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Abstract

Computed Tomography (CT) reconstruction is a funda-

mental component to a wide variety of applications ranging

from security, to healthcare. The classical techniques re-

quire measuring projections, called sinograms, from a full

180° view of the object. However, obtaining a full-view is

not always feasible, such as when scanning irregular ob-

jects that limit flexibility of scanner rotation. The result-

ing limited angle sinograms are known to produce highly

artifact-laden reconstructions with existing techniques. In

this paper, we propose to address this problem using CTNet

– a system of 1D and 2D convolutional neural networks,

that operates directly on a limited angle sinogram to pre-

dict the reconstruction. We use the x-ray transform on this

prediction to obtain a “completed” sinogram, as if it came

from a full 180°view. We feed this to standard analytical

and iterative reconstruction techniques to obtain the final

reconstruction. We show with extensive experimentation on

a challenging real world dataset that this combined strategy

outperforms many competitive baselines. We also propose

a measure of confidence for the reconstruction that enables

a practitioner to gauge the reliability of a prediction made

by CTNet. We show that this measure is a strong indica-

tor of quality as measured by the PSNR, while not requiring

ground truth at test time. Finally, using a segmentation ex-

periment, we show that our reconstruction also preserves

the 3D structure of objects better than existing solutions.

1. Introduction

Computed Tomography (CT) is one of the most common

imaging modalities used in industrial, healthcare, and secu-

rity settings today. In a typical parallel-beam CT imaging

system, x-ray measurements obtained from all viewing an-

gles are effectively combined to produce a cross-sectional
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Ground Truth Proposed FBP

Figure 1. We show the proposed limited angle reconstruction from just

half the views (0-90°), in comparison to Filtered Back Projection (FBP)

and ground truth. These are intensity normalized images.

image of 3D objects [16]. These x-ray measurements are

collectively referred to as a Sinogram. The inverse problem

of reconstructing cross-sectional images (or slices) from

raw sinograms has been extensively studied by imaging re-

searchers for several decades (Chapter 3 in [16]), the most

popular technique being the Filtered Back Projection (FBP),

which is derived from a discretization of the closed-form

solution for the inverse x-ray transform. Alternatively, iter-

ative techniques such as weighted least squares (WLS) have

also been developed that improve upon FBP, in some cases,

by making successive approximations of increasing accu-

racy to obtain the final image. In the traditional CT setting,

one assumes access to measurements collected from the full

range of views of an object, i.e. θ ∈ [0, 180◦], but increas-

ingly newer techniques are being developed that can recover

images when a part of the views are missing, i.e. when

θ ∈ [0, θmax], θmax < 180◦. These are referred to as lim-

ited angle projections, and reconstruction in such cases is

highly ill-posed, as evidenced by the inferior performance

of existing methods.

Need for Limited Angle Scans: The advantage of such a

setup is that it can drastically reduce scan time by restrict-

ing the physical movement of the scanner. CT scans are

being used to study organs such as the heart, and objects

that are highly dynamic, implying that a slightly longer scan

time introduces a lot of blurring into the image [26, 8]. Fur-

ther, the limited angle setting can help limit the area of the
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scan only to a region of interest like in healthcare applica-

tions such as breast [27], and dental [14] tomography. It can

also support applications involving objects that have phys-

ical constraints restricting the angles from which they can

be scanned, for example in electron microscopy [30, 29].

Recent works attempt to solve this problem through a vari-

ety of formulations – as explicit sinogram regression from

limited view to full-view [13], reduction of artifacts ob-

tained from FBP [9], and using convolutional neural net-

works to refine poorly initialized reconstructions obtained

from FBP [36]. However, these techniques use simpler

datasets with very less variability, and operate in regimes

where a majority of the viewing angles are captured – for

example 130◦, 150◦ in [36], 140◦ in [30] and 170◦ in [13].

Instead, this paper performs CT reconstruction from just

half the views during training, i.e. 90◦, from a challenging

real world checked-in luggage dataset [1].

Challenges: Generally speaking, an edge of an object is

recovered accurately in a CT image if an x-ray tangential

to that edge is captured. When several such x-rays from a

contiguous set of views are missing, as in the limited an-

gle scenario, a significant amount of information regarding

the scene is missing. A loose analogy in traditional com-

puter vision, is like reconstructing a scene when it is par-

tially occluded from the camera. In the last few years, data-

driven approaches have made significant strides in solv-

ing similar challenging image recovery problems [5] such

as image completion [28], image-inpainting [35], super-

resolution [23], CS recovery [22]. These methods leverage

the availability of large datasets, and the expressive power

of deep learning to impose implicit constraints to the recov-

ery problem.

However, CT reconstruction presents several additional

challenges. Unlike standard images, CT images of trans-

portation luggage, cargo, etc. can be very complex with no

apparent low dimensional structure. As a result, even under

the classical CT setting of full-view scans, training a neural

network end-to-end to predict the final image is challenging.

This is further exacerbated by the fact that collecting a large

dataset of CT images and their corresponding projections

is significantly harder. Consequently, many state-of-the-art

methods rely on analytical techniques, e.g. FBP, to provide

an initial coarse estimate [13, 6], which is then refined using

deep neural networks. In the extreme setting as considered

here, FBP can be highly misleading, rendering subsequent

techniques ineffective. An example of FBP under a lim-

ited angle setting (0, 90◦) is shown in Figure 1. Finally, CT

is typically used in critical applications, which necessitates

the need for practitioners to understand the confidence or

reliability of reconstructions at test time.

Proposed Work: In this paper we address these chal-

lenges, with CTNet – a system consisting of 1D and 2D

convolutional neural networks (CNN) coupled with adver-

sarial training to recover CT slices from limited angle sino-

grams. Since sinograms have certain consistency conditions

[33, 25] that are hard to enforce directly within a neural net-

work, we propose to solve this problem by completing sino-

grams from limited angle to full view (180°), implicitly in

the image space. In other words, we employ a three-stage

approach – first CTNet produces a reconstruction based on

a limited-angle sinogram. Next, we project this image into

sinogram space as if it came from full-view measurements

using the x-ray transform. Lastly, we use existing tech-

niques such as FBP or WLS to obtain the final image.

We train our network with sinograms containing only half

the viewing angles to directly predict ground truth con-

sisting of reconstructions obtained from full-view measure-

ments. Inspired by the success of 1D CNNs in language

modeling [19], our network interprets the sinogram as a “se-

quence”. This formulation allows us to model projections

from individual views, while also enabling us to capture re-

lationships across views through a simple attention model.

Consequently, our approach supports the use of a different

number of views at test time, to even lower viewing an-

gles than 90◦. As seen in Figure 1, the proposed sinogram

completion strategy is able to recover CT slices with high

fidelity much better than FBP.

Finally, in order to generate a confidence measure for the

recovery process, we propose to estimate per-pixel variabil-

ities to perturbations in the latent space of sinograms, and

compute an aggregated confidence score. Interestingly, the

proposed score is highly correlated to the actual reconstruc-

tion quality measured with respect to the ground truth.

Our main contributions can be summarized as follows:

1. We propose the first deep learning solution to recover

CT images from limited angle or incomplete-view

sinograms.

2. We propose to utilize 1D CNNs to process sinograms,

which enables generalization to different number of

views during training and testing.

3. We develop a confidence metric for the recovered im-

ages, and show that it is a strong indicator of recon-

struction quality, as measured by PSNR.

4. We demonstrate that our method significantly outper-

forms state-of-the-practice approaches on a challeng-

ing transportation security dataset.

5. Using 3D semantic segmentation experiments on the

resulting reconstructions, we illustrate that the pro-

posed approach preserves the 3D structure effectively.

2. Other Related Work

There have been other studies addressing limited angle

reconstruction in different contexts; we refer the reader to
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Figure 2. Overview of the proposed approach. During training, we train CTNet to predict the CT slice directly from limited angle sinograms. We use a mix

of mean squared error and an adversarial loss. During test time, we forward project the ouput of CTNet using the x-ray transform to complete the sinogram.

Next, we use WLS or FBP on the completed sinogram to obtain the final reconstruction. The architectures for the 1D CNN, Generator and Discriminator

are described in the supplementary material.

[9] for a detailed list of them. A related but different prob-

lem is the few-view (also called sparse-view) CT recon-

struction, which has been of significant interest. It differs

from the limited-view problem in that, it reduces the num-

ber of viewing angles by uniformly sampling in the possible

range of angles, (0◦, 180◦) [11, 17, 15]. Zhao et al. pro-

posed a convolutional neural network framework to recover

poorly reconstructed images [37], and Chen et al. used

a similar approach to denoise images from low-dose CT

[6]. This recovery process closely resembles the techniques

used for solving inverse problems in vision recently such as

super-resolution [23], recovering images from compressive

measurements [22], and other linear inverse problems [5].

When compared to sparse-view reconstruction, the limited

angle problem is more challenging, as it is equivalent to ex-

trapolation in the sinogram space.

In the tomographic reconstruction community, numerous

studies have focused on algebraic approaches to inverse

problems, in particular utilizing Algebraic Reconstruction

Techniques (ART) and its variants such as Multiplicative

ART (MART). Examples include the work on MART-AP

[21] and simultaneous MART [31]. Further, Chen et al.

proposed an adaptive Non-Local Means (NLM) based re-

construction method to compensate for over-smoothed im-

age edges in few-view reconstructions [7]. In addition, there

exist methods that utilize dictionary learning techniques,

coupled with sparse representations or total variation op-

timization, for both few-view and low-dose CT reconstruc-

tion tasks [24, 34]. Despite the availability of such varied

solutions, to the best of our knowledge, our work is the first

that addresses the problem of limited-view CT reconstruc-

tion, by directly operating on the limited-view sinogram us-

ing viewing angles up to only 90◦.

3. Preliminaries

In this section we outline the basics of the CT scan, and

briefly describe the state-of-practice algorithms for recover-

ing the tomographic images from the sinograms.

(a) (b)

Figure 3. Experimental setup of x-ray computed tomography. An object

is rotated along an axis and exposed to a parallel beam of x-rays. The

intensity of attenuated x-rays exiting the object is measured by the detector

at regular angular intervals. The projection at an angle of θ measured at a

distance of r on the detector is the line integral of LAC values along the

line perpendicular to the detector at r.

3.1. CT Reconstruction problem formulation

X-ray CT is a non-destructive imaging modality that is

used to reconstruct the interior morphology of an object

scanned using x-ray radiation. In our experiments, the ob-

ject to be imaged is placed in between a source of parallel

beam x-rays and a planar detector array. The x-rays get at-

tenuated as they propagate through the object and the inten-

sity of attenuated x-rays exiting the object is measured by

the detector. To perform tomographic imaging, the object is

rotated along an axis and repeatedly imaged at regular angu-

lar intervals of rotation. At each rotation angle of the object,

the measurements at the detector can be expressed as the

line integration of the linear attenuation coefficient (LAC)

values along the propagation path. Assume that the object

is stationary in the cartesian coordinate system described by

the axes (x, y, z). Then, the projection at a distance of r on

the detector is given by,

pθ(r, z) =

∫ ∫

ρ(x, y, z)δ(x cos(θ) + y sin(θ)− r)dxdy.

(1)

where ρ(x, y, z) is the LAC of the sample at the coordinates

(x, y, z), δ( ) is the standard Dirac delta function, and θ is

the rotation angle. We refer to eq (1) as the x-ray trans-

form in the remainder of the paper. Note that rotating the
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object clockwise by an angle of θ is equivalent to rotating

the source and detector pair counterclockwise by an angle

of θ and vice versa. Notice that the equation (1) is separable

in the z coordinate. Hence, the projection relation is essen-

tially a 2D function in the x − y plane that is repeatedly

applied along the z−axis. Next, we describe two popular

reconstruction algorithms.

3.2. Filtered Back Projection

Filtered back-projection (FBP) is an analytic algorithm

for reconstructing the sample ρ(x, y, z) from the projections

pθ(r, z) at all the rotation angles θ. FBP directly inverts the

relation (1) to solve for the LAC values ρ(x, y, z). In FBP,

we first compute the Fourier transform Pθ(ω) of the projec-

tion pθ(r) as a function of r. The filtered back projection

reconstruction Y is then given by [16],

Y (x, y) =

∫ π

0

Qθ (x cos(θ) + y sin(θ)) dθ, (2)

where, Qθ(r) =
∫

∞

−∞
Pθ(ω)|ω| exp(j2πωr)dω. From

equation (2), we can see that a filtered version of pθ(r) is

smeared back on the x−y plane along the direction (90◦−θ)
(see figure 3). The FBP reconstruction thus consists of the

cumulative sum of the smeared contributions from all the

projections ranging from 0◦ to 180◦.

If the projections are acquired over a limited angular

range, then the integration in (2) will be incomplete in the

angular space. Since each projection pθ(r) contains the cu-

mulative sum of the LAC values at a rotation angle of θ, it

also contains information about the edges that are oriented

along the angular direction (90◦−θ) in Figure 3. Now, sup-

pose data acquisition starts at θ = 0◦ and stops at an angle

of θ = θmax < π. Then, the edge information contained

in the projections at the angles θ ∈ [θmax, π] will be miss-

ing in the final reconstruction. This is the reason behind the

edge blur in the reconstructions shown in figure 1.

3.3. Weighted Least Squares

Weighted least squares (WLS) is an iterative method for

reconstructing the sample by formulating the reconstruction

as the solution to a cost minimization problem. It belongs to

the class of model-based reconstruction algorithms [3, 26],

albeit without any form of regularization.

Let Y represent the reconstruction, that contains all the

sampled values of the LAC ρ(x, y, z) in 3D space, and S

represent the sinogram. Then, the WLS reconstruction is

given by solving the following optimization problem,

Ŷ = argmin
Y

{

(S −AY )TW (S −AY )
}

(3)

where A is the forward projection matrix that implements

the line integral of (1) in discrete space and W is an estimate

of the inverse covariance matrix of S [3], computed as a

diagonal matrix with Wii = exp(−Si).

4. Proposed Approach

An overview of the proposed approach is described in

Figure 2. In this section, we describe the details of our ap-

proach, and outline the training and testing strategies. A

limited angle sinogram is a collection of measurements of a

given object, stored in matrix form, from a range of views

spanning from 0◦ to θ < 180◦ (fixed at 90◦ in this paper),

where each row corresponds to a single view. Completing

the sinogram directly is challenging, since there are consis-

tency conditions in the sinogram space [33, 25] that cannot

be easily enforced during the training process. Therefore,

we resort to an implicit sinogram completion process, that

converts a limited-angle sinogram to a full view one as de-

scribed next.

4.1. From HalfView to FullView: Implicit Sino
gram Completion with CTNet

CTNet first embeds the limited angle sinogram into a latent

space using a fully convolutional 1D CNN. The 1D con-

volutions are meaningful in this context, since they allow

the use of a simple attention model to study correlations

across neighboring views. We interpret the sinograms as a

sequence of projections, corresponding to different viewing

angles, similar to the sentence modeling in the NLP litera-

ture [19]. In the 1D CNN architecture, we use multiple fil-

ters with varying window sizes, in order to capture informa-

tion across different sized neighborhoods. Each filter pro-

duces an embedding corresponding to a window size, result-

ing in the final embedding with dimensions Nfilters ×Nh,

where Nh denotes the different number of window sizes

considered. See [19] for more details on the implemen-

tation. In our case we have Nfilters = 256 filters, with

Nh = 5 window sizes, resulting in a 1280 dimensional

embedding. By design, this formulation supports varying

number of rows (views) in the input sinogram. This latent

representation is decoded into its corresponding CT image

using a 2D CNN to predict the desired CT image. Our de-

coder is fully convolutional but for a projection layer in the

beginning, and consists of residual units [12].

Training Losses: We trained CTNet with the standard

mean squared error (MSE) as the loss: Lmse = ||Ŷ − Y ||22,

where Ŷ and Y denote the predicted and ground truth

images respectively. Training with MSE naturally results

in the highest PSNR and SSIM metrics, as MSE opti-

mizes specifically for them, however they result in highly

smoothed images as the resulting solution is obtained as the

average of many possible solutions.

We also use an adversarial loss [10], that uses a discrim-

inator to guide CTNet to generate more realistic looking

reconstructions. In practice, this results in sharper edges

and visibly more high frequency content. Similar obser-

vations have been reported in the case of super resolution
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[23], where it was found that PSNR is a weak surrogate

for visual quality and using adversarial loss produces a

more sharper rendering. The adversarial loss is measured as

Ladv = − log(D(Ŷ )) where D(.) represents the discrimi-

nator whose role is to distinguish between a generated im-

age (fake) and an actual slice from the training dataset. The

loss at the discriminator is LD = − log(D(Y )) − log(1 −
D(Ŷ )). The final loss for the generator is hence obtained

as L = Lmse + λLadv. We found λ = 0.05 to be a suit-

able choice, resulting in the best reconstructions. Further

details of all the networks inside CTNet can be found in the

supplementary material.

Sinogram Completion: Once we have the prediction from

CT-Net, Ŷ , from a 90◦ sinogram, S(0,90), we obtain a full-

view sinogram from the Ŷ using Ŝ(0,180) = F(Ŷ , 180◦),
where F corresponds to the x-ray transform (specified in eq

(1)). This computes the sinogram, as if views from 180◦

were available for the current image slice, from which we

use rows corresponding to (90◦, 180◦) to obtain the com-

pleted sinogram – Scomplete = [S(0,90), Ŝ(90,180)] . We ob-

tain the final reconstruction with Scomplete using FBP, or

WLS using the equations (2) or (3) respectively.

4.2. A New Confidence Score for Reconstructions
from Limited Angle Sinograms

CT reconstruction is often used in critical applications

such as healthcare or security, where an incorrect or mis-

leading reconstruction can have negative consequences.

This fact is even more important when we perform recon-

struction from incomplete data, as we are operating in a

highly under-constrained setting. In order to address this,

we propose a confidence score, which measures the relia-

bility of the reconstruction, for a given limited angle sino-

gram. This score is evaluated only at the test time and does

not require the ground truth for its estimation.

At test time, the 1D-CNN embeds the limited-angle sino-

gram into a latent space, where we randomly perturb the

vector using a dropout strategy and reconstruct the CT im-

age from the perturbed latent representations. In all our

experiments, the dropout probability was set at 0.05. For

a given sinogram, we repeat this multiple times, and mea-

sure the per-pixel variance in the resulting reconstructions.

The intuition here is that if the network has sufficient in-

formation to recover the slice, small perturbations in the

latent space should not affect the final output significantly.

However, if the sinogram does not reliably capture the infor-

mation in the scene, its corresponding latent representation

tends to be unstable, thus leading to significant changes in

the reconstruction for small perturbations to its latent vec-

tor. Though a simple heuristic such as the ℓ1 norm of the

per-pixel variances can be directly used as the confidence

metric, it can be highly sensitive to the number of objects

Missing ViewsAvailable Views

Figure 4. Setup: The views used in training, shown with reference to the

physical arrangement of the training data.

present in the scan. Hence, we propose the following metric

as a confidence score for the reconstruction: For the given

per-pixel variance matrix V , and the actual predicted image

Ŷk obtained with no latent space perturbation, we define

rk = exp

(

−

∑

i

∑

j Vij

||Ŷk||2

)

, (4)

where the variances are normalized by the total ℓ2 norm

of the reconstructed image. We find that this metric acts

as a strong indicator of the actual reconstruction quality,

measured as the PSNR with respect to the ground truth im-

age. Since evaluation of this metric does not require ground

truth, this can be used by the practitioner to evaluate the

reconstruction at test time, without actually generating the

ground truth.

5. Experiments

In this section, we compare the sinogram completion ap-

proach with several baselines, and demonstrate its effective-

ness in industrial CT reconstruction and segmentation.

Dataset We evaluate the our methods on a dataset of CT

scans of common checked-in luggage collected using an

Imatron electron-beam medical scanner – a device simi-

lar to those found in transportation security systems. The

dataset is provided by the DHS ALERT Center of Excel-

lence at Northeastern University [1] for the development

and testing of Automatic Threat Recognition (ATR) sys-

tems. We repurpose this dataset for generating CT recon-

structions from sinograms. The dataset is comprised of 188
bags, with roughly 250 slices per bag on an average. In

total, the dataset consists of 50K full view sinograms along

with their corresponding FBP reconstructions. The original

slices are 1024×1024, but we perform experiments on their

downsampled versions of size 128 × 128, and correspond-

ingly the sinograms are subsampled to be of size 720×128.

This corresponds to views obtained at every 0.25°sampled

uniformly from 180 °. We split the bags into a training set

of 120 bags and a test set with the rest. This split resulted in

about 35K image slices for training and around 15K image

slices for testing. The bags contain a variety of everyday
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Figure 5. Reconstruction Results: PSNR (dB) is shown for each reconstruction, measured against the ground truth. It should be noted that sinogram

completion is much better at preserving geometric shape (such as round objects) than baselines, apart from being superior in terms of PSNR. For sinogram

completion, CTNet -mse and CTNet -adv performed nearly the same when followed up by WLS. We also show the nearest reconstruction from the training

set, based on distance in the sinogram latent space.

objects such as clothes, food, electronics etc. that are ar-

ranged in random configurations. In all our experiments, we

assume access to only the top half of the sinogram, which

results in observing half the views (0◦, 90◦) (Figure 4). We

use this partial sinogram to train CTNet and the different

baselines. As an initial processing step, we perform basic

filtering to remove low intensity noise in the ground truth

reconstructions, obtained using FBP with all the views. We

utilize LLNL’s Livermore Tomographic Tool (LTT) [4] to

compute the WLS, FBP, and xray transforms.

Setup: From the training data, we drop rows (360, 720] in

the sinogram matrix, corresponding to views obtained from

(90◦, 180◦]. Physically, they represent the viewing angles

going 0-90°clockwise as shown in figure 4. We consistently
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Decreasing reliability
(a) top row: ground truth, middle: proposed recon-

struction, and bottom row: pixel-wise confidence

map. Light indicates more confident.

 Increasing Reliability
PS

N
R 

җd
BҘ

Spearman Correlation: 0.799

(b) PSNR v Reliability (c) Robustness to different views at test time: top

left is ground truth, and others are reconstructions

using CTNet-adv+WLS.

Figure 6. Properties of CTNet: (a) Pixel-wise confidence measures, values are shown on the same scale with values between (0, 3×10−4). (b) Proposed

measure of confidence acts as a strong indicator of the quality of reconstruction, (c) Demonstration of the behavior of the proposed approach for varying

number of views during testing.

drop the same views across all training images and testing

images.

Training details and parameters: We trained our net-

works using Tensorflow [2] on a NVIDIA Tesla K40m

GPU. We do not perform any scaling on the sinograms or re-

constructions, since the value ranges are globally consistent

across the entire dataset. Further, we use the same decoder

in all our networks, regardless of the loss function. For the

1D CNN, we used filter sizes [1, 2, 3, 4, 5] and employed the

Adam optimizer[20] with learning rate 1×10−3 when using

the MSE loss (CTNet-mse). For the mixture of adversarial

and MSE losses (denoted CTNet-adv), we set the learning

rate at 2× 10−4 and the exponential decay rate for the first

moment estimates at β1 = 0.5.

5.1. Evaluating Quality of Reconstruction

The reconstruction results obtained using different base-

line solutions and the proposed approach are shown in Fig-

ure 5. The baseline techniques include the state-of-practice

methods, namely FBP and WLS, and variants of CTNet

with both MSE and adversarial losses. We observe that, in

general, implicit sinogram completion followed by an ana-

lytical reconstruction such as FBP or WLS produces more

accurate reconstructions compared to methods that directly

predict the CT image (CTNet-mse and CTNet-adv). In par-

ticular, CTNet -mse and CTNet -adv performed nearly the

same when followed up by WLS, therefore we only show

CTNet -adv+WLS in figure 5 for brevity. For each recon-

struction, we compute the PSNR value (dB) and Structural

Similarity (SSIM) measures, with respect to the ground

truth. From Figure 5, it is evident that the proposed solution,

in particular with WLS, is significantly better than existing

approaches and the baseline architectures. Furthermore, in

Table 1, we show the mean PSNR and SSIM for 100 ran-

domly chosen slices from the test set. Even though our per-

formance is better as measured by PSNR and SSIM in the

image space, they are not reflective of the large improve-

ments in the reconstruction quality. Hence, we also mea-

sure the PSNR in the sinogram space by forward projecting

the images using the X-ray transform, and comparing them

to the ground truth 180◦ sinogram. Denoted by S-PSNR

in Table 1, the sinogram space PSNR shows that CTNet is

significantly better than existing baseline approaches, and

overall the proposed solution of sinogram completion with

WLS performs the best in terms of all metrics.

Confidence Score for Reconstruction: As described in

Section 4.2, our proposed confidence score can provide

guidance to qualitatively evaluate the reconstructions, with-

out actually generating the ground truth for a test sample.

We illustrate the pixel-wise confidence measures in Figure

6 for 3 different images, with decreasing levels of reliabil-

ity obtained using CTNet -adv. Notice that in cases with

noisy reconstructions, i.e., cases where the partial views

considered do not sufficiently capture the properties of the

scene, directly correspond to a lower confidence (or higher

variance) as shown by the measure displayed on top of the

variance maps. In Figure 6(b), we test the hypothesis that

the proposed confidence measure can act as a strong indica-

tor of the actual reconstruction quality, as measured by the

PSNR. The strong correlation between PSNR and the pro-

posed metric on the set of test images validates our hypoth-

esis - an overwhelming evidence against the null hypothesis

that they are not related, p-value=1.808× 10−23.
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Table 1. PSNR and SSIM measures comparing 100 randomly sampled

test slices with the ground truth. Completing the sinogram with CTNet

followed by WLS is superior to all baseline methods. While PSNR and

SSIM are metrics in the image space, S-PSNR is in the sinogram space.

Method PSNR (dB) SSIM S-PSNR (dB)

FBP 35.65 0.846 26.56

WLS 37.3 0.939 32.08

CTNet -mse 37.70 0.940 33.70

CTNet -adv 37.19 0.935 32.82

CTNet -mse + FBP 37.42 0.932 33.22

CTNet -adv + FBP 37.35 0.930 33.46

CTNet -mse + WLS 38.13 0.952 34.11

CTNet -adv + WLS 38.08 0.950 34.14

Testing with fewer views than training: By design, our

formulation allows the use of variable number of views in

the sinogram. In practice, this translates to having reason-

ably stable reconstructions for further reduction in the num-

ber of views at test time. Note that, the views that are

dropped can be random or can be consecutive in the se-

quence. Retraining a network for every unique set of views

can be an arduous task. Our network can handle these cases

well, by producing reconstructions whose quality degrades

gracefully with incremental loss in the number of views.

An example is shown in figure 6(c), where we show the re-

constructions obtained using views ranging from 70◦ to 90◦

during test time.

Segmentation Label Region Growing on Full-view 
Ground Truth 

Region Growing on Proposed 
Reconstruction

Region Growing on 
Reconstruction from WLS

Figure 7. 3D Segmentation: We employ a region growing 3D segmenta-

tion in all cases and the resulting segmentations are shown in color, against

a 3D rendering of the reconstructed 2D images underneath. It is clearly ev-

ident that our method performs very similar to ground truth in determining

the object boundaries compared to WLS.

3D Segmentation from CT Reconstructions: CT images

are primarily used to study 3D objects, and hence evaluat-

ing the quality of the reconstructions in 3D segmentation

can clearly demonstrate their usefulness in practice. We

consider the 3D segmentation process, since it is often a

critical step prior to performing complex inference tasks

such as threat detection [18]. To this end, we use the popu-

lar region-growing based segmentation proposed in [32] to

identify high intensity objects in the bags from their recon-

structions with partial views. We show an example for a

bag with 260 image slices, that has been rendered in 3D

using the 2D slices reconstructed with the proposed CT-

Net -adv+WLS and WLS alone respectively, in Figure 7.

We compare the segmentations obtained using our method

to the segmentation labels, and those obtained using just

WLS. It can be seen in this example, WLS preserves 3D

edges poorly resulting in spurious segments, whereas the

proposed reconstruction is significantly better, resembling

the ground truth. Additional segmentation results can be

found in the supplementary material.

6. Discussion

In this paper we proposed to accurately recover CT im-

ages when the viewing angle is limited to only 90◦. We

pose this problem as sinogram completion, but solve it in

the image domain. Our empirical studies demonstrate the

effectiveness of our three-stage approach – first computes

a neural network based reconstruction, obtains a full-view

sinogram using the x-ray transform based on the reconstruc-

tion, and then obtains the final reconstruction through WLS

on the completed sinogram. We also proposed a confidence

score to gauge the reliability of the recovery process, while

being a reasonable surrogate for image quality.

Failure Cases: Our method works best on scenes with large

objects that appear as low frequency content in images. We

observe no significant gain over WLS in more complicated

scenes that contain multiple small objects or intricate de-

signs, since they manifest as high frequency image content,

which are very hard to recover in this ill-posed problem

setup. However, even with this limitation, we are able to

recover 3D structure very well as shown in Figure 7, on re-

alistic data that can be of practical use. Finally, since this

dataset was not intended for limited angle reconstruction,

there are some examples when the objects are just not in

view (i.e. completely invisible within 0-90°), and our net-

work has no information to recover them.

Future Work: There are several important directions for-
ward for this work – (i) include the forward projection step
(using x-ray transform) as a final layer inside CTNet , so
that we can optimize the reconstruction setup end-to-end;
(ii) Along with the reconstruction, jointly infer the segmen-
tations from the sinograms in a multi-task learning setting.
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