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Abstract

Data augmentation policies drastically improve the per-
formance of image recognition tasks, especially when the
policies are optimized for the target data and tasks. In this
paper, we propose to optimize image recognition models and
data augmentation policies simultaneously to improve the
performance using gradient descent. Unlike prior methods,
our approach avoids using proxy tasks or reducing search
space, and can directly improve the validation performance.
Our method achieves efficient and scalable training by ap-
proximating the gradient of policies by implicit gradient with
Neumann series approximation. We demonstrate that our
approach can improve the performance of various image
classification tasks, including fine-grained image recogni-
tion, without using dataset-specific hyperparameter tuning.

1. Introduction

Data augmentation is an effective way to improve the
performance of CNN models for image recognition tasks,
particularly when its policy is optimized for the target model
and dataset. Conventional data augmentation for images
consists of image transformation operations, such as random
cropping and flipping, and color enhancing including modifi-
cation of color intensities [28, 19]. However, designing good
data augmentation strategies requires profound understand-
ing of the target data and operations. For example, CutOut
[11] randomly erases a patch region of each image and is
known to improve performance on the CIFAR-10 dataset,
but is also reported to degrade the performance on other
datasets, e.g., ImageNet [33].

Therefore, automatically designing effective augmenta-
tion strategies according to target data and tasks is desir-
able to improve the performance of image recognition mod-
els. One approach to augment existing data is to generate
new data samples by interpolating several training images
[18, 10, 55] or by using conditional generative models [1, 2].
However, this approach requires a large amount of labeled
data [46] and sometimes fails to improve the performance
[47], even if powerful conditional generative models are

Figure 1. In AutoAugment family, a policy consists of data aug-
mentation operations. Each operation, e.g., Rotate or Invert,
augments an image with a probability of p and a magnitude of µ. As
can been seen, performing multiple operations virtually increases
the diversity of images. The operations are selected from given
operation sets according to a selection parameter π. Our proposed
method, MADAO, can optimize a CNN and its data augmentation
policy simultaneously by gradient descent in an online manner.
Namely, the parameters of the CNN θ is updated to minimize the
training loss Ltrain (also written as f ), and the parameters of the
policy ϕ = {p,µ,π} is updated to minimize the validation loss
Lval (also written as g).

used. On the other hand, some methods improve the per-
formance by efficiently selecting effective combinations of
image transformation operations from exponentially large
candidate pools [46, 8, 56]. In particular, AutoAugment [8]
and its family [21, 31, 17, 9, 6, 32, 29] optimize combina-
tions of operations to improve validation performance and
achieved state-of-the-art results.

These methods involve a bi-level optimization: the inner
process optimizes parameters of a CNN on training data
using a given combination of operations, and the outer pro-
cess optimizes the combination of operations to maximize
the validation performance. Particularly, the inner loop, i.e.,
training of a CNN model, is usually expensive. Therefore,
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1 cnn.initialize() # parameterized by θ

2 policy.initialize() # parameterized by ϕ

3 for epoch in range(num_epochs):
4 for train_data, val_data in data_loader:
5 for i in range(num_inner_iters):
6 input = policy( train_data[i] ) # augment data by policy
7 criterion = cnn.train(input) # referred to f in the text
8 cnn.update(criterion)
9 vcriterion = cnn.val(val_data) # referred to g in the text

10 policy.update(vcriterion)

Algorithm 1. Our proposed method MADAO in a Python-like pseudo code. MADAO optimizes policy as well as cnn by gradient descent
with slight modifications ( highlighted ) and little overhead to the standard optimization protocol.

prior works use proxy tasks that adopt small subsets of train-
ing datasets or small models [8, 21, 31, 17, 29] or reduce the
search space [9, 6, 32] to keep the entire training feasible.
Such approaches may result in sub-optimal solutions. We
will further review and formalize this problem in Section 2.

In this paper, we tackle the original bi-level optimization
problem directly without using proxy tasks or reducing the
search space. We propose Meta Approach to Data Aug-
mentation Optimization (MADAO), which optimizes CNNs
and augmentation policies simultaneously by using gradient-
based optimization. Here, policies are updated so that they
directly increase CNNs’ validation performance. Naïvely ap-
plying gradient-based optimization to this bi-level optimiza-
tion requires differentiation through the inner optimization
process [15] or computation of the inverse Hessian matrix
[3], both of which suffer from large space complexity. These
problems are fatal because data augmentation optimization
needs to handle large networks, e.g., CNNs for ImageNet.
We bypass these issues by using the implicit gradient method
with Neumann series approximation. Thanks to these approx-
imations, MADAO is simple with little overhead as shown
in Algorithm 1. Notably, this simplicity allows MADAO to
scale to problems of ImageNet size, which has been nearly
impossible for existing bi-level optimization methods [23].

We empirically demonstrate that MADAO learns effective
data augmentation policies and achieves performance com-
parable or even superior to existing methods on benchmark
datasets for image classification: CIFAR-10, CIFAR-100,
SVHN, and ImageNet, as well as fine-grained datasets. All
of the reported results have been achieved without using
dataset-specific configurations.

The contributions of this paper are summarized as fol-
lows:

• We propose MADAO, which directly solves the bi-level
problem of data augmentation optimization without
using proxy tasks or reduced search space. In other
words, MADAO optimizes a CNN model and its data

augmentation policy simultaneously.

• To efficiently solve this bi-level problem, MADAO uses
differentiable data augmentation and implicit gradient
methods with the Neumann series approximation. We
empirically demonstrate that MADAO is applicable
to large-scale problems, including ImageNet classifi-
cation, and especially improves the performance on
fine-grained classification tasks.

2. Generalizing Data Augmentation Optimiza-
tion

In Section 2.1, we describe the preliminaries of data aug-
mentation optimization of AutoAugment family, and then
review prior methods by generalizing the problem in Sec-
tion 2.2.

2.1. Designing Data Augmentation Space

Let us define a set of input images X and a set of opera-
tions S consisting of data augmentation operations such as
rotation and color inversion. In the AutoAugment family,
each image x ∈ X ⊂ [0, 1]D is augmented by an operation
O : X → X with a probability of pO ∈ [0, 1] and a magni-
tude of µO ∈ [0, 1] as illustrated in Figure 1. The magnitude
parameter can correspond for example to the degree of rota-
tion, while some operations, such as inversion, have no mag-
nitude parameter. By applying K consecutive augmentation
operations, each image results in 2K possible images, that is,
the number of images virtually increases. This formulation
makes the size of the search space (|S| × [0, 1] × [0, 1])K ,
where |S| is the size of the operation set.

Operations and accompanied parameters need to be se-
lected so that they minimize the validation criterion, such
as the error rate. Usually, this selection is performed heuris-
tically [28, 19]. However, Cubuk et al. showed that data-
driven optimization surpasses handcrafted selection [8].
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2.2. Generalizing AutoAugment Family

Let θ ∈ RM denote parameters of a CNN model and
ϕ ∈ RN denote parameters of a policy for augmentation,
i.e., selection parameters of operations from the operation
set π and their accompanied parameters {(µO, pO);O ∈ S}.
Let the empirical risk be f(θ,ϕ;DT ) and the validation cri-
terion be g(θ;DV ). DT and DV are training and validation
datasets. In the case of classification task, D := {(xi, yi)} ∈
X × {1, 2, . . . , C}, where C is the number of classes.

Optimization of data augmentation policy in AutoAug-
ment family methods can be generalized as

argmin
ϕ

g(argmin
θ

f(θ,ϕ;DT );DV ), (1)

that is, optimizing CNNs on training data with policies that
minimize validation criteria on validation data.

Naïvely solving this bi-level minimization problem takes
a long time because CNN training minθ f(θ,ϕ) is costly
and the number of possible combinations of augmentation
operations and their parameters is infeasibly large. There-
fore, prior works tried to alleviate this problem in several
ways. One direction is to reduce the search space over aug-
mentation policies, i.e., dimension and range of the parame-
ter ϕ [9, 6, 32]. For example, RandAugment [9] randomly
samples operations from the operation set S and shares µO

among all operations. This reduction changes the outer prob-
lem in Equation (1) from argminϕ g to argminµ g, which
makes it possible to use a simple searching process, such as
grid search. OHL-AutoAug [32] enables online searching
using policy gradient [53] by restricting the search space
only to a limited range.

On the other hand, some methods use proxy tasks that ap-
proximate Equation (1) to obtain (sub-) optimal policy ϕ′ to
reduce the searching time of the inner optimization. The ob-
tained policy ϕ′ is then used to train a CNN as minθ f(θ,ϕ

′)
[8, 21, 31, 17] in an “offline” manner. For instance, Au-
toAugment employs a proxy task f ′ that approximates the
original inner problem f as

ϕ′ = argmin
ϕ

g(argmin
θ′

f ′(θ′,ϕ′;D′);DV ), (2)

with a smaller dataset |D′| ≪ |DT | and a smaller network
dimθ′ ≪ dimθ for efficiency. The outer problem g is
optimized by black-box optimization techniques, such as re-
inforcement learning [8]. Fast AutoAugment [31] and Faster
AutoAugment [17] approximate Equation (1) as minimiz-
ing distance of distributions between augmented images and
original images without directly minimizing f , which allows
faster searching.

To summarize, prior methods indirectly solve the bi-level
optimization problem in Equation (1), as displayed in Table 1.
We instead propose to tackle this problem directly.

Method Direct Inner Problem Direct Outer Problem

AutoAugment [8] ✓
Fast AutoAugment [31] ✓
Faster AutoAugment [17] ✓
OHL-AutoAug [32] ✓
RandAugment [9] ✓
MADAO (ours) ✓ ✓

Table 1. Comparison of previous methods and our proposal,
MADAO. MADAO can efficiently search full space for poli-
cies on full datasets with full CNN models, e.g., on ImageNet with
ResNet-50.

3. Method

In this paper, we propose to directly optimize the bi-level
optimization problem in Equation (1). In other words, we
optimize CNNs and augmentation policies simultaneously,
i.e., in an online manner, without reducing the search space
or using proxy tasks. With this simultaneous optimization,
policies are expected to augment images according to the
learning state of CNN models. Algorithm 1 is a simple
depiction of our approach, which we call Meta Approach to
Data Augmentation Optimization, or in short, MADAO.

3.1. Optimizing Policies by Gradient Descent

MADAO directly optimizes the bi-level problem Equa-
tion (1) using gradient descent. To this end, we assume that f
and g are differentiable w.r.t. θ. Taking C-category classifica-
tion as an example, cross entropy −Exi,yi log[hθ(xi)]yi can
be used as f and g, but error rate Exi,yi1(argmaxhθ(xi) ̸=
yi) cannot. Here, 1 is the indicator function, and hθ : RD →
RC is a CNN with a softmax output layer.

Gradient-based optimization of Equation (1) requires
∇ϕg for iterative updating. Since the data augmentation
implicitly affects the validation criterion, in other words,
data augmentation is not used for validation, we obtain

∂g

∂ϕ
=

∂g

∂θ

∂θ

∂ϕ
. (3)

Because of the requirement of g, ∇θg can be obtained.
On the other hand, the exact computation of ∇ϕθ has a large
space complexity, as we will describe in Section 3.4. Yet, if
this gradient was available, the policies could be optimized
by gradient descent.

3.2. Approximating Gradients of Policy and Inverse
Hessian

To obtain ∇ϕθ without suffering from a large space com-
plexity, we can use the Implicit Function Theorem. If there
exists a fixed point (θ⋆,ϕ⋆) that satisfies ∇θf(θ

⋆,ϕ⋆) = 0,
then there exists a function θ̂ around ϕ⋆ such that θ̂(ϕ⋆) =
θ⋆. If this condition holds, we also obtain
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∂θ̂

∂ϕ
= −

(
∂2f

∂θ∂θ⊤

)−1
∂2f

∂θ∂ϕ⊤

∣∣∣
θ⋆,ϕ⋆

. (4)

We can obtain an approximated gradient using this prop-
erty. Unfortunately, M = dimθ is usually large; there-
fore, computing the inverse Hessian matrix (∇2

θf)
−1 is pro-

hibitively expensive as it usually requires O(M3) computa-
tions. To avoid computing the inverse Hessian matrix, we
use iterative methods based on the Neumann series, which
boast better scalability than conjugate gradients in various
problems [25, 30, 34].

The Neumann series I + A + A2 + · · · = ∑J
i Aj →

(I − A)−1 (J → ∞) holds with a given squared matrix
A if ∥A∥ < 1. Using this property, Equation (3) can be
approximated with a positive integer J as

∂g

∂ϕ
=− ∂g

∂θ

(
∂2f

∂θ∂θ⊤

)−1
∂2f

∂θ∂ϕ⊤ (5)

≈− ∂g

∂θ

J∑

j=0

(
I − ∂2f

∂θ∂θ⊤

)j
∂2f

∂θ∂ϕ⊤ . (6)

We regularize the norm by simply introducing a scalar
α ∈ R+ as I−α∇2

θf as [34]. We use α = 10−3 with J = 5
in the experiments. This Neumann series approximation
can also help us avoid explicitly storing the Hessian matrix,
whose space complexity is O(M2), by using Hessian-vector
products derived from the following identity:

v⊤
(

∂2f

∂θ∂θ⊤

)
=

∂

∂θ

(
v⊤ ∂f

∂θ

)
(∀v ∈ RM ). (7)

This right-hand side can be used instead of storing the
Hessian matrix and only has the space complexity of O(M).

3.3. Differentiable Data Augmentation

To differentiate through ϕ, MADAO adopts the differ-
entiable data augmentation pipeline following [17]. As de-
scribed in Section 2.1, each image x is augmented with an
operation O with a magnitude of µO and a probability of pO,
which can be written as

x 7→
{
O(x;µO) with probability of pO
x with probability of 1− pO.

(8)

This right-hand side can be written as bO(x;µO) + (1−
b)x with a binary stochastic variable b ∼ Bern(b; pO). Al-
though sampling from the original Bernoulli distribution
Bern(b; pO) is not differentiable w.r.t. pO, Gumbel trick [24]
relaxes this restriction to enable backpropagation to update

pO. Similarly, some color-enhancing operations are non-
differentiable w.r.t. the magnitude µO because of discretiza-
tion, so the straight-through estimator [4] is used for such
operations. We clamp µO and pO by a sigmoid function to
limit their range to [0, 1]. We denote the operation in eq. (8)
as O(x;µO, pO) for simplicity.

MADAO uses a different method to select operations com-
pared to Faster AutoAugment in order to accelerate training.
MADAO selects operations using categorical distribution
parameterized by a weight parameter π ∈ [0, 1]|S|, where∑

i πi = 1. Since the original categorical distribution is
non-differentiable as Bernoulli distribution, we use Gumbel-
softmax with a temperature of τ ∈ R+. This distribution,
referred to as RelaxCat(π; τ), samples one-hot-like vectors
as τ −→ 0. Using this distribution, an operation is selected
and applied as

x 7→ ui

SG(ui)
Oi(x;µOi

, pOi
), (9)

i = argmaxu,

u ∼ RelaxCat(π; τ).

Here, SG is the stop gradient operation, and thus,
ui

SG(ui)
= 1 so that the transformation Equation (9) keeps

the range in (0, 1). Oi is the ith operation that is used with
probability pOi

. Different from this approach, Faster Au-
toAugment applies all operations and takes the weighted
sum of the outputs to approximate this selection.

3.4. Connection to Gradient-based Hyperparame-
ter Optimization

As can been seen, Equation (1) is a hyperparameter op-
timization (HO) problem to neural networks. Traditional
HO methods, such as grid search, random search [5] and
Bayesian optimization [50], have poor scalability to increas-
ing dimensionality of hyperparameters [23]. For this reason,
gradient-based HO attracts attention. From HO viewpoint,
policy parameters ϕ are hyperparameters.

As shown in Equation (3), we need to obtain ∇ϕθ to op-
timize the outer problem g. The inner optimization process
(Algorithm 1 Line 5-8) can be rewritten as

θT =θT−1 − η∇θf(θT−1,ϕ)

= · · ·

=θ0 − η∇θ

T−1∑

t=0

f(θt,ϕ) =: θT (θ0,ϕ) (10)

after T SGD steps with learning rate of η. One approach
to obtain ∇ϕθ is to unroll the steps in Equation (10) as
[36, 15, 16, 49]:
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∇ϕθ = ∇ϕθT (θ0,ϕ). (11)

Practically, this unrolling requires to cache θ0, . . . ,θT−1,
and thus, the space complexity becomes O(TM), which
might be prohibitive for large neural networks, while
MADAO only requires O(M). [38] uses eq. (11) for data
augmentation optimization, they only considered the T = 1
case empirically. This unrolling can be approximated in first-
order manners [15, 40], but these approximations succeed
when tasks are simple [45].

Alternatively, implicit gradient yields ∇ϕθ as explained
in Equation (4). This approach needs the inverse Hessian
matrix (∇2

θf)
−1 [3], but this computation is infeasible for

modern neural networks with millions of parameters. Iter-
ative methods, such as conjugate gradient [12, 13, 44, 45]
or Neumann series approximation [34], effectively compen-
sate for this issue by approximating this inverse matrix in
gradient hyperparameter optimization. Such iterative approx-
imation methods using the Neumann series are also used in
approximating influence function [25] and enabling RNNs to
handle long sequences [30]. We exploit the knowledge from
these prior works and adopt the implicit gradient method
with Neumann series approximation to efficiently handle
large-scale datasets and CNNs.

4. Experiments and Results
This section describes the empirical results of our pro-

posed method in image classification. We used CIFAR-10,
CIFAR-100 [27], SVHN [39] and ImageNet (ILSVRC-2012)
[48]. In addition, we also used four fine-grained classifica-
tion datasets: Oxford 102 Flowers [41], Oxford-IITT Pets
[42], FGVC Aircraft [37], and Stanford Cars [26]. In all
experiments except those on ImageNet, we set 10 % of the
original training data aside as validation data DV and report
error rates on test data. For ImageNet, we used 1 % of the
training data as validation data. Note that this data split
means that we use less training data than previous works and
that changes the performance of baseline models.

We used 14 operations for augmentation: ShearX,
ShearY, TranslateX, TranslateY, Rotate,
Invert, AutoContrast, Equalize, Solarize,
Color, Posterize, Contrast, Brightness, and
Sharpness (see Appendix A for more details.) To make
these operations differentiable, we implemented them using
PyTorch [43], kornia [14], and the implementation of Faster
AutoAugment provided by the author [17]. We scaled the
magnitude of operations from 0 to 1 so that the magnitude
of 0 means no change and the magnitude of 1 corresponds to
the strongest level of the particular augmentation operation.

As baseline methods, we selected Faster AutoAugment
[17] and RandAugment [9], which are representative meth-
ods that use proxy tasks and reduced search spaces, respec-

tively. For a fair comparison, we used the same differentiable
operations as Faster AutoAugment. More details about ex-
periment configurations can be found in Appendix B.

MADAO

To optimize the policy of MADAO, we used RMSprop op-
timizer with learning rate of 10−2 following [34]. Equa-
tion (4) requires the existence of fixed points that satisfy
∇θf(θ,ϕ) = 0. Following [34], we assume that s iterations,
which corresponds to num_inner_iters in Algorithm 1,
makes the parameters hold the condition. To further encour-
age parameters to satisfy the condition, we also performed
a warm up, i.e., training CNNs without policy update for
the first w epochs. We set s = 60 and w = 30 and used
this configuration for all experiments. Validation criterion
g is the same loss function that is used as the training loss
function f , cross-entropy, for simplicity.

We initialized the parameters of magnitude and proba-
bility with 0.5 and the parameters for operation selection
to be equal. This configuration means that MADAO in its
initial state is nearly equivalent to RandAugment with the
magnitude of 0.5. We set the number of augmentation stages
K = 2 in all experiments below (see Figure 1).

Faster AutoAugment

We selected Faster AutoAugment [17] as a representative
baseline that uses proxy tasks. We set the number of aug-
mentation stages K = 2. We modified Faster AutoAugment
to use operation sampling of Equation (9) during policy
training for a fair comparison.

To train Faster AutoAugment’s policies, we used
WideResNet-40-2 for CIFAR-10, CIFAR-100, and SVHN,
and ResNet-18 for fine-grained datasets and ImageNet.

RandAugment

As a representative baseline of space-reduction methods, we
chose RandAugment [9]. Following [9], we discretized the
range of the shared magnitude parameters into 30 bins and
optimized this parameter by random search. For each con-
figuration, we conducted two runs of random search for a
fair comparison with MADAO with respect to computational
time as shown in Figure 21. We report the test error rates for
the runs with the lowest validation error rates. For a fair com-
parison, we set the number of augmentation transformations
to apply sequentially to 2.

4.1. CIFAR-10, CIFAR-100, and SVHN

Table 2 presents test error rates on CIFAR-10, CIFAR-
100, and SVHN with various CNN models: WideResNet-

1Precisely, we used the computational time of s = ∞ (RandAugment,
1 hour) and s = 60 (MADAO, 1.9 hours).
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Dataset Model Standard Faster AutoAugment RandAugment MADAO (ours)

CIFAR-10 WideResNet 28-2 4.9 4.2 4.4 4.0
WideResNet 40-2 4.8 3.9 4.1 3.7
WideResNet 28-10 3.8 2.7 3.1 2.7
DenseNet 40 5.6 4.6 4.8 4.5

CIFAR-100 WideResNet 28-2 25.4 23.2 24.0 22.9
WideResNet 40-2 24.1 22.5 23.0 22.4

SVHN WideResNet 28-2 3.4 2.6 3.0 2.6
WideResNet 40-2 3.2 2.5 2.8 2.4

Table 2. Test error rates on CIFAR-10, CIFAR-100 and SVHN.

Standard Faster AutoAugment RandAugment MADAO (ours)

23.8/7.0 23.0/6.5 22.9/6.6 22.5/6.5
Table 3. ImageNet test error rates (Top-1/Top-5). MADAO achieves
comparable performance to other data augmentation methods with-
out using ImageNet-specific configurations.

28-2, WideResNet-40-2, WideResNet-28-10 [54], and
DenseNet-BC 40 (k = 12) [22]. We trained models for
300 epochs on CIFARs and for 160 epochs on SVHN. We
show the average scores of three runs. For comparison, we
present the results of Faster AutoAugment, RandAugment,
and the default augmentation: random cropping, and random
horizontal flipping (except SVHN), following [9], which we
refer to as Standard. As can been seen, MADAO achieves
performance superior or comparable to baseline methods.
Specifically, MADAO and Faster AutoAugment consistently
achieve better performance than RandAugment, which sug-
gests the importance of policy searching from a large search
space in a limited search cost.

4.2. ImageNet

Table 3 shows the results on ImageNet with ResNet-50
[19]. We trained models for 180 epochs and used random
cropping and random horizontal flipping as the standard
augmentation. The performance of MADAO is superior to
those of RandAugment and Faster AutoAugment.

Most importantly, the result shows that MADAO can scale
to an ImageNet-size problem without using proxy tasks or
reducing search space. We believe that class- or instance-
conditional data augmentation might be required to further
improve performance, which we leave as an open problem.

4.3. Fine-grained Classification

To showcase the ability of MADAO to augment images
according to target datasets, we conducted experiments on
fine-grained datasets with ResNet-18 [19] trained for 200
epochs. We applied ImageNet’s preprocessing to these
datasets.

Table 4 shows the average test error rates over three runs.

These datasets are nearly ten to twenty times smaller than
CIFAR datasets and SVHN, yet MADAO improves the per-
formance without using dataset-specific hyperparameters.
MADAO outperforms Faster AutoAugment and RandAug-
ment, which emphasizes the importance of searching for
good policies based on full target datasets and from the full
search space. MADAO can capture the characteristics of
each fine-grained dataset and generate tailored policies for
each dataset from a large search space.

5. Analysis
5.1. How Inner Steps Affect the Performance

Figure 2 presents the relationship between the number of
inner steps s, computational cost, and test error rates when
using WideResNet-28-2 on CIFAR-10. CNNs yield the best
performance when s = 60, where s is the number of in-
ner steps per which the policies are updated. The results
indicate that there exists a trade-off between “exploration
and exploitation” of obtained policies: a small number of
inner steps might not correctly evaluate the current policies,
while running a large number of inner steps might fail to
explore better strategies. Importantly, unrolled-based imple-
mentations would require to store s model caches, which is
infeasible for s = 60 with modern CNNs. On the other hand,
MADAO can efficiently handle a large s.

5.2. How Policies Develop during Training

In Figure 3, we present the development of the selec-
tion parameters π for each operation during training on
fine-grained datasets. As can be seen, each dataset has its
specific operations that are selected, which could be thought
as reflecting the characteristics of each dataset. Besides, the
way of selection changes according to the learning phase.
Note that the first 30 epochs are set to warm-up and the
augmentation policy parameters are not updated.

Figure 4 shows how the selection parameters develop
during training on CIFAR-10 and SVHN. Similar to fine-
grained datasets shown in Figure 3, the policies for CIFAR-
10 and SVHN also show clear difference to each other. As
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Dataset Model # Classes # Training Set Standard Faster AutoAugment RandAugment MADAO (ours)

Flower ResNet-18 102 2,040 11.1 9.1 8.8 8.1
Pet ResNet-18 37 3,680 15.3 12.8 13.7 11.9

Aircraft ResNet-18 70 6,667 11.1 10.3 10.0 9.8
Car ResNet-18 196 8,144 14.7 13.6 11.6 11.4

Table 4. Test error rates on fine-grained datasets. Note that we use the same hyperparemeters as in the experiments in Table 2.

0 1 2 3 4 5
Computational Time (GPU hours)

4.0

4.2

4.4

4.6

4.8
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Te
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 E
rro

r R
at
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 (%

)

s = 10s = 30

s = 60
s = 120

s = 240

no DA

s =

Figure 2. The relationship between the number of inner steps
s, computational cost, and test error rates on CIFAR-10 with
WideResNet-28-2. s = ∞ means the parameters are fixed as
RandAugment, and no DA shows the cost and error rate without
using data augmentation. We used s = 60 in the main experiments.

can be observed, the first and second stage for each dataset
evolve differently, which indicates that the stages develop
complementarily to each other.

Figure 5 presents the development of magnitude param-
eters µ and probability parameters p during training of
WideResNet-28-2 on SVHN. Both parameters diverge as
training proceeds. These results imply that optimal magni-
tudes and probabilities might be non-global, which disagrees
with RandAugment.

5.3. Comparison with Other Gradient Approxima-
tions

As discussed in Section 3.4, some alternative approaches
can be used to approximate the bi-level problem using (im-
plicit) gradients as Equation (4). In Table 5, we present
the test accuracy with WideResNet-28-2 on CIFAR-10 with
MADAO variants: the original MADAO using the Neu-
mann series approximation, MADAO-CG using the conju-
gate gradient algorithm as [15] and MADAO-FO using the
first-order approximation as [45]. The conjugate gradient
algorithm is an iterative method to solve a linear equation
[20], which in our case used to solve x⊤(∇2

θf) = ∇θg to
obtain ∇θg(∇2

θf)
−1 in Equation (5).

These results show the effectiveness of MADAO, which
uses the Neumann series approximation, compared with
MADAO-CG, and MADAO-FO. We did not observe sig-
nificant difference between MADAO and MADAO-CG in
memory consumption and execution time.

MADAO MADAO-CG MADAO-FO

4.0 4.4 4.4

Table 5. Test error rates (mean / standard deviation) on CIFAR-10
with WideResNet-28-2 using different MADAO variants. Namely,
MADAO-CG uses the conjugate gradient method, and MADAO-
FO uses the first-order approximation.

5.4. Computational Cost

As regards memory consumption when using
WideResNet-28-2 on CIFAR-10, training with MADAO
requires 3.38 GB of GPU memory, while training without
MADAO requires 1.74 GB. This double memory con-
sumption is expected from Equation (7). These values
demonstrate that MADAO has not only theoretical but also
empirical efficiency.

6. Conclusion
In this paper, we have proposed MADAO, a novel ap-

proach to optimize an image recognition model and its data
augmentation policy simultaneously. To efficiently achieve
this goal, we use differentiable data augmentation and the
implicit gradient method with Neumann series approxima-
tion. As a result, the overhead of MADAO to the standard
CNN training, with respect to time and memory, is marginal,
which enables ImageNet-scale training. Empirically, we
demonstrate on various tasks that MADAO achieves equal or
better performance to prior works without restricting search
space or using sub-optimal proxy tasks.

Data augmentation boosts the performance in vari-
ous visual representation learning settings, such as semi-
supervised learning [6, 51], domain generalization [52], and
self-supervised learning [7]. We believe that our method
can be introduced into these representation learning methods
and efficiently enhance their performance by optimizing the
policies according to given tasks.
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Figure 3. The development of operation selection probabilities π at the first augmentation stage during training on fine-grained datasets.
Note that we set the first 30 epochs as a warm-up period during which parameters are not updated.
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Figure 4. The development of the selection probabilities π for each operation during training on CIFAR-10 and SVHN. Note that we set the
first 30 epochs to warm-up period that parameters are not updated.
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top right) during training on SVHN with WideResNet-28-2. Note that we set the first 30 epochs to warm-up period that parameters are not
updated.
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