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1. Dataset and Metric
Dataset. we conduct experiments on nuScenes dataset,
a comprehensive autonomous driving dataset that encom-
passes a variety of perception tasks, such as detection, track-
ing, and LiDAR segmentation. The nuScenes dataset com-
prises 1,000 distinct driving scenes, divided into three dis-
tinct subsets for training (700), validation (150), and testing
(150) purposes, respectively. Each of these driving scenes
includes 20 seconds of perceptual data that are annotated
with a keyframe at a frequency of 2 Hz. The data collection
vehicle employed in this study is equipped with one LiDAR,
five radars, and six cameras that capture a surround view of
the vehicle’s environment.
Metrics. We follow the official protocol to report the
nuScense Score (NDS), mean Average Precision (mAP),
along with five true positive metrics including mean Aver-
age Translation Error (mATE), mean Average Scale Error
(mASE), mean Average Orientation Error (mAOE), mean
Average Velocity Error (mAVE) and mean Average At-
tribute Error (mAAE).

2. Experimental Details
For comprehensive comparison, we have conducted ex-

periments with ResNet-50, ResNet-101 and VoVNet-99 as
the backbone networks in our experiments. Following the
setting of the PETR series, we use P4 feature by default.
Specifically, P4 feature is obtained by upsampling the C5
feature (output of the 5th stage) and fused with the C4
feature (output of the 4th stage). The P4 feature with
1/16 input resolution or the C5 feature with 1/8 input res-
olution is used as the 2D feature. The monocular depth
ranges from 0 to 61m. The region of 3D perception space
is set to [−61.2m, 61.2m] for X and Y dimension and
[−10m, 10m] for Z dimension. The 3D coordinates in point
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Figure 1. A mathematic model for the included angle α between
camera-ray and LiDAR-ray in a surround-view system. dLc is the
distance along the camera ray from LIDAR to the camera, ∆ is
the distance perpendicular to camera ray from LIDAR to the cam-
era, Apparently, α2 will be smaller than α1 (approaching 0), and
meanwhile d2 becomes larger than d1.

cloud are normalized to [0,1]. As for the hyper-parameters
in each loss component, we set λsl1/λDFL/λcls/λreg to be
0.25/0.25/2.0/1.0/ respectively, and λcls and λreg is the loss
weight for classification and regression follow PETR series.
AdamW [2] optimizer with a weight decay of 0.01 is used
for training model, and the learning rate is initialized as
2.0e-4 and decayed with cosine annealing scheme [1]. Un-
less otherwise stated, all experiments with a batch size of
8 are trained for 24 epochs on 4 Tesla V100 GPUs. Test
augmentation methods are not used during the inference.

3. Analysis of 3D Positional Encoding

In this section, we first decoupled the positional encod-
ing of PETR into three factors, i.e., depth values number
ND, discretization method MD and depth range RD. Then,
the influence of each factor is explored through ablation
studies in Sec. 3.1. According to the experimental results,
we summarize a feasible physical model to explain the
meaning of the positional encoding in PETR. In Sec. 3.2,
a new assumption of using LiDAR-ray as positional encod-



Table 1. Quantitative comparison of different depth values num-
ber ND, discretization methods MD and depth range RD. SID
and UD denote spacing-increasing discretization and uniform dis-
cretization respectively. The invariable performances of top 2-4
rows with diverse MD indicate that MD is irrelevant. Thus we fix
MD as simplest UD but change RD as in row 5 and 6, consistent
performances demonstrate that RD is also incoherence. Finally, we
fix MD and RD but reduce the ND to 32 and 2 respectively in last
2 rows, the immune performances declare that ND also does not
largely affect the results.

ND MD RD NDS↑ mAP↑ mATE↓

64 LID [1,61] 0.338 0.275 0.853
64 SID [1,61] 0.343 0.275 0.856
64 UD [1,61] 0.337 0.273 0.847
64 UD [1,31] 0.340 0.274 0.855
64 UD [31,61] 0.336 0.272 0.849
32 UD [1,61] 0.342 0.274 0.857
2 - [1,61] 0.345 0.276 0.845

ing is proposed. Extensive experiments provide evidence
for the new assumption. All experiments in this section
are performed without CBGS and the backbone is set to
ResNet-50, C5 feature is selected as 2D image feature, the
train image size is set to 704× 256 defaultly.

3.1. 3D Camera-Ray PE

PETR series divide the depth range RD [1m, 61m] into
ND = 64 depth bins following linear-increasing discretiza-
tion (LID). Therefore, one pixel corresponds to 64 sepa-
rated 3d points lying on the corresponding camera ray. The
3D coordinates of these points are fed together into a 3D
positional encoding encoder to generate the PE. In order to
clarify what location information is encoded in 3D PE, we
further explore the effectiveness of different depth bin num-
bers ND, discretization methods MD and depth range RD as
shown in Table 1. Surprisingly, the results turn out to be
almost invariable under different settings, where the fluctu-
ations of NDS, mAP and mATE are smaller than 0.8%,
0.4% and 1.0% respectively. It gives a intuitive hint that
the performance remains virtually unchanged through the
separated 3D points sliding on the camera-ray. If the sam-
pled points can represent the direction of the camera-ray, it
already provides equivalent information to the PETR’s 3D
encoding. Thus, we propose a 3D camera-ray assumption
that we could encode the 2D feature by two points on the
camera-ray penetrating this pixel.

3.2. LiDAR-Ray PE Assumption

In this section, we further reduce ND to 1 with fixed depth
d such as 0.2m, 1m, 15m, 30m and 60m respectively. As
listed in Table 2, smaller d leads to inferior performance
(row 1 and 2 in Table 2). It indicates that the scheme of cur-
rent PE is no longer camera-ray, while on-par result (com-

pared to results listed in Table 1) is achieved when d is larger
than 15m. The phenomenon above enlightens us that the PE
in PETR with ND = 1 represents a LiDAR-ray. Determi-
nation of a ray direction requires two points. As the fixed
LiDAR’s location provides the start point of ray, thus we
can determine LIDAR-ray direction with one point.

As shown in Figure 1 (b), we calculate the discrepancy
(Dis) between camera-ray and LiDAR-ray with the cosine
of their included angle:

Dis = 1− cos(α)

= 1− cos(αc − arctan(
tanαc +

∆
d

1 +
dLc

d

))

≈ 0.0 when d ≫ dLc
and d ≫ ∆,

(1)

where αc is the azimuth angle of camera-ray, α is the in-
cluded angle between camera-ray and LiDAR-ray, dLc is
the distance between camera and LiDAR along camera view
(which ranges from 0.5m to 1.2m in universal sensor con-
figuration), ∆ is the distance between camera and LiDAR
vertical to camera view (which ranges from 0.0m to 1.0m
in universal sensor configuration). When d ≫ dLc and
d ≫ ∆, the discrepancy between camera-ray and LiDAR-
ray is almost eliminated. This further demonstrates that
when d is larger, the LiDAR-ray will have a similar di-
rection as the camera-ray, thus, the experiment results will
be on par with the original PETR positional encoding even
with one point.

Table 2. Quantitative comparison of different fixed depth d when
depth point number ND is 1.

N D MD d NDS↑ mAP↑ mATE↓

1 - 0.2 0.304 0.229 0.948
1 - 1 0.323 0.251 0.907
1 - 15 0.333 0.275 0.842
1 - 30 0.340 0.271 0.844
1 - 60 0.338 0.275 0.849

4. More Ablation Study

Experiment settings in this section are following setting
in the above analysis of 3D positional encoding.

4.1. More Studies on PE Similarity

To demonstrate the 3D point PE is capable of more pre-
cise locating capability, we randomly select position on
background and object (appeared on the cross-view) respec-
tively from the front view, the similarity between the posi-
tion and all pixels of the surround views is computed. Fig-
ure 2 is the complete version of the Figure 6 in main paper.



In terem of point selected on cross-view object, as illus-
trated in Figure 3, the 3D point PE can find the related ob-
ject from other view without redundant focus on the back-
ground. In term of the PE selected at the road, the 3D point
PE tend to focus on the closer region round the selected po-
sition compared to the 3D camera-ray PE, as vividly shown
in Figure 4.

4.2. Main improvement comes from reasonable 3D
point PE

We conduct well designed experiments, as list in Table 3,
to demonstrate the main contribution comes from 3D point
PE but not supervision of sparse depth maps. We would like
to clarify it through two comparisons: (a) Without depth
supervision, replacing camera-ray PE with 3D point PE
achieves 0.6% NDS improvement (34.3% in 6-th row V.S.
33.7% in second row). (b) We show that depth supervision
can also be applied to camera-ray PE. Under depth super-
vision, Our model with 3D point PE (last row) consistently
outperforms that with camera-ray PE (5-th row) by 0.9%
NDS and 0.8% mAP. These results together demonstrate
the main technical improvement is the more reasonable 3D
point PE.

Table 3. Comparison of different 3D position-aware feature w/o
sparse depth maps. Camera-ray and feature-guided (extended ver-
sion of camera-ray) are proposed in PETR and PETRv2 respec-
tively. 3D point is our proposed method.

3D Position-aware NDS↑ mAP↑ mATE↓

Camera-Ray w/o 0.337 0.274 0.852
w - - -

Feature-guided w/o 0.352 0.283 0.843
w 0.359 0.291 0.826

3D-Point w/o 0.343 0.266 0.832
w 0.368 0.299 0.807

4.3. Accuracy of depth approximation

We follow the common practice to evaluate the depth ac-
curacy in terms of SILog, AbsRel, SqRel, and RMSE. As
shown in Table 4, our hybrid depth net effectively reduces
the depth error, thus improving 3D detection performance.
This table will be merged to Table 4 of the manuscript in
the revision.

Table 4. Evaluation of depth prediction on the nuScenes val set.

Lsmooth−L1 Ldfl SILog↓ AbsRel↓ SqRel↓ RMSE↓

63.71 2.54 58.81 20.09
✓ 18.78 0.09 0.73 5.35
✓ ✓ 17.65 0.08 0.67 4.92
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Figure 2. Representative similarity comparison of 3D camera-ray PE in PETR and ours 3D point PE, best viewed in color.
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Figure 3. Representative similarity comparison of 3D camera-ray PE in PETR and ours 3D point PE, best viewed in color. The position is
selected on the car object appeared in cross-view.
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Figure 4. Representative similarity comparison of 3D camera-ray PE in PETR and ours 3D point PE, best viewed in color. The position is
selected on the background.



Figure 5. Qualitative results for our method, best viewed in zoom and color.


