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Abstract

Recently deep neural networks have been widely em-

ployed to deal with the visual tracking problem. In this

work, we present a new deep architecture which incorpo-

rates the temporal and spatial information to boost the

tracking performance. Our deep architecture contains three

networks, a Feature Net, a Temporal Net, and a Spatial

Net. The Feature Net extracts general feature representa-

tions of the target. With these feature representations, the

Temporal Net encodes the trajectory of the target and di-

rectly learns temporal correspondences to estimate the ob-

ject state from a global perspective. Based on the learning

results of the Temporal Net, the Spatial Net further refines

the object tracking state using local spatial object informa-

tion. Extensive experiments on four of the largest tracking

benchmarks, including VOT2014, VOT2016, OTB50, and

OTB100, demonstrate competing performance of the pro-

posed tracker over a number of state-of-the-art algorithms.

1. Introduction

Visual object tracking is a fundamental problem in com-

puter vision and can be applied in many practical systems

like video surveillance [13], vehicle navigation [53], and

human-machine interaction [35]. One common setting for

this problem is that a bounding box of a target is provided

in the first frame and the tracking objective is to predict lo-

cations of the target in subsequent frames. Although lots of

efforts have been devoted into this problem and extensive

studies are conducted in the past decades [4, 59], it still re-

mains a very difficult problem due to challenges like scale

variation, fast motion, occlusions, deformation, and back-

ground cluttering [58].

In order to overcome different kinds of challenges and

achieve robust tracking results, previous works general-

ly focus on some of the most important components in a

visual tracking system, such as robust object appearance

representation [20, 22, 40, 44], sophisticated object motion

model [29, 30, 34], and adaptive object model updating

[9, 39, 46]. Conventional methods design the tracking ob-

servation model using different representations, some of the

most typical ones include the subspace representation [46],

the sparse representation [24, 40, 63], the structured rep-

resentation [20, 27], and the correlation filter based repre-

sentation [22, 61]. Recently the Convolutional Neural Net-

work (CNN) based representations have been employed in

many computer vision problems [18, 28, 36, 42, 55] due to

its strong representation power and vast modeling capaci-

ty. Inspired by these successes, we in this work design a

Temporal-Spatial Network (TSN) model to deal with dif-

ferent kinds of challenges in visual tracking.

As the power of deep learning models generally comes

into effect when a large amount of labeled training sam-

ples are applied, it is not straightforward to directly deploy

a deep learning model into an online visual tracking algo-

rithm, because the only labeled sample for object tracking

problem is the target annotated in the first frame. Previ-

ous deep learning model based tracking algorithms need

numerous labeled videos to learn the feature representa-

tions through offline training [21, 42]. For example, the

MDNet tracker [42] pre-trains a deep model via a num-

ber of video sequences from similar tracking benchmark-

s and fine-tunes the learned model online using the target

benchmark sequence. It sets the best performance on the

OTB benchmark. However, its offline pre-training on sim-

ilar tracking benchmarks takes too much time and prone to

over-fitting. The GOTURN tracker [21] only employs an

offline pre-trained model to perform online tracking. It thus

learns the appearance adaptation only from a limited adja-

cent frames rather than a reasonable interpretation on time

series of a video. In the design of our TSN model, we do

not perform offline training from similar tracking bench-

marks but instead learn and fine-tune the model online from

sampled historical targets. Our feature extraction network

is directly picked from an off-the-shelf deep models (e.g.,

VGG model [49] trained on ImageNet [47]) without further

pre-training on similar tracking benchmarks.

To learn a complex inter-frame and intra-frame relation-

ship, the PROST method [48] employs optical flow based
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mean-shift tracker to adapt the object appearance changes,

and the RTT method [7] models long-range contextual cue

to identify and exploit reliable spatial-temporal object parts.

In our TSN model, with the off-the-shelf feature extraction

network, we use the historical object samples to learn a tem-

poral sub-network to capture a temporal correspondence of

the target, and a spatial sub-network is proposed to further

refine the object localization.

In particular, our TSN model employs only a few convo-

lutional layers from an existing deep model as the feature

extraction network to produce general visual features for

tracking. It is a small, compact model, and not fine-tuned

online, thus can be computed efficiently. With the features

extracted from the feature extraction network, the temporal

network is designed to learn the temporal correspondence

of the target to exploit a temporal relationship of targets

from historical frames. To adapt to the target appearance

variations through time, the temporal network is fine-tuned

online. Afterwards, the spatial network is built to further

exploit the spatial relationship of the target and refine the

target localization. The proposed TSN model is facilitated

by the temporal information interpreted from a global per-

spective and the spatial information portrayed from a local

viewpoint. To summarize, the main contributions of the pa-

per are listed as follows.

1) We present a novel deep architecture for the visual ob-

ject tracking problems, which incorporates global and

local, temporal and spatial information of the object to

produce high performance tracking results.

2) We propose a temporal network to incorporate tem-

poral information across frames using an online tuple

learning process, which suppresses the drifting prob-

lem during the tracking procedure.

3) We develop a coarse-to-fine method to track the object

using a spatial deep network which further refines the

localization of the target.

Based on these technical contributions, we have developed a

deep learning based tracking algorithm that obtains a state-

of-the-art performance on four large benchmarks, VOT2014

[14], VOT2016 [15], OTB50 [57], and OTB100 [58].

2. Related Work

We in this section discuss the tracking methods that are

most related to our work, and refer the readers to a thor-

ough review on object tracking survey [33, 59] and bench-

mark evaluations [50, 58]. Generally, conventional objec-

t tracking methods can be roughly categorized into gen-

erative (e.g. mean-shift tracker [31], sparse representation

based tracker [25, 40, 63], subspace learning [46], densi-

ty estimation [6], template matching [39], correlation fil-

ter [43], etc.) and discriminative methods (such as online

boosting tracker [1, 19], multi-instance learning [2], struc-

ture SVMs [20], random forest [12], etc.). Recently deep

learning based tracking methods are developed and have

demonstrated very competing performances [21, 37, 42, 54]

against conventional tracking methods.

Deep learning based tracking methods. Deep learning

models, especially CNN models, have been widely applied

to the visual tracking problem, and most of which employ

a pre-trained neural network model as the feature extrac-

tor [3, 7, 21, 23, 26, 32, 37, 42, 45, 54, 55]. Some CNN based

tracking methods combine a CNN model with conventional

tracking techniques such as the saliency map and SVM used

in the DSCNN tracker [23], correlation filters employed in

the HCFT tracker [37], particle filters utilized in the MD-

Net tracker [42], feature selection described in the FCNT

tracker [54], etc. Other CNN based methods either com-

bine several CNN models (e.g. the DeepTrack model [32])

or establish an end-to-end CNN model, such as the GO-

TURN tracker [21] with no online training but offline learn

a generic relationship between object motion and appear-

ance from large number of videos. Apart from CNN mod-

els, other deep models, such as Siamese network [3, 5, 51]

and Recurrent Neural Networks (RNNs), are also employed

in the tracking problem. For instance, the SIAM tracker [3]

learns a similarity metric offline by a Siamese network, RD-

M [5] proposed a template selection strategy based on a

Siamese network, and the RTT tracker [7] describes a multi-

directional RNN to capture long-range contextual cues.

Spatial-temporal model based tracking methods. Spatial

and temporal information has been utilized to assist object

tracking in many works. The CLRST tracker [62] exploits a

temporal consistency of particles to constrain the candidate

particles and prune irrelevant ones. The DeepTrack mod-

el [32] represents temporal adaptation through the update

of CNNs in the CNN pool. The STT tracker [56] constructs

temporal and spatial appearance context models to prevent

drifting. DAVT [16] presents an approach of discriminative

spatial attention that identifies some special regions on the

target. The RTT tracker [7] uses long-range contextual cues

which is also a temporal information in tracking. A Context

Tracker [12] is proposed to express the regions with simi-

lar appearance as the target and local key-points around the

object with some motion correlation to the target in a short

time span, which is also a utilization of spatial and temporal

information. The R-CNN [18], FCNT [54], and HCFT [37]

combine features from different layers of CNN to describe

the spatial information of the target. CCOT [11] proposes a

formulation for training continuous convolution filters to in-

tegrate multi-resolution deep feature maps. Both CCOT and

our tracker utilize spatial information from multiple feature

maps. Unlike CCOT, our spatial net is built upon a temporal

net to work as a refinement network. More distinctively, our

spatial net proceeds in a fully convolutional network way,

while CCOT proceeds in a correlation filter layer way.
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Figure 1. Pipeline of the proposed tracking approach. The Temporal Net is fed with the output of Feature Net borrowed from the VGG

Net. Tuple learning in the Temporal Net generates a tuple consisted by key samples learnt from the target pool. The Temporal Net predicts

similarities between current proposals and the tuple. The Spatial Net is provided by a hierarchical combination of features from three layers

(conv1, conv2, and conv3) at the positions estimated by the Temporal Net. It is utilized to further refine the localization of the target.

3. Proposed Tracking Method

The pipeline of the proposed tracking algorithm is visu-

alized in Fig. 1. The algorithm consists of three main parts,

the Feature Net, the Temporal Net, and the Spatial Net.

• Feature Net. The designation of the Feature Net is to

provide a general feature representation of the target.

It contains three convolutional layers, which can be di-

rectly borrowed from off-the-shelf deep models.

• Temporal Net. The input of the Temporal Net is fea-

ture representations from the Feature Net and the tuple

learning module functions as a reservoir to collect key

historical samples. The output of the Temporal Net

is the similarity between the current candidate regions

and historical samples.

• Spatial Net. The Spatial Net is designed to exploit

the spatial and local information of a deep model and

yields a confidence map in the vicinity of a candidate

predicted by the Temporal Net. It acts as a refinery of

the target location.

In the following, we first briefly introduce the Feature Net,

then we elaborate the Temporal Net and Spatial Net, which

are our main contributions.

3.1. Feature Net

Feature Net is the backbone network of the proposed

deep architecture to extract low-level features and does not

require off-line training or online fine-tuning. Moreover, it

can be tailored from any off-the-shelf deep models. There-

fore, representations by the Feature Net can be computed

rapidly. In our current implementation, the Feature Net

is directly copied from the first three layers of the VGG

net [49] trained on the ImageNet with 1000 classes [47],

which is a general architecture to extract features and has

been widely employed in many domains [17, 36, 42]. We

employ it to model the target appearance and it will not be

fine-tuned or re-trained in our tracking framework.

3.2. Temporal Net

As the input of an object tracking problem is a sequence

of frames, temporal information is thus very important for

predicting an accurate location of the target. We thus lever-

age temporal information via the Temporal Net in our deep

network for robust tracking. We describe our Temporal Net

in two parts where tuple learning is proposed to collect key

historical temporal samples described in Sec. 3.2.1 and de-

tails of the temporal network are delineated in Sec. 3.2.2.

t-1 sample

Target pool

…
1st sample ith sample

…
t-2 sample

Online updated

Learned tuple

Figure 2. Illustration of the tuple learning procedure. A tuple

for an incoming frame exploits temporal information of processed

frames and is learnt by a sparse coding of the previous target on

the target pool. The target pool is online updated through historical

targets every frame.

3.2.1 Tuple Learning

The tuple learning module builds a target pool from all the

historical targets with incremental updating and outputs a

tuple expressed by key samples from this target pool. It

is updated every frame and when the length of the pool

exceeds a predefined length we update the target pool by

removing the least confident sample and adding the new-

ly tracked target. It is used to maintain the target template

set to leverage temporal information, and its learning re-

sult is the key targets in historical frames optimized by L1-

induced dictionary learning and spare coding. The input of

the fully connected layers of Temporal Net is the key targets

from tuple learning and proposals in the current frame. An

overview of tuple learning is presented in Fig. 2, where the

estimated target found in the previous frame is sparsely rep-

resented by the target pool (Eqn. (1)) as a tuple to provide

the temporal and global information. A tuple consists of

several historical targets that have an akin correlation with

the current target. Suppose after the tth frame is tracked, the

target pool is denoted as Dt = {p1,p2, . . . ,pt} where pt

is the target on the tth frame, a tuple is obtained by solving

the following optimization problem:

c∗ = argmin
c

1

2
‖pt −Dt−1c‖22 + λ‖c‖1. (1)

Here c∗ is encouraged to be sparse and thus selects only

a small set of samples from the pool, which encodes main

modes of historical targets. This formulation is used to se-

lect temporal related target models for the next frame to pro-

vide the global temporal information for the target to track.
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3.2.2 Network Details

The Temporal Net receives an output from the Feature Net

to encode target appearance and the fine-tuned Temporal

network consists of tuple learning, three fully connected

layers, a Sigmoid layer and a loss layer. Provided a video

sequence, the full network is trained on the first frame and

we fine-tune the Temporal Net in the following frames. The

intuition behind the Temporal Net is that we consider ob-

ject tracking as a problem that searches the most similar

region from the current frame to the target in the histori-

cal frames. Targets from several historical frames provide

more information and perform better in resisting drifts than

the situation of only using the single previous frame.

We regard the deep model as a metric learning problem,

and the output of tuple learning feeds the fully connected

layers with historical targets, which is combined with cur-

rent proposals and outputs the similarity between them. The

scale estimation is handled through the proposals sampling

with scale variations. In the learning stage, a tuple of re-

gions are extracted on the first frame around the target and

we define the ground truth label of the tuple as the overlap

rate of the latest two regions. The overlap could represent a

similarity since the regions of the pair in the learning stage

are from the same frame. In the tracking process, a similar-

ity between the current proposals and a tuple that represents

key samples in the historical frames is computed by the tem-

poral network. The tuple is consisted by main modes opti-

mized from a target pool that is online updated by the tuple

learning module.

As we are more interested in the global representation in

the Temporal Net, the temporal tuple of Feature Net repre-

sentations is designed to feed through three fully connect-

ed layers and between each fully-connected layer we use

dropout and ReLU non-linearities. The first two fully con-

nected layers are designed to contain 512 nodes while the

output of the last fully connected layer is 1 unit that rep-

resents the similarity. Multiple non-linear layers encode a

more complex input-output relationship, which in our track-

er characterizes the relationship between the temporal tuple

of regions and the similarity of these regions. The output

similarity is processed by a Sigmoid layer and the loss func-

tion in the learning stage employed is L1 loss (an ablative

analysis is conducted in Section 4.2) as shown in the fol-

lowing:

L(s) =
E∑

i=1

‖si − ri‖, (2)

where E is the number of training examples and ri is the

ground truth label, and typically using a form of stochastic

gradient descent (SGD) and back-propagation to train mod-

els. We fine-tune the Temporal Net every ten frames and

the update data are generated from the estimated locations

in the historical frames.

3.3. Spatial Net

The temporal and global information is exploited in our

Temporal Net while the spatial and local information is also

very important, particularly for a deep network based object

tracking, since spatial information is attenuated as a deep

network goes deeper [23]. To address this problem, here we

propose a spatial network, which takes the feature maps of

lower layer rather than higher fully connected layer as input

to directly predict a confidence map M.

The proposed Spatial Net is consisted by three convo-

lutional layers with ReLU, but without pooling layers in-

stalled since we are more interested in estimating a response

of an input window. We employ relatively local information

in the spatial network to capture the specific details of the

target. Fig. 3 presents our spatial network.
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Figure 3. Spatial network. Given an input window, we extract deep

CNN features and employ a combination of features on the conv1,

conv2 and conv3 layer to learn a spatial response. The spatial

network refines the estimated position (estimated by the Temporal

Net) on the input window.

In the training process of Spatial Net, the training exam-

ples are extracted from the first frame with different over-

laps with the labeled target and we employ soft labels gen-

erated by a Gaussian function centered at the target center

with variance proportional to the target size. Multi-layer

deep features are fused together in the spatial network to

produce more accurate feature representations.

Denote l as the index of the current layer, the input-

output function of the proposed Spatial Net is formulated

as follows:

fl(x) = (bl +wl ∗ fl−1(x))
+ l = 1, 2, (3)

fl(x) = sigmoid(bl +wl ∗ fl−1(x)) l = 3. (4)

Here wl and bl denote the filter and bias for the lth lay-

er, and + suggests a rectified linear unit. For l = 1,

x = {X1, . . . ,XK} where Xk are features extracted from

the kth convolutional layer and the hierarchical combina-

tion of these features consist the input feature of the Spatial

Net.

Let yi denote the ground truth label of the ith training

sample, and it is cropped from the Gaussian response map

of the whole image. The L2 weight decay and the square

loss function L(ŷ, y) = ‖ŷ − y‖2 are combined to give a

training criterion for our Spatial Net as following,

C(θ) =
1

n

n∑

i=1

‖yi − Fi(xi;θ)‖22 + λ‖θ‖2, (5)
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where (xi,yi) is the ith training example, and θ = (ω,b)
is a flattened version of all parameters in the network, and

F indicates the overall spatial network whose input is the

combined feature and output is the response. The param-

eter λ in Eqn. (5) controls the importance between the re-

construction term and regularization term. It is set to 10−4

experimentally in all our evaluations. The training proce-

dure for the spatial network is stochastic gradient descent,

which iteratively updates θ according to Eqn. (6):

θ ← θ − ζ(∇θL(Fθ(x
i),yi)), (6)

where ζ is a learning rate and is set to 0.01 experimental-

ly. xi is the ith training example (features generated by the

Feature Net), yi is the soft labels generated by a Gaussian

function, and L is the loss function.

Given a feature of a target candidate Tp, a confi-

dence map M is responded by the Spatial Net. Let

P (xk, yk, wk, hk) describe an after-refined bounding box

and then the after-refined target proposal is obtained by E-

qn. (7).

P (xk, yk, wk, hk) = argmax
p

(M(Tp)). (7)

The spatial network ensembles these after-refined candi-

date regions (Eqn. 8) and B is the candidate number and the

importance πk of a candidate is revealed by the confidences

calculated by the Temporal Net and the Spatial Net.

P (x∗, y∗, w∗, h∗) =

B∑

k=1

πk · P (xk, yk, wk, hk). (8)

3.4. Tracking Algorithm

The main steps of the proposed algorithm are summa-

rized in Algorithm 1. The overall training process takes

several seconds. When a new frame flows in, we first sam-

ple target candidates (256 proposals in our experiment), and

then Feature Net is forwarded and generates feature maps of

target proposals. Tuple learning is conducted to determine

a tuple originated from the target pool that is online updat-

ed by the most accurate samples collected from processed

frames. The target of the first frame participates throughout

the tracking process to suppress against drifts.

4. Experiments

We conduct extensive experiments to analyze and eval-

uate the proposed tracking method. In the following, we

first introduce some experimental settings. Then we con-

duct some ablative experiments to study the two key com-

ponents of our TSN model. Afterwards, we evaluate our

TSN model on two of the largest benchmarks: object track-

ing benchmark (OTB) [57, 58] and visual object tracking

(VOT) benchmark [14,15]. Finally, we perform failure case

analyses of our model.

Algorithm 1 Proposed TSN tracking algorithm

Require: A video sequence, target positions

P (x1, y1, w1, h1) in the first frame.

Ensure: Target positions in the following frames

P (xt, yt, wt, ht), t = 2, 3, . . .
1: For the initial frame, crop 5000 samples and calculate

the corresponding label (overlap); training the proposed

Temporal Net and the Spatial Net.

2: for t = 2, 3, ... do

3: a) Extract candidates from the incoming frame and

learn a tuple for the current frame.

4: b) Forward Temporal Net to calculate similarities

between current proposals and the tuple, and then

predict target candidates P (xt
k, y

t
k, w

t
k, h

t
k), k =

1, 2, ..., B.

5: c) Feed the target candidates to the Spatial Net and

output responses.

6: d) Find the refined target position P (xt, yt, wt, ht)
by Eqn. (7).

7: e) Fine-tune Temporal Net and update the Spatial Net

if necessary.

8: f) Update target pool.

9: end for

10: return P (xt, yt, wt, ht)

4.1. Experimental Settings

We implement our TSN model in MATLAB using the

MatConvNet toolbox [52] and the full model runs at around

1fps (including the training time of the Temporal Net and

Spatial Net on the first frame), with an NVIDIA GTX 980ti

GPU. The efficiency of our algorithm lies on two aspects.

For one thing, the feature net we employed is shared with

the other two nets, which is very efficient and does not in-

troduce many extra computations. For another, since the

proposed framework is coarse-to-fine, it does not require

large number of proposals in the coarse process (Temporal

Net), which saves a lot of computations. Our Feature Net

is tailored from the off-the-shelf VGG model as used by

many deep network based tracking methods [37,42,45]. But

our model does not require pre-training on tracking dataset-

s. The specific layer parameters of Feature Net, Temporal

Net and Spatial Net are listed in Table 1. Training samples

for the Temporal Net are extracted from the first frame with

shifting and scaling versions around the target and 5000

samples are used in our experiment. The candidate number

B in the Spatial Net is set to 5 in all experiments. For the

learning of both Temporal Net and Spatial Net, we use SGD

started with a learning rate of 10−4 with a momentum 0.9.

The Temporal Net is fine-tuned every ten frames and spatial

net is updated every frame. For the target pool, it is online

updated through historical targets every frame. To measure
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Table 1. Network specifics of the proposed TSN model.

Feature Net Temporal Net Spatial Net

Layer Conv-F1 Conv-F2 Conv-F3 FC-T1 FC-T2 FC-T3 Conv-S1 Conv-S2 Conv-S3

Filter-Stride 7-2 5-2 3-1 - - - - 7-2 5-2 3-1

Channels 96 256 512 512 512 512 96 256 512

Activation ReLU ReLU ReLU ReLU ReLU Sigmoid ReLU ReLU ReLU

Norm
√ √ √

- - -
√ √ √

Dropout - - -
√ √

- - - -

Pool 3*3 3*3 - - - - - - -

the tracking performance, we adopt the standard protocol-

s in the benchmarks including OTB50 [57], OTB100 [58],

VOT2014 [14] and VOT2016 [15].

4.2. Ablative Analyses

To verify the effectiveness of our design for the Tem-

poral Net and Spatial Net in our TSN model, we report

the influences of a different loss function of Temporal Net

on the overall tracking algorithm and also show how much

the Temporal Net and Spatial Net contributes to the over-

all TSN tracker. We adopt the VOT2014 benchmark as the

test dataset and compare four models including TSN track-

er with L1 loss function (our TSN tracker), TSN tracker

with L2 loss function, TSN tracker without Temporal Net

and TSN tracker without Spatial Net measured by Expect-

ed Average Overlap (EAO), Robustness (R), and Accuracy

(A) as shown in Fig. 4. The accuracy of both loss functions

are similar and L1 loss performs slightly better than that of

L2 loss function. While in terms of EAO score, TSN per-

forms better than TSN L2. Because the L2 loss penalizes

outputs that are correct but not close compared with the L1

loss. Fig. 4 also presents the assistance of the Temporal

and Spatial Net in our TSN tracker. As shown, all metrics

are getting worse (especially EAO) without using Temporal

Net and robustness is largely boosted by adding the Spatial

Net, which demonstrates the effectiveness of the Temporal

Net and the Spatial Net.
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Figure 4. Ablative experiments on the VOT2014 benchmark.

4.3. Evaluations on VOT2014 and VOT2016

In our experiments we use the latest version of the Vi-

sual Object Tracking (VOT) toolkit (vot2016), which ap-

plies a reset-based methodology. Whenever a failure (zero
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Figure 5. The accuracy-robustness ranking plots of our baseline

experiments on the VOT2014 benchmark.

overlap with the ground truth) is detected and the tracker is

re-initialized five frames after the failure. Trackers are eval-

uated by A (average overlap), R (total number of fails) and

EAO. We report the comparisons with a number of the latest

state-of-the-art trackers on both VOT2014 and VOT2016.

VOT2014 results. VOT2014 is incorporated by 25 video

sequences and it provides a ranking analysis based on both

statistical and practical significance of the performance gap

between trackers (see more details in [14]). Fig. 5 shows

the Accuracy-Robustness (AR) plot evaluated on VOT2014,

where we compare our tracker with 38 trackers that sub-

mitted to the VOT2014 challenge and the best trackers are

closer to the top-right corner. We legend the top 6 tracker-

s in Fig. 5 including TSN, DSST [8], SAMF, KCF, DGT,

and PLT14. The proposed tracker achieves the rightmost

position in the AR plot, which indicates our TSN tracker

performs best against the state-of-the-art trackers evaluated

by the AR metric.

VOT2016 results. VOT2016 is incorporated by 60 video

sequences, on which the proposed tracker is compared with

70 trackers submitted to the VOT2016 challenge. Note that

top trackers in the challenges are the latest tracking model-

s. EAO, A and R raw values and ranks are listed in Table

2. Our tracker is superior to other state-of-the-art trackers
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Table 2. EAO, A and R raw values (A,R) and ranks (Arank,

Arank) evaluated on the VOT2016 benchmark. The two best re-

sults are colored in red and blue, respectively.

Tracker EAO A R Arank Rrank

Proposed 0.336 0.582 0.266 1.000 1.000

CCOT 0.331 0.539 0.238 13.000 1.000

TCNN 0.325 0.554 0.268 5.000 2.000

SSAT 0.321 0.577 0.291 2.000 3.000

MLDF 0.311 0.490 0.233 38.000 1.000

Staple 0.295 0.544 0.378 9.000 11.000

DDC 0.293 0.541 0.345 11.000 7.000

EBT 0.291 0.465 0.252 45.000 1.000

SRBT 0.290 0.496 0.350 33.000 11.000

STAPLEp 0.286 0.557 0.368 3.000 10.000

DNT 0.278 0.515 0.329 24.000 5.000

SSKCF 0.277 0.547 0.373 8.000 11.000

SiamRN 0.277 0.549 0.382 6.000 11.000

DeepSRDCF 0.276 0.528 0.326 18.000 6.000
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Figure 6. Expected average overlap graph with trackers ranked

from right to left. The right-most tracker is the top-performing

according to the VOT2016 expected average overlap values.

in the challenging VOT2016 benchmark. Under the VOT

strict ranking protocol, the proposed TSN tracker is ranked

number one in accuracy, meaning the overlap was clearly

higher than other trackers. The second-best ranked track-

er in accuracy is SSAT. In terms of robustness, our TSN

tracker shares the first place with MLDF, CCOT [11], and

EBT, and the second rank in robustness is occupied by TC-

NN [41]. AR analysis indicates high accuracy and rare fail-

ures and these results demonstrate the expressiveness of the

proposed temporal and spatial network. Expected average

overlap graph evaluated on VOT2016 is reported in Fig. 6.

It is clear that our tracker achieves the highest EAO, and is

followed by CCOT and TCNN.

4.4. Evaluations on OTB50 and OTB100

OTB [58] is a widely used public dataset in perfor-

mance evaluation of tracking algorithms. The extended

version contains 100 challenging targets with 11 annotat-

ed attributes including illumination variation (IV), scale

variation (SV), occlusion (OCC), deformation (DEF), mo-

tion blur (MB), fast motion (FM), in-plane rotation (IPR),

out-of-plane rotation (OPR), out-of-view (OV), background

clutters (BC), and low resolution (LR). We evaluate the pro-
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Figure 7. Precision and success plots on the OTB50 benchmark.

posed algorithms with comparisons to a number of state-

of-the-art and recently released trackers including MDNet

[42], MEEM [60], CNN-SVM [23], HCFT [37], HDT [45],

SRDCFdecon [9], DeepSRDCF [10], SRDCF [9], LCT

[38], SIAM [3], and DSST [8]. Note that MDNet, Deep-

SRDCF, CNN-SVM, HCFT, HDT, and SIAM are latest C-

NN based trackers, which provides a baseline for tracking

methods that employ deep learning. We initialize all the

trackers with the ground-truth object state in the first frame

(HDT required ground-truth of the first 5 frames) and report

the average precision and success rate of all results. Fig. 7

and Fig. 8 presents the precision and success plot on OTB50

and OTB100, respectively.

The results show that the proposed TSN tracker performs

a second best among these trackers. However, on the over-

fitting problem, the feature net we employed is trained on

a very large object detection dataset (ImageNet), and it has

a better generalization capacity and is less to be overfitting

on object tracking datasets. The proposed method ranked

top one or two on the four tracking benchmarks, which sug-

gests the proposed method did have some generalizations

from sides. In contrast, the best tracker MDNet employs

different training videos for different test videos, which is
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Table 3. Average results evaluated on OTB100. The two best results are colored in red and blue, respectively.

Tracker TSN MDNet CNN-SVM SIAM SRDCFdecon DeepSRDCF SRDCF HDT HCFT LCT MEEM DSST

AP 0.868 0.909 0.814 0.766 0.825 0.851 0.789 0.848 0.837 0.762 0.781 0.680

DP 0.808 0.854 0.651 0.713 0.766 0.772 0.728 0.657 0.655 0.701 0.622 0.601

CLE 12.984 11.818 21.762 38.019 31.518 21.348 38.532 20.096 22.772 67.116 27.714 50.340
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Figure 8. Precision and success plots on the OTB100 benchmark.

more inclined to be overfitting, and our tracker does not

employ any tracking benchmark offline. DeepSRDCF ob-

tains a third best performance on OTB100. Table 3 summa-

rizes the results where we use three metrics for evaluation.

MDNet and TSN achieve the first and second best AP, D-

P, and CLE. DeepSRDCF achieves a third best AP and DP,

and HDT obtains a third best of CLE. DeepSRDCF em-

ploys CNN features in a correlation filter but could not ex-

ert the best performance of CNN features due to insufficien-

t learning. In our situation, we consider both the temporal

and spatial information which leads to a better performance.

We also report the results on OTB50 which is consisted by

more challenging sequences and our TSN tracker holds the

best compared with trackers not employing a pre-training

of tracking benchmarks. Overall, the proposed method out-

performs other state-of-the-art trackers with no pre-training

on tracking benchmarks in all three metrics.

4.5. Failure Cases

The proposed tracker may fail to find tight bounding

boxes when the size of the target varies a lot and / or due to

severe occlusions (see Fig. 9 for two examples). Since the

proposals in the current frame are generated based on the

tracking result in the previous frame, if the target changes

its size a lot and / or undergoes severe occlusions, the pro-

posals may not capture the variations.

Figure 9. Failure cases of the proposed tracker due to large scale

changes (top) and severe occlusions (bottom). Red boxes show

our results and the green ones are ground truth.

5. Conclusions

We have proposed a new deep architecture for the visual

tracking problem containing a Temporal Net and a Spatial

Net. The Temporal Net exploits temporal correspondences

between historical frames and the current frame. The S-

patial Net employs spatial and local information of the tar-

get to refine the localization of the target. We show that

the combination of the Temporal Net and the Spatial Net

is effective in object tracking and it is evaluated on four

benchmarks including OTB50, OTB100, VOT2014, and

VOT2016. The experiments demonstrate the effectiveness

of the proposed algorithm.
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