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Abstract

Non-line-of-sight (NLOS) imaging enables unprece-

dented capabilities in a wide range of applications, in-

cluding robotic and machine vision, remote sensing, au-

tonomous vehicle navigation, and medical imaging. Re-

cent approaches to solving this challenging problem employ

optical time-of-flight imaging systems with highly sensitive

time-resolved photodetectors and ultra-fast pulsed lasers.

However, despite recent successes in NLOS imaging using

these systems, widespread implementation and adoption of

the technology remains a challenge because of the require-

ment for specialized, expensive hardware. We introduce

acoustic NLOS imaging, which is orders of magnitude less

expensive than most optical systems and captures hidden

3D geometry at longer ranges with shorter acquisition times

compared to state-of-the-art optical methods. Inspired by

hardware setups used in radar and algorithmic approaches

to model and invert wave-based image formation models

developed in the seismic imaging community, we demon-

strate a new approach to seeing around corners.

1. Introduction

Non-line-of-sight (NLOS) imaging techniques aim to re-

cover 3D shape and reflectance information of objects hid-

den from sight by analyzing multiply scattered light, i.e.

light that bounces off of visible parts of a scene, interacts

with hidden scene parts, and then reflects back into the line

of sight of the detector. With important applications in re-

mote sensing, robotic vision, autonomous vehicle naviga-

tion, and medical imaging, NLOS imaging has the potential

to unlock unprecedented imaging modalities in a wide range

of application scenarios.

Some of the most promising approaches to NLOS imag-

ing use ultra-fast light sources and single-photon-sensitive

detectors [9, 10, 15, 17, 21, 23, 27, 33, 34, 36, 38, 39]. Un-

fortunately, the specialized hardware required for these se-

tups is extremely expensive. Moreover, acquisition times

for hidden diffuse objects are very long due to the rapid

signal falloff at increasing distances. Alternatively, in-

expensive continuous wave (CW) time-of-flight systems
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Figure 1. Overview of acoustic NLOS imaging. Modulated sound

waves are emitted from a speaker, travel around the corner to a hid-

den object, and are then recorded by a microphone as they reflect

back. The processed measurements (bottom left) contain peaks

indicating the path lengths of sound which travels directly from

the speaker to the microphone (A, peak is clipped), to the wall

and back (B), and also to the hidden object and back (C). Such

measurements are captured for a range of speaker and microphone

positions to reconstruct the 3D geometry of the hidden object (bot-

tom right).

have been used for NLOS imaging, but require strong pri-

ors and significant compute time to reconstruct the hidden

scene [16, 18]. Intensity-only information has been used

for tracking NLOS objects [22] or estimating limited scene

information [7]; however, high-quality 3D NLOS scene re-

construction remains challenging due to the limited amount

of information in the measurements.

We demonstrate acoustic non-line-of-sight imaging,

which uses readily available, low-cost microphones and

speakers to image and resolve 3D shapes hidden around cor-

ners. The key motivation of our work is that the reflection
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properties of walls are usually specular, i.e. mirror-like, for

acoustic waves, so they should reveal hidden scene details

more easily than setups relying on visible or near-infrared

light. However, there are no focusing optics for acoustics,

so we cannot directly measure an “image” of the hidden

scene. Moreover, we need to take wave effects into account

when modeling sound propagation. The algorithmic frame-

work we develop is inspired by seismic imaging [40], where

shock waves are created by explosive charges on the sur-

face to probe hidden underground structures, and returning

wavefronts are analyzed to estimate the shape of these struc-

tures. While image formation models and inverse methods

in seismic imaging share certain properties with acoustic

NLOS imaging, the hardware setups and also the applica-

tions are very different. Our acoustic imaging setup more

closely resembles that of synthetic aperture radar (SAR) [5];

we emit sound chirps from an emitter array and measure

the returning wavefront with an array of microphones. In

contrast to existing SAR techniques, however, we use off-

the-shelf audio hardware and tackle the problem of imaging

around corners by analyzing multi-bounce sound effects.

2. Related Work

Optical NLOS Most non-line-of-sight imaging tech-

niques discussed in the literature operate in the optical do-

main. These approaches can be broadly classified as being

passive [7, 22], i.e. not requiring structured illumination, or

active. Active systems usually either rely on ultra-fast illu-

mination and detection [9, 10, 15, 17, 21, 23, 27, 33, 34, 36,

38, 39] or on coherence properties of light [6, 19, 20]. To

date, passive NLOS systems have only demonstrated scene

reconstructions with limited quality, systems that use co-

herent light are typically limited to microscopic scenes, and

time-resolved systems require expensive equipment, such

as streak cameras or single-photon avalanche diodes and

ultra-fast lasers. Our approach extends time-of-flight tech-

niques to the acoustic domain, leveraging acoustic scatter-

ing properties to more efficiently image diffuse objects with

comparatively lower acquisition times, longer ranges, and

with less expensive equipment than optical techniques.

Radar NLOS The capability of imaging or tracking ob-

jects through walls has also been demonstrated using other

parts of the electromagnetic spectrum, such as wifi and

radar [1, 2, 3, 42]. These approaches are successful for

through-wall imaging because the wavelengths they operate

at physically propagate through walls without much scat-

tering. Thus, this inverse problem is significantly easier

than that of optical approaches, which more closely resem-

bles diffuse optical tomography. Seeing around corners

with wifi or radar is substantially more difficult than seeing

through walls because the energy would have to be scat-

tered off of the wall and not through it. Further challenges
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Figure 2. Illustration of the scene geometry and measurement cap-

ture. The acoustic array emits an acoustic signal which reflects

specularly off of the wall, to the hidden object, and back. Due to

the mirror-like scattering of the wall at acoustic wavelengths, the

measurements appear to be captured from a mirrored volume lo-

cated behind the wall, as if the wall were transparent. The transmit

signal is a linear ramp in frequency over time. For a single reflec-

tor, the return signal is a delayed version of the transmit signal

(top right). The receive and transmit signals are mixed together

and Fourier transformed, producing a sharp peak at a frequency

proportional to the distance of the reflector (bottom right).

of some of these methods include strict government regula-

tions on through-wall imaging systems [35], which make it

difficult to release data and fully disclose algorithmic meth-

ods. Our approach focuses on seeing around corners with

readily available, low-cost acoustic systems.

Acoustic Imaging Imaging simple shapes with sound has

been proposed in the past [12, 13]. Moreover, visual-

acoustic imaging techniques have been successful for gen-

erating sound from video [11, 29, 44], for localizing sound

sources or speech signals from video [14, 28, 31, 41],

or for imaging with microphone arrays [25]. Acoustic

imaging techniques are also common in seismic applica-

tions [4, 26, 40], for through-tissue imaging with ultra-

sound [37], and for line-of-sight imaging, for example with

sonar [24]. To the best of our knowledge, this is the first

approach to non-line-of-sight 3D scene reconstruction with

acoustics.

3. Acoustic NLOS Imaging

3.1. Observation Model

We parameterize the acoustic wavefield such that the

transmitting speakers and receiving microphones are lo-

cated on the plane {(x, y, z) ∈ R × R × R | z = 0}.

The wavefield is a 5D function given by τ(xt, yt, xr, yr, t),
where xt, yt indicate the spatial positions of the speakers,

xr, yr indicate the microphone positions, and t indicates

time (see Figs. 1, 2).

We model the measurements as a function of the

spatially-varying albedo, ρ(x, y, z), and an acoustic bidirec-

tional reflectance distribution function (BRDF), f(ωt,ωr)
[32], which depends on the normalized vector ωt point-

ing from a point (x, y, z) to the transmitting speaker and
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Figure 3. Illustration of acoustic scattering BRDFs. Surfaces that

are flat on a scale larger than the wavelength exhibit specular scat-

tering (center left). Corner geometries on the scale of the wave-

length exhibit retroreflective scattering (center right). For surfaces

smaller than the wavelength, diffraction around the object causes

a diffuse scattering event (right).

the normalized direction ωr pointing to the receive location

with ωt,ωr ∈ R
3. The measurements then capture the re-

sponse of a volume to an acoustic signal where the volume

occupies the half-space Ω = {(x, y, z) ∈ R× R× R | z >
0}. The acoustic signal is transmitted from (xt, yt, z = 0),

and the response recorded at (xr, yr, z = 0):

τ(xt, yt, xr, yr, t) =

∫∫∫

Ω

1

(rt + rr)2
ρ(x, y, z) (1)

f (ωt,ωr) g (t− (rt + rr)/c) dx dy dz.

Here, g is the acoustic signal (described below), c is the

speed of sound (≈340 m/s in air), and the distance variables

rt and rr are given by

rt/r =
√

(xt/r − x)2 + (yt/r − y)2 + z2. (2)

Like other NLOS image formation models, we assume the

volume to be free from self-occlusions and do not explicitly

model visibility terms [27].

The measurement geometry is further illustrated in

Figs. 1 and 2. At acoustic wavelengths, the wall acts as a

mirror-like reflector, scattering the transmit signal g specu-

larly around the corner, to the hidden object, and back to the

acoustic array. Due to the specular scattering of the wall, in

the measurements the hidden object appears to be located

at a position beyond the wall. For this cause we ignore the

wall, such that the image formation models the capture of

measurements from a virtual object located behind a trans-

parent wall.

For smooth hidden objects which also exhibit specular

scattering, we assume that the surface normals of the virtual

object are oriented towards the acoustic array so that the

signal can be observed. This assumption is also made e.g.

by radar systems which image through walls and capture

specular scattering [1, 3, 42].

Acoustic Scattering The magnitude of the reflected

acoustic wave, or the observed acoustic albedo, ρ, depends

on the difference in material density and speed of sound at

the interface between air and the scattering object. As the

density of the object material increases, more of the sound

is reflected rather than transmitted through the object.
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Figure 4. Signal falloff (left) and resolution analysis (right). Mea-

surements captured for a corner reflector and a flat, specularly scat-

tering target are plotted along with a linear regression on a log-log

scale. The signal decay is approximately d
−1.92 for the corner

reflector and d
−1.89 for the flat target which roughly matches the

expected d
−2 falloff. The d

−4 falloff for optical NLOS imaging

with a diffuse reflector is also shown. The lateral resolution over

distance is shown for a range of acoustic signal bandwidths com-

pared to a typical optical setup.

The scattering response also depends on the acoustic

BRDF, f . For different size objects with different sur-

face geometries, the observed BRDF varies as illustrated in

Fig. 3. Specular scattering dominates from surfaces which

are on the order of the wavelength in size and flat relative

to the wavelength. In our implementation, the wavelength

varies from roughly 2 to 20 cm (i.e., 2 − 20 kHz). For this

specularly scattering case, f can be modeled as a delta func-

tion as given by Snell’s law:

fspecular (ωt,ωr) = δ (ωr − (2〈n,ωt〉n− ωt)) , (3)

where n is the surface normal. For objects with sharp angu-

lar geometries and corners, which are larger than the wave-

length, a retroreflective effect can be observed. That is, the

sound is directed back in the direction from which it orig-

inated. We can again model the BRDF as a delta function

with a non-zero value where this criterion is satisfied:

fretroreflective (ωt,ωr) = δ (ωt − ωr) . (4)

For objects which are smaller than the wavelength, or at

edges, the acoustic wave diffracts around the object. This

diffractive scattering event can send energy in nearly all di-

rections, which can be modeled as diffuse reflection. In this

case the BRDF is Lambertian. Note that such diffuse scat-

tering events create a much weaker signal than strong spec-

ular reflections or reflections from corners. Therefore, we

rely primarily on specular and corner reflections to recon-

struct the hidden object in this work.

Distance Falloff The magnitude of the measured reflec-

tion relative to the emitted signal also depends on the dis-

tance to the scatterer. The emitted signal propagates along
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a spherical wavefront from the emitter to the scatterer and

back. As specular and corner reflections redirect the wave-

front of sound rather than causing an additional diffuse

scattering event, the energy that finally arrives back to the

acoustic array is proportional to the total area of the spheri-

cal wavefront over a distance of rt+rr. The signal falloff is

therefore proportional to 1/(rt+rr)
2 compared to 1/(r2t r

2
r)

for diffuse reflections which are common in optical NLOS

imaging. We experimentally verify this falloff in Fig. 4.

Transmit Signal While we wish to capture the response

of the scene to an acoustic impulse, producing such an im-

pulse at high volume from conventional speakers is imprac-

tical. Instead, we transmit a modulated acoustic signal and

pre-process the receive signal to emulate the response of the

scene to a short pulse.

The modulation and preprocessing is adopted from

frequency-modulated continuous wave (FMCW) radar,

which provides a good tradeoff between hardware complex-

ity and range resolution compared to other CW or pulsed

modulation schemes [5]. The transmit signal, g(t), is a lin-

ear sweep from an initial frequency f0 to a frequency f1
over a time T (see Fig. 2):

g(t) = sin

[

2π

(

f0t+
f1 − f0
2T

t2
)]

, 0 ≤ t ≤ T. (5)

The captured measurements τ(xt, yt, xr, yr, t) thus contain

attenuated and delayed copies of g(t) backscattered by each

reflector in the scene. To emulate the response of a scene to

a short pulse we mix the received signal, τ , with the origi-

nal transmit signal, g(t), along the time dimension and then

take the squared magnitude of the Fourier transform. For a

fixed transmit and receive position, each reflector produces

a peak at frequency fb given by

fb =
rt + rr
Tc

B, (6)

where B = f1 − f0 is the bandwidth of g(t) [5]. We there-

fore approximate the FMCW pre-processed measurements

τ̃ as the scene response to an impulse, δ, such that

τ̃(xt, yt, xr, yr, t) =

∫∫∫

Ω

1

(rt + rr)2
ρ(x, y, z) (7)

f (ωt,ωr) δ ((rt + rr)− tc) dx dy dz,

where t is the time dimension after scaling the frequency

axis of FMCW pre-processing by T/B.

3.2. Reconstruction from Confocal Measurements

In the case where the transmit and receive locations are

at the same spatial position (xt = xr and yt = yr), we can

develop closed-form solutions for the reconstruction proce-

dure. This is referred to as a “confocal” scanning arrange-

ment in optical non-line-of-sight imaging where the laser

and sensor illuminate and image the same position on the

wall [27]. We proceed with this assumption of confocal

acoustic measurements for closely spaced speakers and mi-

crophones and then show how to incorporate non-confocal

measurements into this framework.

When the hidden object is specular, we assume that the

hidden object has surface normals that direct sound back to

the acoustic array, or that n(x, y, z) ≈ ωt+ωr

2 , which also

implies that ωt ≈ ωr and f(ωt,ωr) = δ

(

∑

i

ω
i
t
− ω

i
r

)

,

where i indexes an element of the vector. Then the confocal

measurements are given by

τ̃c(xt, yt, t) =
1

(tc)2

∫∫∫

Ω

ρ(x, y, z) δ

(

rt −
tc

2

)

·δ

(

∑

i

ω
i
t
− ω

i
r

)

dx dy dz

, (8)

where we use the relationship rt = tc
2 to pull the atten-

uation factor 1
(2rt)2

from Eq. 1 out of the integral. Note

that in the confocal case, we only have ωt = ωr when

xt = xr ≈ x, yt = yr ≈ y, and tc
2 ≈ z. Therefore the cap-

tured measurements approximate the reconstructed volume,

or τ̃c(xt, xr,
2t
c ) ≈ ρ(x, y, z). In other words, if the hid-

den object contains surface normals that return sound to the

acoustic array, we can directly capture the specular image

of the object. Of course, in the confocal case, the acoustic

reflection is only captured if the normal is oriented directly

towards the transmit and receive location. Being able to

capture and efficiently reconstruct the hidden volume from

specular reflections which return to other (non-confocal) re-

ceive locations can provide a large increase in the captured

signal and the reconstruction quality.

For diffuse or retroreflective hidden objects, the captured

measurement can be approximated as

τ̃c(xt, xr, t) =
1

(tc)2

∫∫∫

Ω

ρ(x, y, z) δ

(

rt −
tc

2

)

dx dy dz,

(9)

which ignores the Lambertian terms and assumes isotropic

scattering. Given this image formation model, the Light-

Cone Transform (LCT) can be used as a closed-form so-

lution for ρ(x, y, z). The transform consists of a re-

interpolation of the measurements along the t dimension

and deconvolution with a pre-calibrated kernel [27].

3.3. NonConfocal Reconstructions

Confocal measurements enable efficient reconstruction

of the 3D geometry of the hidden volume using the methods

outlined in the previous section; however, we also wish to

derive efficient reconstruction routines for the more general
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Figure 5. Illustration of normal moveout (NMO) correction and

dip moveout (DMO) correction. Given a known offset between

the transmit and receive positions with respect to a midpoint posi-

tion xm and a scatter oriented with surface normal perpendicular

to the measurement plane, NMO correction adjusts the offset mea-

surements to emulate a confocal measurement taken at xm. If the

scatterer is not oriented perpendicular to the measurement plane,

an additional DMO correction shifts the measurements in time and

in space to confocal position x
∗.

case of non-confocal measurements captured by the acous-

tic array which may contain additional specular reflections

returning outside the confocal receiver positions.

We achieve efficient processing of the non-confocal

measurements by computationally adjusting them such

that they emulate measurements captured over a confo-

cal sampling grid. This computational adjustment con-

sists of three steps. First, we reparameterize the measure-

ments by their midpoint and offset locations (xm, ym) and

(hx, hy) instead of transmit and receive positions (xt, yt)
and (xr, yr). The midpoint and offset parameters are given

by xm = (xt + xr)/2 and hx = |xr − xt|/2. Second, we

resample along the time dimension to remove the additional

roundtrip propagation time of measurements with non-zero

offset (hx, hy > 0) relative to confocal measurements with

zero-offset (hx, hy = 0). Third, we apply an additional cor-

rective factor that adjusts the midpoint and time of captured

measurements to account for surface orientation. The sec-

ond and third processing steps are common to seismic imag-

ing and are known as normal moveout (NMO) correction

and dip moveout (DMO) correction [40]. A pseudocode

description of this adjustment procedure is included in the

supplementary material.

The emulated confocal measurements are then obtained

by integrating along the offset dimension of the NMO and

DMO corrected measurements τ̃∗ given as

τ̃∗c (xm, ym, tn) =

∫∫

Ωhxhy

τ̃∗(xm, ym, hx, hy, tn) dhx dhy.

(10)

Here Ωhxhy
is the region of support of the offsets, τ∗c rep-

resents the emulated confocal measurements, and tn is the

normal-moveout-corrected time dimension. For clarity we

describe NMO and DMO correction in detail for two di-

mensions (used in our linear acoustic array) in the following

sections and include the three-dimensional equations in the

supplementary information.

Normal Moveout Correction Normal moveout correc-

tion takes measurements whose transmit and receive loca-

tions have a midpoint location xm and offset hx, and applies

an offset-dependent shift in time so that the resulting mea-

surements approximate confocal, or zero-offset, measure-

ments taken at the midpoint xm. Given the measurement

geometry of Fig. 5, the time difference between measure-

ments taken with offset hx and zero-offset is

tn =

√

t2 −
4h2

x

c2
. (11)

This formulation assumes that the measurements are cap-

tured from scatterers with location x = xm, or that the nor-

mal points in a direction perpendicular to the acoustic array

(see Fig. 5).

Dip Moveout Correction For scatterers whose surface

normals do not point perpendicular to the acoustic array, an

additional dip moveout (DMO) correction adjusts the time

of arrival and midpoint location to align with those of the

confocal measurement. Let φx be the angle orientation of a

scatterer and nx = sinφx and nz = − cosφx be the asso-

ciated normal vectors (shown in Fig. 5), then the corrected

time [40] is

tdmo =

√

t2n +
4h2

x sin
2 φx

c2
. (12)

Generally, though, the angle φx is unknown. Furthermore,

the correction should adjust not only the measurement time,

but also the midpoint location of the measurement.

To apply these corrections without knowledge of φx, we

use a Fourier domain approach from seismology called log-

stretch DMO correction. This approach provides a closed-

form solution to DMO correction by re-interpolating or

stretching the NMO-corrected measurements along the time

domain such that t′n = ln tn and applying a phase shift in

the Fourier domain. Let Tnmo be the Fourier transform of

the NMO-corrected measurements along the xm and t′n di-

mensions, and let kx and W be their Fourier duals. Then

the Fourier transform of the DMO corrected measurements,

Tdmo, is derived by Zhou et al. [43] and given as

Tdmo(kx,W ;hx) = ejΦ Tnmo(kx,W ;hx), (13)

Φ =
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1 +
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Confocal Meas.Scene Image: Letters “LT”

Confocal+Non-Confocal Meas. Iterative Reconstruction

Figure 6. Reconstruction pipeline shown for a scene with two

cutout shapes (top left). The subset of confocal measurements (top

right) is augmented by processing the set of non-confocal mea-

surements to emulate the confocal geometry (bottom left). An iter-

ative reconstruction procedure applies spatial deconvolution with

a measured spatial PSF and sparsity and sparse gradient priors to

produce the final reconstruction (bottom right).

The correction is performed for each offset hx, the result

is inverse Fourier transformed and then un-stretched along

the time dimension to yield the output of the correction, τ̃∗.

Additional details on DMO correction can be found in the

supplementary material.

Reconstruction The reconstruction procedure consists of

applying NMO and DMO correction to the captured mea-

surements and using the LCT if the hidden object exhibits

diffuse or retroreflective scattering. We use the LCT se-

lectively, as applying it to specular measurements reduces

reconstruction quality (see supplementary material). To fur-

ther mitigate spatial blur and improve reconstruction results,

we apply an iterative reconstruction based on the alternating

direction method of multipliers [8]. The spatial blur is mea-

sured by fitting a Gaussian to the initial reconstruction of a

small (5 cm) corner reflector at a distance of approximately

1 m from the acoustic array. Along with the deconvolution,

we apply sparsity and total variation priors on the recon-

structed volume. Intermediate results of the reconstruction

(visualized using the Chimera volume renderer [30]) are

shown in Fig. 6, which demonstrates how incorporating the

non-confocal measurements improves signal quality and in-

creases spatial sampling by reconstructing on the midpoint

grid. Further details on the iterative reconstruction can be

found in the supplementary material.

4. Implementation

Our experimental setup is shown in Fig. 7. A linear ar-

ray of 16 pairs of collocated speakers and microphones is

mounted vertically on a horizontally scanning translation

stage. The speakers and microphones are evenly spaced

along 1 m in the vertical dimension, and the translation

microphones
speakers

translation stage

audio interface 

power supplies

Figure 7. Photograph of the prototype system. The prototype com-

prises a linear array of 16 speakers and microphones mounted ver-

tically on a 1 m translation stage. Power amplifiers and a set of au-

dio interfaces drive the speakers and record from the microphones.

stage provides 1 m of travel distance. An acoustic foam

barrier is placed between the hidden object and the array,

leaving an indirect path for sound to scatter off of a visible

wall, to the hidden object, and back to the array.

Hardware The hardware comprises a set of off-the-shelf

omnidirectional measurement microphones (Dayton Audio

EMM-6), 1-inch automobile speakers (DS18 TWC), and

two 8-channel acoustic interfaces (Behringer ADA8200,

UMC1820) that are synchronized by fiber optic cable to

provide 16 channels of input and output at a sampling rate

of 48 kHz. We use two sets of 8-channel amplifiers (Emo-

tiva A-800) to drive the speakers with our transmit signal.

The translation stage (Zaber X-BLQ-E) is scanned to take

measurements at 32 positions along a 1 m interval.

The transmit signal is a linear frequency chirp from 2
to 20 kHz with a duration of 0.0625 s. Here, the chirp

bandwidth is limited by the frequency response and sam-

pling constraints of the hardware. We measure the chirp

volume to be approximately 80 dBSPL at 1 m. Given the

constraint that we have only a single chirp in flight at a

given time, the maximum range for the system is less than

0.0625s × 340
2

m
s
= 10.6 m. The total chirp time at each

scan position is therefore 16 × 0.0625 s = 1 s and the total

scan time, including mechanical scanning, is approximately

4.5 min.

Software All procedures are implemented in Python. An

initial reconstruction including NMO and DMO correction

with the LCT over a gated 2 m range (32 × 30 × 250 reso-

lution) requires 4 s on an Intel 2.50 GHz Core i7-4870-HQ.

The iterative reconstruction requires 0.1 s per iteration with-

out the LCT operator, and 9 s per iteration with the LCT op-

erator and typically converges in several hundred iterations.

All datasets and software are available online1.

1https://github.com/computational-imaging/AcousticNLOS
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Letter “H” Corner Reflectors

Figure 8. Results captured with the hardware prototype. Pho-

tographs of each scene are shown in the top row, and maximum

projection visualizations are shown in the bottom row.

Calibration We calibrate the microphone gain on the

acoustic interfaces to be approximately equal across chan-

nels by facing the acoustic array towards a flat target and

tuning the analog controls to equalize the received signal.

The microphone frequency response is also calibrated to

be approximately flat from 2 to 20 kHz using frequency-

dependent scaling factors provided for each microphone

from a factory calibration procedure. The experiment room

is isolated using acoustic foam paneling and we also sub-

tract a measurement taken without the hidden object to fur-

ther mitigate any signal from irrelevant room geometries.

Before the reconstruction, we scale the measurements by

(tc)2 to compensate for squared distance falloff. The re-

constructed volumes enclosing the hidden object are visu-

alized by digitally gating out the measurements from the

direct path between the speaker and microphone and also

diffuse reflections from the surface of the wall.

5. Results

Experimental Results We capture experimental results

with the prototype hardware system as shown in Figs. 6

and 8. The results include the following: Letter “H”, Cor-

ner Reflectors, and Letters “LT”.

Letter “H”: This scene consists of a letter cut out from

posterboard which measures 76 cm by 86 cm. We place

the letter around the corner at a distance of 2.2 m from the

acoustic array along the indirect path of propagation and an-

gle it towards the direction of sound incident from the wall.

The reconstructed result captures the clear shape of the let-

ter as shown in Fig. 8. The dark gaps in the reconstruction

correspond to seams where posterboard panels are joined

together. At these locations, the acoustic waves appear to be

refracted around the letter or diffracted rather than strongly

reflected as at other locations.

Corner Reflectors: The four corner reflectors are placed

at different distances and heights in the scene to demon-

strate how the reconstructions resolve the relative position

of each reflector. The reflectors have a side length of 25 cm

and are centered at a distance of approximately 2.8 m from

the acoustic array along the indirect path. We place acous-

tic foam in front of the stands which hold the reflectors to

lessen their contribution to the measurements. Since these

objects are retroreflectively scattering, we use the LCT in

the initial and iterative reconstructions and show their rela-

tive 3D position in the reconstructed result of Fig. 8.

Letters “LT”: Two letters cut out of posterboard are

placed approximately 2.6 m from the acoustic array along

the indirect path. The “L” cutout is placed roughly 40 cm

behind the “T” cutout, and the letters are approximately 25

cm in width. The reconstruction recovers the shape of both

letters as shown in Fig. 6.

Signal Falloff We measure the signal falloff for acous-

tic NLOS by placing a corner reflector and flat wall (made

of posterboard) at increasing distances around the corner

from the acoustic array. A single speaker emits the FMCW

waveform and we measure the peak squared voltage of the

backscattered signal after FMCW processing. The squared

voltage (proportional to receive power) falls off roughly as

the square of the distance, as expected for a specularly re-

flecting wavefront. We measure the falloff using a linear

regression fit to the signal and distance values on a log-log

scale as shown in Fig. 4. The slope of the line indicates the

falloff; we find the slope to be -1.91 for a retroreflector and

-1.89 for a wall, where the expected value is -2.

Resolution We also derive resolution bounds on the lat-

eral resolution of our system which incorporates the FMCW

modulation scheme (see supplementary material for ex-

tended derivation) . For a temporal resolution of γ, the lat-

eral resolution ∆x is given as

∆x =
γc

(xt − x)/rt + (xr − x)/rr
, (15)

which provides the resolution given the locations of the

scatterer, source, and receiver positions. For FMCW mod-

ulation, γ = 1
2B where B is the bandwidth of g(t) (see

Eq. 6). The lowest resolution is achieved with a confocal

measurement at the position of the acoustic array which

maximizes the lateral distance from the scatterer. Fig. 4

shows the theoretical lateral resolution for a scatterer with

0.5 m lateral distance over a range of axial distances from

a confocal measurement position. We also plot resolution

curves for various bandwidth values and for a confocal op-

tical NLOS setup with a temporal resolution of 60 ps [27].

Due to the relatively slow speed of sound through air com-

pared to the speed of light, a relatively small acoustic band-

width of 9.5 kHz achieves roughly the same lateral resolu-

tion as the optical setup.
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Figure 9. Comparison between optical and acoustic NLOS recon-

structions. The acoustic reconstruction (right) recovers the ”L”

letter while the optical reconstruction (left) fails to capture it due

to the more rapid signal falloff over distance (scaled “L” signal

shown in red box of x-z max projection). Reconstructed volumes

are centered in z around the scene for visualization.

While these results show a theoretical lateral resolution,

the achieved resolution also depends on the diffraction lim-

ited bandwidth of the transmit signal. For scatterers which

are smaller than the wavelength, less signal scatters back,

effectively reducing the bandwidth of the received signal.

This effect could be partially mitigated in an acoustic sys-

tem by using shorter wavelengths, e.g. by using ultrasonic

transducers. We show additional resolution experiments in

the supplementary material.

Comparison to Optical NLOS In order to provide a

qualitative comparison of the acoustic and optical NLOS re-

construction quality, we also capture the Letters “LT” scene

in a dark room using the optical setup and LCT reconstruc-

tion method of O’Toole et al. [27] and compare the results in

Fig. 9. For the optical scan, we place the “T” of the scene 50

cm away from the wall and scan a confocal grid of 32× 32
points with an exposure of 6 s per scan point. This expo-

sure time is roughly two orders of magnitude greater than

the acoustic chirp duration of 0.0625 s per speaker. While

we capture the acoustic result at a distance of roughly 1.6

m from the wall, the signal decay of the optical setup re-

quires a closer distance in order to reconstruct the closest

letter, “T”. The position of the more distant letter, “L”, is

only barely visible above the noise floor (see the x-z max

projection of the reconstructed volume in Fig. 9). Due to the

lower rate of signal falloff for acoustic NLOS, the recovered

shape of both letters is distinctly visible.

6. Discussion

In summary, we demonstrate an alternate modality for

NLOS imaging using sound. Inspired by inverse methods

from seismology and synthetic aperture radar, we develop

computational methods for acoustic NLOS imaging and

demonstrate the approach using a hardware prototype built

with inexpensive, off-the-shelf components. We also eval-

uate the resolution limits and signal decay of this modality

and provide comparisons to optical techniques.

Limitations and Future Work Our current hardware

setup simulates a 2D array by scanning a linear array;

though other hardware configurations are possible. For ex-

ample, a single scanned speaker and microphone could be

used to capture measurements from a compact device, a 1D

array could be used without scanning to capture 2D mea-

surements, perhaps for NLOS object detection, or a full 2D

array could capture the 3D volume without scanning, en-

abling faster acquisition speeds. In this work, we find that

the scanned 1D array allows a convenient tradeoff between

system complexity, measurement quality, and acquisition

speed.

For hidden objects with a weak or non-existent diffuse

component, which are not retroreflective, or which have sur-

face normals that reflect sound away from the acoustic ar-

ray, the reconstruction may fail in the absence of backscat-

tered signal. Moreover, features much smaller than the

emitted wavelengths can be difficult to resolve. In such

cases optical systems may yield better results, but at shorter

distances and with much longer exposure times due to a

more rapid falloff in signal intensity with distance. While

this shortcoming also applies to other wifi or radar-based

systems, acoustic imaging at shorter wavelengths, e.g. with

ultrasound, can potentially increase the amount of signal re-

turning by causing smaller surface features to act as diffuse

reflectors or retroreflectors.

We currently evaluate optical and acoustic NLOS sepa-

rately; however, both methods could be combined in a sys-

tem which leverages their unique benefits. A relevant appli-

cation could be for autonomous vehicle navigation where

optical systems have difficulty imaging reflections from

dark regions such as roads, tires, or buildings, but an acous-

tic signal would be strongly reflected. Many vehicles al-

ready deploy small arrays of ultrasonic transducers on their

bumpers, and so acoustic NLOS imaging in this scenario

could be practicable with existing hardware.
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