
Appendix for DiffDis: Empowering Generative Diffusion Model with
Cross-Modal Discrimination Capability

1. Failure Case

The performance of image generation is relatively unsat-
isfactory (shown in Fig. 1) considering the following rea-
sons. 1). Since we train the model on CC3M [4], which
contains images of general scenes, the generation quality of
some specific domains like humans, animals is low. Train-
ing data from these domains may further improve the gen-
eration quality (upper). 2). The generation results may
contain watermarks since some images in CC3M are wa-
termarked (bottom).
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Figure 1. Failure cases of text-to-image generation.

2. More Implement Details
In this section, we introduce more implementation de-

tails for our DiffDis. 1) We use a cosine noise scheduler for
the text query diffusion process and a linear noise sched-
uler for the image diffusion process. 2). We assign the
timestep of 1000 to the image condition when performing
discriminative tasks. Note that 1000 is not in the range of
the timestep for image generation.

Here we give detailed experimental settings for the CLIP
models we compared in the main paper. We set the batch
size to 1024 and pre-training was conducted for 20 epochs
by using AdamW optimizer. The learning rate is 1e-3 and
the weight decay is 0.1. During pre-training, the images
are randomly cropped and we use the RandAugment [1]
for image augmentation. We compare our implementation
with open source clip pretraining codebase [2]. We keep
the same batch size and the number of training epochs. The

Codebase Model ZS-Acc

OpenCLIP [2] CLIP-ViT-B/32 14.7
OpenCLIP [2] CLIP-ViT-LB/14 19.1
Our CLIP-ViT-B/32 16.7
Our CLIP-ViT-L/14 21.1

Table 1. Comparison of our implementation and open source im-
plementation [2].

Model Target FID↓ ZS-Acc↑ Mean R@1↑
Noise 10.78 22.62 29.38
Data 11.52 23.44 28.64

Table 2. The performance of different model targets. Using feature
scaling γ = 1.

experimental results are shown in Table 1. Our implemen-
tation is better than open source codebase. We think that the
improvement can be attributed to more extensive augmen-
tation for images.

3. More Discussion

The Effect of Different Model Targets. Diffusion model’s
output can be the original noise ϵ or the data x0 that denote
the noise prediction model and data prediction model, re-
spectively. The comparison of two types of models on three
downstream tasks is listed on Table 2.
The Effect of Different Noise Schedulers. We analyze the
influence of different noise schedulers on the text diffusion
process. The linear schedule starts from 0.00085 to 0.0120.
Table 3 shows that the linear schedule is a better choice than
the cosine schedule.
The Effect of Dual-Stream Deep Fusion Attention Block.
To evaluate the effectiveness of the proposed dual-stream
deep fusion attention block, we disable the fusion block by
replacing it with the original attention blocks of Stable Dif-
fusion. We directly concatenate the input text query with
the image hidden output from UNet’s middle block and
feed the concatenation to the 6 blocks transformer. Table
4 shows the experimental results of this comparison. When
disabling the deep fusion block, the performances of three
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Figure 2. More illustrations of generated samples with proposed DiffDis on MSCOCO prompts.

Noise Scheduler FID↓ ZS-Acc↑ Mean R@1↑
Cosine 11.90 22.35 28.59
Linear 11.52 22.70 31.07

Table 3. The performance of different noise schedulers. Using fea-
ture scaling γ = 1.

Enabled Fusion FID↓ ZS-Acc↑ Mean R@1↑
✗ 10.05 24.53 32.97
✓ 9.80 25.92 33.60

Table 4. The performance on FID score on MSCOCO image gen-
eration, zero-shot ImageNet classification and average R@1 of
MSCOCO and Flickr30k by enabling dual-stream deep fusion at-
tention block.

downstream tasks are dropped. Besides, according to Ta-
ble 5, using modality-specific FFN and sharing the atten-
tion module in dual-stream deep fusion attention block will
improve the performance on generation tasks.
Time Comparison. We provide the training time, genera-

Share Attn MS-FFN FID↓ ZS-Acc↑ Mean R@1↑
✓ ✗ 10.26 25.92 33.75
✗ ✓ 10.19 26.25 33.07
✓ ✓ 9.80 25.92 33.60

Table 5. The effect of the modality-specific FFN (MS-FFN) and
sharing attention module in the dual-stream deep fusion attention
block. We use the setting of the last row in our model.

tive inference time on COCO and discriminative inference
time on ImageNet in Table 6. After unifying the discrimina-
tive and generative tasks, DiffDis has a longer training time
compared to single-task training but has a shorter training
time than the sum training time of CLIP-ViT-L/14 and Sta-
ble Diffu- sion and make better or comparable performance.
DiffDis has a similar generative inference time as Stable
Diffusion and 1.7x discriminative inference time compared
to CLIP.

The Mask Timestep of Image Condition for the Discrim-
inative Tasks. The image condition for the discriminative



Time / Tasks Training Gen-Inference Dis-Inference ZS-Acc↑ FID↓
CLIP-ViT-L/14 1d 7h – 148s 21.1 –
Stable Diffusion 1d 8h 3530s – – 10.8
DiffDis 2d 6h 3550s 252s 25.9 9.8

Table 6. The training time and inference time comparison.

Position tz FID↓ ZS-Acc↑ Mean R@1↑
First 0 12.35 21.97 27.20
Last 999 12.02 21.73 27.56
Additional 1000 11.35 22.13 27.56

Table 7. Results of different mask timestep of image condition for
discriminative learning. The range of the image generation diffu-
sion steps is 0-999 . The additional timestep used for discrimina-
tive tasks is not shared with image generation.

Backbone Pre-train Stage Fine-tune Stage
Image-Acc Text-Acc KNN-Acc Acc

CLIP-ViT-L/14 31.4 38.1 35.5 40.5
DiffDis 37.0 52.5 40.5 44.4

Table 8. Results of long-tailed recognition on Places-LT dataset
by using different backbone. We follow the official code of VL-
LTR [5].

tasks needs a timestep to input. We discuss the selection
of the image condition on three downstream tasks on Table
7. The experimental results show that reusing the timestep
within the range of image generation’s timestep leads to per-
formance degradation on both image generation tasks and
discriminative tasks. The use of the ‘First’ mask timestep
(tz = 0) will degrade the performance most. Assigning an
additional timestep for the image condition for discrimina-
tive tasks achieves the best performance on all downstream
tasks.

Discussion with HybViT We clarify that the DiffDis cannot
directly compare with HybViT [6] since 1) HybViT focuses
on class-condition image generation while our DiffDis tar-
gets text-condition image generation; 2) HybViT performs
supervised classification tasks but can not perform zero-
shot classification tasks or image-text retrieval tasks while
DiffDis can.

4. Application of DiffDis

We follow VL-LTR [5] to perform long-tailed visual
recognition tasks and apply DiffDis or CLIP-ViT-L/14 (our
implementation, pre-trained on CC3M), as the backbone.
As shown in Table 8 We evaluate the performances of
the pre-train stage and fine-tune stage on the Places-LT
dataset [3].
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