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In this appendix, we provide various visual illustra-
tions, extended evaluations, and other details.The contents
of this appendix are summarized below:

* Visualization of hand part partitions and hand skeleton
(Section A).

* Details on the rotation of each bone transformation B;
(Section B).

* Extended evaluations of shape reconstruction from
images on FreiHAND using chamfer distance (Sec-
tion C); see main manuscripts for Table 4.

* Determination and sensitivity of the loss weights (Sec-
tion D).

* Mathematical definition of the proposed deformation
field and its constrained domain (Section E).

* Details on network architecture and training (Sec-
tion F).

» Additional qualitative results (Section G).

A. Visualization of hand part partitions and
hand skeleton.

In Fig. 10, we visualize a canonical skeleton of the
canonical hand mesh, with all the bones {b,; | 1 < j < 20}
and the local coordinate systems {LC'S; | 1 < i < 16}.

In Fig. 11, we show part segments {P; | 1 < ¢ < 16} on
a colored canonical hand. For each part, both the palm view
and back view are shown.

B. Details on the rotation of each bone trans-
formation B;.

For bone transformation B; of bone b;, the rotation (ori-
entation) is set following HALO [2]: (1) For 5 palmar
bones, z-axes are defined by normalized bone vectors, x-
axes are defined by the normal of palmar planes (same as
HALO [2]), and y-axes are obtained by a cross product. (2)
For 15-finger bones, axes are defined by rotating the axes
of parent bones along the kinematic chain using computed
abduction and flexion angles.
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C. Extended evaluations of shape reconstruc-
tion from images on FreiHAND using
chamfer distance.

Table 4 of the main paper compares our reconstruction
results with baselines on FreiHAND using per-vertex met-
rics. However, since the vertex-wise correspondence of
MANO annotations may not reflect real-world deformation,
we also evaluate shape reconstruction based on Chamfer
distance. As shown in Table 8, Ours-high achieves state-
of-the-art performance, surpassing MANO [5] and I2L-
MeshNet [3].

Method Chamfer Distance (mm)].
12L-MeshNet 346
MANO* 4.95
Ours-low* 3.58
Ours-high* 343

Table 8: Comparison with baselines of shape reconstruction from
images on FreiHAND [8] based on the evaluation metric of Cham-
fer Distance.

D. Determination and sensitivity of the loss
weights

We use consistent weighting factors in our experiments.
The w, = 0.0001, wo = 0.1, and w; = 1 follow previ-
ous works [6-7]; the remaining loss terms are empirically
selected. We find our model is not that sensitive to these
weights: using wg = 1 rather than wg = 0.1 provides V2V
0.39 in Tab.3, using w,, = 10 than w,, = 1 provides V2V
0.38 in Tab.3.

E. Mathematical definition of the proposed de-
formation and its constrained domain

The proposed deformation field ¢ is a one-to-one map-
ping function between canonical and deformed space. We
constrain the domain of ¢ nearby the hand surface (such
as within 3mm from the surface). Using this deformation
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Figure 10: Visualization of the canonical hand learned by PHRIT with its canonical hand skeleton and local coordinated systems.
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Figure 11: Visualization of our decomposition of the human hand, where the hand is partitioned into 16 rigid parts.

field, we design our DeformNets as an invertible mapping
function, introducing an inverse counterpart called InvDe-
formNets. With these networks, we derive our training ob-
jectives to learn per-vertex deformation (i.e., dense corre-
spondence) between canonical and deformed hands effec-
tively, without requiring dense supervision. Further details
are provided in Section 3.2 of the main manuscript.

To validate our approach theoretically, we provide a
more concrete mathematical definition of the deformation
field ¢ and its constrained domain in this appendix. For
simplicity, we present the content in 2D space, but it can be
easily generalized to 3D space.

In this context, we denote the hand surface in canonical
space and deformed space as two smoothing curves, L. and
L, respectively. These curves are without self-interaction,
and each point on the curve has its normal, as shown in the
top of Fig. 12. It is important to note that there are mul-
tiple feasible one-to-one continuous correspondences be-
tween L. and L4, as demonstrated in Fig. 12. We argue
that such a one-to-one correspondence can be arbitrarily as-
signed, but it will correspond to a unique ¢ based on our

definition. In other words, once our ¢ is established, a one-
to-one correspondence is implicitly built.

To define our deformation field ¢ based on the corre-
spondence between L. and Lg, we introduce some impor-
tant concepts and notations (shown in Fig. 13). The curve
SDF extends SDF to 2D space, and the point projection and
the maximum projection radius are the keys to defining the
¢ as a one-to-one mapping function.

Curve SDF. SDF (Signed Distance Field) can be extended
to a curve L in 2D space by assigning the sign of the dis-
tance. In 2D space, points on the right side of the curve L
have negative distances, while those on the left side have
positive distances. The right and left sides of a curve can be
determined by the direction of the curve (see Fig. 13(a)).
Point projection. Given a query point X and a curve L,
the point projection finds the closest point P(X) on L to X.
Since there may exist multiple projections, we use P(X) to
indicate that X has only one projection, and P(X) to indi-
cate that X has multiple projections, where P(X) is corre-
sponding projection set of X (see Fig. 13(b)).

Maximum projection radius. Given a point X on a



curve L, we observe that all the points that have X as
their only projection on the L lie on the normal at X:
VY € {Y | P(Y) = X},Y € N(X), where N(X)
denotes the normal at X. The maximum projection ra-
dius further narrows down this range by finding a symmet-
ric area nearby the surface. The maximum projection ra-
dius gives the maximum radius M (X) at X, that satisfies
VY e N(X)NO, P(Y) = X , where O is the area with the
center X and radius M (X): O = {Y | | XY|| < M(X)},
Il computes the length of a line. As shown in Fig. 13 (c),
M (X) is no larger than the well-known curvature radius at
X.

Notations. We denote SDFs for curve L. and Ly as SDF,
and SDFy, point projections for curve L. and Ly as P.()
(P.(+)) and P,(-) (P4(+)), and the maximum projection ra-
dius for L. and L, as M.(-) and My(-). We use ||-|| to
compute the length of a line.

Now, we can define our deformation field ¢ as depicted
in Fig. 14. For a point X, in canonical space, ¢ maps
it to deformed space ¢(X.) = X, by first finding X, ’s
projection on L. denoted as X, then finding X ’s corre-
spondence on Lg denoted as X j, and finally, along the nor-
mal of X (i.e., N (X3)), finding X4 such that | X X =
| X4 X and X, and X are on the same side of the L. and
Ly (ie., SDF.(X.) = SDFc(Xy)).

As shown in Fig. 14, this definition immediately requires
a constrained domain to be a one-to-one mapping. Specifi-
cally, the constraint domain for ¢ in canonical space can be:

{Xc ‘ ISDFC(XC)l < min(Mc(X:)de(X;))} (1)

where X = P.(X,), X; = ¢(X) asillustrated in Fig. 14.
And the constraint domain for ¢! in deformed space can
be:

{Xa | [SDFa(Xa)| < min(Mc(X7), Ma(Xg))} ()

F. Details on network architecture and train-
ing.

Network architecture. To train PHRIT with scans, we
use SIREN MLPs with frequency w = 30 in the sinus ac-
tivation (as described in [7]) for our RefNet, DeformNets
and InvDeformNets. RefNet is composed of 2 layers with
256 hidden dimensions. DeformNets and InvDeformNets
have the same structure. Take DeformNets as an example:
(1) For the palm part P;, the DeformNet g; has 6 layers
with 512 hidden dimensions. (2) For other part P;, the
DeformNet g; has 4 layers with 256 hidden dimensions.
(3) For conditioning each DeformNets g; on pose code 6;
and shape code 3;, we employ FiLM conditioning pro-
posed by [!], as they have demonstrated conditioning-by-
concatenation is sub-optimal for period activations. FiLm
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Figure 12: Canonical hand surface and deformed hand surface
are denoted as 2D curves L. and L4 in respective spaces. L. and
Lg can be parameterized by f.(¢) and fq(t), where t € [0, 1]),
and f.(0) and f4(0) are the starts of the curves, f.(1) and f4(1)
are the ends of the curves. By defining monotonically increasing
functions p and o, multiple continuous correspondence between
L. and L4 can be assigned.

conditioning involves a mapping network that takes in a la-
tent code z (which in our case is the concatenation of 6; and
B;) and outputs frequencies and phases to condition each
layer of SIREN MLPs. The mapping network is a 4-layer
LeakyReLU MLP with hidden dimension of 128. (4) For
deformation skip connections, we set the number of skip
connections (See NV in the main manuscript) to 2 for each
part model g;.

For fair comparison with HALO [2] in skeleton-driven
hand reconstruction with MANO meshes, we obtain the re-
sults in Table 2 of the main papaer by using MLP w/o PE
architecture (no SIREN included), which is consistent with
[2]. We further compare using SIREN vs. MLP+PE learn-
ing with real-world scans (on reconstruction from point
clouds or images), resulting in 3.14 vs. 3.29 on P, 1.50
vs. 1.58 on My, in Table 5 of the main paper, and 0.37 vs.
0.45 on V2V in Table 3 of the main paper, showing SIREN
could slightly advance the performance.

Traning data. To train PHRIT with scans, we preprocess
each scan to obtain query points with their normals for each
hand part, where mano annotations are utilized to label the
scan points with skinning weights, and then scan points
are gathered for each hand part based on these skinning
weights. During training, for each scan in a training batch,
the query points consist of: (1) 2000 points with their part
labels that are sampled from the preprocessed scan, (2) 778
MANO vertices from the MANO annotation of the scan,
and (3) an additional 1000 points uniformly sampled in the
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Figure 13: (a) SDF (Signed Distance Field) for a curve in 2D space. (b) Point projection, where a query point is projected onto the curve.
(c) Maximum projection radius for a query point on the curve.

Deformation field ¢: X, = X,

Canonical space Canonical space Deformed space Deformed space
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Figure 14: Deformation field ¢ : X. — X, with its constraint domain. ¢ is essentially a one-to-one mapping function nearby the hand
surface, build upon the correspondence between the canonical hand and deformed hand (X = ¢(X)).

canonical hand space to train RefNet. in Fig. 17. Furthermore, we demonstrate that our method,
PHRIT, can reconstruct hands from point clouds (as de-
G. Additional qualitative results. scribed in Section 4.3 of the main manuscript) and drive the
reconstruction to previously unseen poses with impressive

We present additional results on DHM [4] and Frei- results, as shown in Fig. 18.

HAND [8] in Fig. 15 and Fig. 16, respectively. We also
provide visualizations of the effects of learned shape la-
tent code and bone lengths on hand shape reconstruction,
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Figure 16: Additional results of reconstruction from images on FreiHAND as a supplement to Fig.7 and Table 4 in the main manuscript.
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Figure 17: The visualization in the figure demonstrates the effects of changing the learned shape latent code and bone lengths on hand
shape reconstruction. Horizontally, we show the results of changing the input shape latent code. Vertically, we show the results of changing
the input skeleton, which corresponds to the same poses but with different bone lengths. As can be seen, the shape latent code controls
surface properties such as hand thickness and veins, while the bone lengths control joint positions. For example, in the first column, the
ring finger is longer than the index finger, while in the second row, the index finger is longer than the ring finger. In the third row, the little
finger has the longest relative length compared to other rows.

Point clouds hand reconstruction Hand reconstruction under novel poses

Figure 18: Results of our hand reconstruction from point clouds under novel poses. The poses are randomly generated using the MANO
model. PHRIT is able to drive the hand reconstruction to previously unseen poses with realistic results.
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