combined with existing

prompt templates including OpenAI’s hand-engineered templates and LLM-enriched templates [35] like DCLIP [28] and CuPL [34]. On

datasets such as Flowers, DTD, and EuroSAT, integrating REAL-Prompt results in an accuracy boost of 5∼8%.

Prompting Method ImageNet Flowers Cars Aircraft CUB Pets Food DTD EuroSAT

OpenAI templates [35] 62.9 68.0 79.2 16.7 63.8 86.7 80.9 54.5 51.5

+ REAL-Prompt 63.6+0.7 76.6+8.6 82.7+3.5 18.0+1.3 64.0+0.2 88.8+2.1 81.0+0.1 59.9+5.4 57.5+6.0

DCLIP [28] 62.1 – – – 64.5 84.6 80.1 51.4 36.8

+ REAL-Prompt 62.9+0.8 – – – 64.7+0.2 88.1+3.5 80.0−0.1 55.5+4.1 36.9+0.1

CuPL [34] 63.7 65.8 80.0 17.8 – 87.4 79.5 59.1 –

+ REAL-Prompt 64.2+0.5 72.3+6.5 81.7+1.7 18.3+0.5 – 88.0+0.6 79.5+0.0 59.3+0.2 –

Table 5. Enhancing REACT’s robustness with REAL-Linear.

Our REAL-Linear (using 500 retrieved images per concept), when

applied to REACT [24]’s finetuned OpenCLIP models (ViT-B/32

trained on LAION-400M), improves zero-shot accuracy across

various challenging ImageNet variants. These variants, includ-

ing ImageNet-V2 [17], ImageNet-Adversarial [15], ImageNet-

Rendition [14], and ImageNet-Sketch [46], are specifically de-

signed to assess model robustness against domain shifts.

Method ImageNet
→ ImageNet Variants

V2 [17] A [15] R [14] S [46]

OpenAI templates [35] 62.9 55.1 21.7 73.5 49.4

REAL-Linear 65.9+3.0 57.3+2.2 22.7+1.0 73.9+0.4 50.9+1.5

REACT Locked-Text 65.7 57.2 20.3 77.6 54.8

+ REAL-Linear 67.7+2.0 59.1+1.9 21.3+1.0 78.1+0.5 55.9+1.1

REACT Gated-Image 64.2 56.3 21.1 75.9 52.4

+ REAL-Linear 66.9+2.7 59.1+2.8 21.7+0.6 76.8+0.9 54.2+1.8

tween the long-tailed concept distributions and VLMs’ im-

balanced zero-shot performance. To address this imbalance,

we propose retrieval-augmented learning (REAL), with two

variants: REAL-Prompt and REAL-Linear. REAL-Prompt

replaces original class names from downstream tasks with

their most common synonyms found in the pretraining texts,

outperforming both human-engineered and LLM-enriched

prompts. On the other hand, REAL-Linear leverages con-

cepts synonyms to fetch a balanced subset of pretraining

data for training a robust linear classifier atop the frozen

VLM, surpassing the previous SOTA using 400× less stor-

age and 10,000× less training time. Finally, we highlight

that modern text-to-image generators (e.g., DALL-E 3 and

SD-XL) often fail to generate images for the rare concepts

identified by our frequency estimation method. By apply-

ing REAL-Prompt, we demonstrate that using common syn-

onyms helps generate more accurate images.
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