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Abstract

Visual relationships provide higher-level information of

objects and their relations in an image – this enables a se-

mantic understanding of the scene and helps downstream

applications. Given a set of localized objects in some train-

ing data, visual relationship detection seeks to detect the

most likely “relationship” between objects in a given im-

age. While the specific objects may be well represented

in training data, their relationships may still be infrequent.

The empirical distribution obtained from seeing these rela-

tionships in a dataset does not model the underlying distri-

bution well — a serious issue for most learning methods.

In this work, we start from a simple multi-relational learn-

ing model, which in principle, offers a rich formalization

for deriving a strong prior for learning visual relationships.

While the inference problem for deriving the regularizer is

challenging, our main technical contribution is to show how

adapting recent results in numerical linear algebra lead to

efficient algorithms for a factorization scheme that yields

highly informative priors. The factorization provides sam-

ple size bounds for inference (under mild conditions) for

the underlying Jobject, predicate, objectK relationship learn-

ing task on its own and surprisingly outperforms (in some

cases) existing methods even without utilizing visual fea-

tures. Then, when integrated with an end-to-end architec-

ture for visual relationship detection leveraging image data,

we substantially improve the state-of-the-art.

1. Introduction
The core primitives of an image are the objects and en-

tities that are captured in it. As a result, a strong thrust

of research, formalized within detection and segmentation

problems, deals with accurate identification of such enti-

ties, given an image. On the other hand, there is consensus

that to “understand” an image from a human’s perspective

[29, 21], higher-level cues such as the relationship between

the objects are critical. Being able to reason about which

entities are likely to co-occur [32, 25] and how they interact

(a) Jperson, ride, motorcycleK (b) Jperson, ?, horseK

(c) Objects interactions with predicates

Figure 1: Visual relationship detection: the goal is to infer visual

relationships that best describe the interactions among those objects. (a):

A relationship instance in a training set. (b): An unknown relationship to

predict. (c): The interactions of the objects (i.e., motorcycle and horse are

both ‘ridable’) can be used to infer the correct relationship.

[54, 12] is a powerful mid-level feature that endows a sys-

tem with auxiliary information far beyond what individual

object detectors provide. Starting with early work on AND-

OR graphs [31, 27] and logic networks [46, 43], algorithms

which make use of relational learning are becoming main-

stream within vision, offering strong performance on cate-

gorization and retrieval tasks [1, 13]. Furthermore, many

interesting applications [9, 51, 4] have begun to appear as

richer datasets become available [4, 29, 55, 52].

An intuitive visual relationship learning setup is as fol-

lows. Given a sufficiently large set of images where the ob-

jects have been localized, we process the images and specify

the “relationship” between the objects; for example, person

and couch related by sitting on and/or person and bike re-

lated by riding. Then, with a learning module in hand, it

should be possible to learn these associations to facilitate

concurrent estimation of the object class as well as their re-

lationship. For instance, a model may suggest that given a

high confidence for the bike class, a smaller set of classes

for the other object are likely, and perhaps, a small set of

relationships may explain the semantic association between

those two objects. The authors in [40] showed that this idea

of “Visual Phrases” performs well even when provided with
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Observed Visual Relationship Detection

Jmotorcycle, has ,wheelK Jlaptop, on, tableK

Zero-shot Learning: Unobserved Visual Relationship Detection

Jhorse, wear, hatK Jmouse, on, cabinetK Jtree, behind, bearK

Figure 2: Examples of visual relationships detected by our algorithm given objects and their object bounding boxes. The left two relationships (green

box) were observed in the training set. The right three relationships (orange box) not observed in the training set are potentially much harder to detect.

a small set of 13 common relationships. However, for such

a learning task to work, the training data size should be suf-

ficient to cover all possible relationships. But as we seek

for a richer dataset, the challenge comes from its availabil-

ity and the skewed relationship distribution.

Last year, [23] presented a visual relationship dataset,

Visual Genome, to help research on this topic: over 100K

images with 42K unique relationships. Visual Genome is

a massive expansion of the Scene Graph dataset [21] (gives

an image as a first-order network of its objects (vertices) and

their visual relationships (edges)). Visual Genome connects

the individual scene graphs to one another based on their

common objects and/or relationships encoding the inter-

connectedness of many complex object interactions.

From Visual Phrases to Scene Graph Prediction. Given

a set of detected objects (i.e., person, dog, phone objects)

in an image and possible predicates (i.e., on, next to, hold

predicates), the goal is to infer the most likely relationships

(i.e., Jperson, hold, phoneK relationship) among the objects,

see Fig. 2. The Visual Phrases based algorithm [40] builds

a model for each unique relationship instance to fully detect

all possible relationships, i.e., # of predicates ×# of object

categories2. Independent object-wise predictions are com-

bined using a decoding scheme that takes all responses and

then decides on the final image-specific outcome. The for-

mulation is effective but as noted by [29], it becomes infea-

sible as the number of unique relationships (Jobject, pred-

icate, objectK) exceed several thousands – as is the case in

the new Visual Genome dataset. To address this limitation,

in [29] the authors propose building “joint” models that do

not enumerate the set of all relationships and instead are

proportional to the number of object categories plus predi-

cates. This set is much smaller and effective to the extent

that these fewer degrees of freedom capture the large num-

ber of relationships. As discussed in [29], often the lan-

guage prior can compensate for such disparity between the

model complexity and dataset complexity but also suffers if

the semantic word embeddings fall short [5]. Recently, as

a natural extension to the individual relationship detection,

understanding an image at a broader scope as a scene graph

[52] has been proposed where the goal is to infer the entire

interconnectedness of the objects (nodes) in the image with

various visual relationships (edges). While the detection on

objects and relationships ‘help’ each other, relatively more

challenging visual relationship inference is often the bottle-

neck within such combined approaches.

Key Components for Improved Visual Relationship

Learning. A hypothetical model may offer improvements

in visual relationship learning if it has the following prop-

erties: (1) Leaving aside empirical issues, the model com-

plexity (i.e., degrees of freedom) should be able to compen-

sate for the complexity of the data (i.e., number of object

categories) while still guaranteeing performance gains for

the core learning problem under mild assumptions. (2) Ad-

ditionally, it would be desirable if the above characteristic

can also generalize to unseen data (i.e., relationships not in

training data) with little information about unseen observa-

tions (i.e., unknown category distributions).

Contributions. (i) We view visual relationship learning

as a slightly adapted instantiation of a multi-relational learn-

ing model. Despite its non-convex form, we show how re-

cent results in linear algebra yield an efficient optimization

scheme, with some guarantees towards a solution. (ii) We

derive sample complexity bounds which demonstrate that

despite the ill-posed nature, under sensible conditions, in-

ference can indeed be performed. This scheme yields pow-

erful visual relationship priors despite the extremely sparse

nature of the data. (iii) Our proposal integrates the priors

with an adaptation of visual relationship detection architec-

ture. This end-to-end construction brings the best perfor-

mance of the much more challenging scene graph prediction

tasks [52] on the Visual Genome dataset by modulating the

deep neural network structure with a provably stable rela-

tional learning module. The key leverage comes from over-

coming the sparsely observed visual relationships (∼2% of

possible relationships) with contribution (i)-(ii).

2. Relational Learning in Vision
In this section, we briefly review some of the related

works. In the past years, low-to-mid level computer vision

tasks have seen a renaissance leading to effective algorithms

[24, 35] and various datasets [28, 4, 55]. Building upon

these successes, higher-level tasks, such as scene under-

standing [14, 56] and relationship inference [26, 29, 50, 52],

which often rely on the lower-level modules are being more

intensively studied. In particular, inferring the visual re-

lationship between objects is the next logical goal – go-

ing from object level detection to semantic relations among

objects for higher-level relationships. For instance, sim-
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Figure 3: An end-to-end scene graph detection pipeline. In training, (left) given an image, its initial object bounding boxes and relationships are detected.

Then, (top middle) its objects and relationships are estimated via scene graph learning module [52]. Our pre-trained (thus not being trained in this pipeline)

tensor-based relational module (bottom middle) provides a visual relationship prediction as a dense relational prior to refine the relationship estimation

which also regulates the learning process of the scene graph module. In testing, (right) the scene graph of an image is constructed based on both modules.

ple contextual features such as co-occurrence [25, 32] are

useful but not rich enough for detailed semantic relation-

ship among objects such as those required within VQA [4].

On the other hand, human-specific relationships based on

human-object interaction [39, 54], while expressive, limit

the scope of information inferable from natural images con-

taining many types of objects. From a different perspec-

tive, inferring visual information from images under various

assumptions (i.e., in the wild) has been utilized to retrieve

task-specific visual information as well [36, 45].

A deeper understanding of images is being successfully

demonstrated in various semantic inference tasks. For in-

stance, answering abstract questions related to a given im-

age called visual question answering (VQA) [4] has shown

good results [55, 3] with the availability of various datasets

[4, 55]. Also, image captioning [10, 53] can infer detailed

high-level knowledge from image.

In this paper, we focus on inferring a mid/high level de-

scription commonly referred to as visual phrases [40, 23]

that provides systematically structured visual relationships

(i.e., person rides a car as Jperson, ride, carK) that is both

quantifiable and expressive. For instance, understanding

an image in terms of the objects and their visual relation-

ships has been recently formulated as a scene graph detec-

tion [52] based on the large-scale Visual Genome dataset

[23] which requires simultaneously performing both higher-

level visual phrase inference and lower-level object recog-

nition. As seen on the right of Fig. 3, a successfully con-

structed scene graph provides rich context about the image

for an upstream system-level model (i.e., VQA) where the

bottleneck often comes down to semantic ambiguities and

sparse sample observations.

3. Collective Learning on Multi-relational Data

Much of our technical development will focus on distill-

ing the sparsely observed relationship data towards a pre-

cise regularization that will be integrated into an end-to-end

pipeline. To setup our presentation for deriving this prior,

we first briefly describe encoding/representing the data and

then obtain an objective function to model the inference task

for the Relational learning module in Fig. 3.

Tensor Construction. Suppose we are given a dataset of

N images that contains n object categories and m possible

predicates which are both indexed. For instance, an im-

age can have an object i ∈ {1, . . . , n} having a predicate

k ∈ {1, . . . ,m} with another object j ∈ {1, . . . , n}. We

can construct a relationship tensor X ∈ R
n×n×m where

X(i, j, k) contains the number of occurrences of the i’th ob-

ject and j’th object having k’th predicate in the dataset. If

the relationship of person (object index i) and bike (object

index j) described by ride (predicate index k) has shown

up p times, then we assign X(i, j, k) = p. We can also

think of X as a stack of m matrices Xk ∈ R
n×n for k ∈

{1, . . . ,m}: each Xk contains information about the k’th

predicate among all the objects in the data (see Fig. (4)).

Note that in practice, only a small fraction (i.e., ∼1%) of

the possible relationships are observed out of mn2 possible

relationships; the relationship tensor is extremely sparse.

Why Tensor Construction? In multi-relational learning

such as visual relationship learning, it is critical to ap-

propriately represent the inter-connectedness of the objects

[42, 16]. Such multi-relational information of any order can

be easily encoded as a higher order tensor where its con-

struction does not require any priors (parametric distribu-

tions in Bayesian Networks [15]) or assumptions (Markov

Logic network structure [38]). Our main motivation is: even

though the objects are represented as points in R
n, due to

the sparse matrix slices Xk’s, we may assume that the ob-

jects are embedded in fewer dimensions r<n. In principle,

this can be accomplished by a message passing module [52]

within the pipeline shown in Fig. 3 but experimentally, we

find that concurrent learning both modules is challenging.
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Figure 4: Muti-relational tensor X ∈ R
n×n×m given n object cate-

gories and m possible predicates. The value at X(i, j, k) is the number of

Ji’th object, k’th predicate, j’th objectK instances observed in the train-

ing set. Due to the sparse nature of the relationship instances, only ∼ 1%
of the tensor constructed from our training set has non-zero entries.

Why not other Tensor Decompositions? Recently, many

authors [2, 19] have shown that learning latent represen-

tations correspond to decomposing a tensor into low-rank

components. While many standard techniques [18, 48] ex-

ist, they are inappropriate for multi-relational learning for

a few reasons. For instance, polyadic decomposition [18]

puts rigid constraints on the relational factor (i.e., diagonal

core tensor) which is counterintuitive in relational learning

[33]. Ideally, we want the converse construction where the

relational factors are flexible with respect to the “latent”

object representations. In that sense, our model is similar

to the less widely used Tucker 2−decomposition [48], but

Tucker 2 allows too many degrees of freedom on the objec-

tive factor. Second, the solution of typical solvers [18, 48]

is often not unique. This is not relevant in many factor anal-

ysis tasks that do not rely on the representations (i.e., Eigen-

faces [49]), but this property is undesirable in our formula-

tion where we explicitly consider the relationships among

the objects in their “latent” representations. In other words,

two equally optimal solutions could interpret the same rela-

tionship differently. Thus, we need to impose consistency

in representations by identifying a unique solution (via ad-

ditional regularization).

In this section, we describe a novel relational learning

algorithm which addresses the above issues and provides

the generalization power needed for visual relationship de-

tection. We first explain our model motivated by a three-

way collective learning model [33] which derives a set of

latent object representations connected by relational factors.

Later, we extend this formulation and describe our relation-

ship inference model which guarantees a unique solution for

consistent objects representations and their relationships.

We then empirically show how our pipeline (Fig. 3) inte-

grating the regularization (or prior) obtains benefits.

3.1. Threeway Relational Learning

Recall our mild assumption that the objects can be repre-

sented in a lower dimensional space with dimensions r < n.

We will now explain our model in two steps: first, given the

multi-relationship tensor X , our goal is to derive the latent

representation of its objects A ∈ R
n×r of rank r; secondly,

assuming that we know the lower dimensional representa-

tion A of the objects, now we can define the relationship-

specific factor matrix Rk ∈ R
r×r for each k ∈ {1, . . . ,m}

for each relationship matrix Xk. Observe that A is common

across all the relationships where the i’th row of A is the

latent representation of the i’th object as desired. On the

other hand, each factor matrix Rk individually corresponds

to the k’th relationship and constitutes its respective matrix

Xk (see Fig. (4)) with the common latent representation A.

We can now write our model as,

Xk ≈ ARkA
T
. (1)

Hence, our optimization problem to solve is,

min
A,Rk

m
∑

k=1

||Xk −ARkA
T ||2F (2)

where we will learn A and Rk’s simultaneously. Such a

decomposition of a three dimensional tensor is referred to

as Tucker 2−decomposition [22]. The “2” refers to the fact

that we are learning two “types” of matrices in some sense.

Now we discuss a crucial property of the tensor X that

is very relevant. Observe that since a relationship and its

converse (i.e., person on bike and bike on person) need not

always occur together, each Xk is not always symmetric,

thus preventing us from effectively using many readymade

tools from matrix analysis like the spectral theorem, eigen-

decomposition and so on. In our multi-relational tensor X ,

a predicate often cannot be sensibly applied in the other

direction. Thus, we propose alternative strategies that in-

cludes certain reformulations. Before we present our final

algorithm to solve problem (2), we will show how certain

reformulations will enable us to design efficient algorithms.

A possible solution strategy to solve the above formula-

tion (2) is using a conventional approach such as the Alter-

nating Least Squares (ALS) method. In this method, one

variable is optimized while fixing all the other variables.

Importantly, for the ALS algorithm to be efficient, we need

all of the optimization subproblems to be easily solvable.

However, note that solving for A while fixing Rk’s is not

easy since it involves fourth order polynomial optimization.

4. Algorithm

In this section, we present our algorithm (Alg. 1) consist-

ing of a novel initialization scheme followed by an iterative

scheme to solve our the multi-relational problem (2) with an

additional regularization term that is weakly derived from

[47]. Then, we show how the algorithm can be integrated

into the formulation in Fig. 3 as the Relational learning (RL)

module which provides a dense predicate prior.

4.1. Multirelational Tensor Factorization

To make our analysis easier, as the first step, we use aux-

iliary variables to decouple A and AT in the objective func-

tion resulting in a method of multipliers type formulation,

min
A,Rk

m
∑

k=1

||Xk −BkA
T ||2F s.t. Bk = ARk. (3)
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Algorithm 1 Alternating Block Coordinate Descent on (8)

1: Given: X ∈ R
n×n×m, Xk := X(:, :, k), rank r > 0

2: Low-rank Initialization:

3: X ←
∑m

k=1
Xk

4: UΣV T ← SVD(X, r)
5: A← V Σ1/2

6: for k = 1, ..., m do

7: Bk ← UΣ1/2

8: Rk ← (ATA)−1(ATXkA)(ATA)−1

9: end for

10: Iterative descent method:

11: while Convergence criteria not met do

12: A← gradient descent on (8) w.r.t. A

13: for k = 1, ..., m do

14: Bk ← gradient descent on (8) w.r.t. B

15: Rk ←
(

ATA
)

−1 (

ATBk

)

16: end for

17: end while

18: Output: A ∈ R
n×r , Bk ∈ R

n×r , Rk ∈ R
r×r for ∀k

For the purpose of designing an algorithm, let us analyze

only the objective function in (3) ignoring the equality con-

straints resembling matrix factorization by letting m = 1:

min
A,B
||X −BA

T ||2F . (4)

It is easy to see that the above problem can be solved ex-

actly using the Singular Value Decomposition (SVD) of X .

When m > 1, we need to identify matrix factorization type

models where SVD (or something related) serves as a sub-

routine. Recent works use SVD as a subroutine in primarily

a few different ways to solve problems that can be posed

as matrix factorization problems: preprocessing step [8]

at each iteration [20] and thresholding schemes [6]. Intu-

itively, in the above works, the SVD of an appropriate ma-

trix (chosen specifically depending on the problem context)

provides a good estimate of the global optimal solution of

rank constrained optimization problems both theoretically

[41] and practically in vision applications [30]. Essentially,

these works show that with a specially constructed matrix,

having an initialization already gets close to optimal solu-

tions, and then any descent method is guaranteed to work.

Unfortunately, these results do not extend to our case when

m > 1. we generalize this idea, derive sample complex-

ity bounds on the number of predicates needed to learn the

latent representations and give an efficient algorithm.

Low-rank Initialization via SVD. For a given generic X ∈
R

n×n, (4) can be solved by

A = V Σ1/2
, B = UΣ1/2

(5)

where UΣV T = X is the SVD of X . Under certain con-

ditions, recent works such as [44] and [47] have shown that

an initial point for other common low-rank decomposition

formulations can be estimated within the “basin of attrac-

tion” to guarantee the globally optimal solution; hence this

provides the exact latent representation of objects.

Since our formulation consists of multiple Xk and Bk for

k ∈ {1, . . . ,m}, we must construct an appropriate matrix

that will provably put us in the basin of attraction. Intu-

itively, let us assume that the matrices Xk are sampled from

an underlying distribution with the mean E(X). In order to

get an unbiased estimator of the mean, we merge all Xk for

k ∈ {1, . . . ,m} into X =
∑m

k=1
Xk. So, as a heuristic, we

may initialize the low-rank latent representation A by set-

ting A = V Σ1/2 where UΣV T = X represents the SVD

of X . So, is this seemingly ad-hoc heuristic averaging jus-

tified? We now show when our initialization is guaranteed

to be good under the mild assumption that each predicate is

independent and is drawn from an underlying distribution.

Lemma 4.1.1. Let E(X) be the true abstract object rela-

tionship matrix from which Xk’s are sampled from, ǫ > 0 be

the error of our estimate and δ > 0 be the failure probabil-

ity. Furthermore, assume that each Xk for k ∈ {1, . . . ,m}
is an independent bernoulli random matrix. Then A is an

(ǫ, δ) solution if m = O
(

1

ǫ log
(

n
δ

))

. (Proof in supplement)

Remark. For a fixed ǫ > 0 and δ > 0, the number of

predicates required for an accurate estimation of the latent

representation A has only a logarithmic dependence on the

number of objects n suggesting that our procedure needs a

small number of predicates to find the latent representation

of objects as we also see in practice. Integrating the prior

derived by this formulation within the pipeline in Fig. 3 to

do the full inference concurrently offers no simple way for

the optimization scheme to exploit the nice algebraic and

statistical properties we use here.

Having initialized A, we simply set Bk = XA(ATA)−1

as the initial point. Another option is to use the least squares

solution Bk = XkA(ATA)−1 with respect to each Xk, but

this has a higher chance to overfit the data. Finally, each

Rk ∈ R
r×r for k ∈ {1, . . . ,m} can be solved with its

respective Xk given the original factorization setup (2):

Rk = (AT
A)−1(AT

XkA)(AT
A)−1

. (6)

Alternating Block Coordinate Descent. Similar to Sec-

tion 4.1, let us first consider problem (4). We see that (4)

has multiple global optimal solutions since the value of the

loss is invariant to a basis transformation: B′ = BP and

A′ = AP−T for any invertible matrix P ∈ R
r×r has the

same objective function value as B and A. Thus, we add a

term that restricts such degenerate cases:

λp

m
∑

k=1

||AT
A−B

T
k Bk||

2

F (7)

where λp > 0. A high value of λp, makes the two factors

Bk and A to be on the unit “scale”, or in other words, the

factors are normalized [47]. Our final model which adds the
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regularization in (7) to a formulation equivalent to (3) is

min
A,Rk,Bk

m
∑

k=1

||Xk −BkA
T ||2F + γ

m
∑

k=1

||Bk −ARk||
2

F

+ λp

m
∑

k=1

||AT
A−B

T
k Bk||

2

F .

(8)

Equivalence means that there exists some γ > 0 such that

the optimal solutions of (3) and (8) coincide, a direct conse-

quence of Lagrange multiplier theory [7]. Note that the dual

variable γ controls the fit to the constraint Bk = ARk, so

we will apply a continuation technique to solve (8) (without

(7) for now) for increasing γ to enforce Bk = ARk [34].

Then, we fix γ and add (7) to solve (8). We used λp = 0.01.

Solving for a Fixed γ. We iteratively solve for A and

each Bk for k ∈ {1, . . . ,m} individually with gradient de-

scent methods as follows at each iteration. First, to solve A,

we fix Bk for k ∈ {1, . . . ,m} and perform gradient descent

with respect to A as in line 12 of Alg. 1. Second, to solve

each Bk, we fix A and Bk̄ for k̄ 6= k and perform gradi-

ent descent with respect to Bk as in line 14 of Alg. 1. To

solve both of these subproblems, we used Minfunc/Schmidt

solver with backtracking line search.

Note that we can solve each Rk for k ∈ {1, . . . ,m} in

a closed form Rk =
(

ATA
)

−1 (

ATBk

)

since the last term

does not involve any Rk (line 15 of Alg. 1). The optimiza-

tion problem to solve for Bk and Rk is decomposable, so

one main advantage is that they can be solved in parallel.

The above procedure produces a monotonically decreasing

sequence of iterates thus guaranteeing convergence [17].

In the supplement, we describe how the procedure can be

thought of as a “meta” algorithm for factorization problems

in vision which may be of independent interest.

4.2. Scene Graph Prediction Pipeline

We now describe the training procedure of the pipeline

(Fig. 3). See supplement for other low-level details.

Relational Learning Module. We first setup the RL

module by constructing the multi-relational tensor X ∈
R

n×n×m on the Visual Genome dataset as described be-

fore. Then, for r = 15, we solve for the latent represen-

tation of the objects A ∈ R
n×r and the factor matrices

R1, . . . , Rm ∈ R
r×r based on (8) as in Alg. 1. Next,

using the trained A and R1, . . . , Rm, we reconstruct the

low-rank multi-relational matrix X̂ which is the stack of

(a) Predicate (b) Phrase (c) Relationship

Figure 5: Detection Task Conditions: Given object bounding boxes:

(a) Predicate (easy): does not require bounding boxes. (b) Phrase (moder-

ate): requires relationship bounding box (orange) containing both objects.

(c) Relationship (hard): requires individual bounding boxes (red/blue).

m low-rank relational matrices similar to X except that

each slice is X̂k = ARkA
T for k ∈ {1, . . . ,m}. Then,

given objects i and j, the predicted predicate distribution is

kRL = softmax(X̂(i, j, :)) ∈ R
m.

Training the Pipeline. Given an image, the initial object

bounding boxes are detected via a Region Proposal Network

[37] to train our end-to-end pipeline for scene graph predic-

tion which consists of two modules (see Fig. 3). (a) Scene

graph (SG) module: The iterative message passing net-

work by [52] predicts both objects and predicates concur-

rently. (b) Relational learning (RL) module: Our tensor-

based relational learning provides predicate prior X̂(i, j, :)
between object i and j where the low-rank tensor is now

constructed based on the entire Visual Genome training

set. Given object-subject bounding boxes, our pipeline

trains its relationship as follows: (1) The SG module es-

timates the object labels i∗ and j∗ along with the predi-

cate distribution k∗SG ∈ R
m. (2) The RL module com-

putes the predicate prior based on those estimates: k∗RL =

softmax(X̂(i∗, j∗, :)) ∈ R
m. (3) The prior k∗RL is ran-

domly applied to the network-based estimate k∗SG as

k∗ = k∗SG ⊙D(k∗RL, θ) (9)

where ⊙ is the Hadamard product and D(y, θ) ∈ R
m is a

‘y-or-1’ filter where the i’th element is y(i) with probabil-

ity θ or 1 with probability 1 − θ. Intuitively, each entry of

the SG module predicate prediction k∗SG has a θ chance to

be regularized by the RL prior k∗RL via scaling. In practice,

this either increases underestimated scores (i.e., rare object

combinations) or decreases overestimated scores where the

frequency of influence is determined by θ (i.e., higher θ reg-

ularizes more often). (4) Using the new predicate predic-

tion k∗, relationship loss is now computed and backprop-

agated to the SG module with respect to both objects and

predicates. During the training, in order to avoid the SG

module prematurely converging because the pre-trained RL

module does most of the heavy lifting, we first do a ‘warm

start’ where we train the SG module without the RL mod-

ule (θ = 0) for 100K iterations. Then, we include the RL

module for extra 50K iterations with θ = 0.2 which was

chosen empirically from θ ∈ {0.2, 0.4, 0.6} after observing

that high θ values were less effective.

5. Experiments
We evaluate our model on two datasets. First, we test

our regularization model described in Sec. 4.1 as a stan-

dalone method on the Scene Graph dataset [21] and com-

pare against the relationship detection method by Lu et al.

[29]. To show that performance gains are not just from

the decomposition formulation (1), we also compare against

Tucker 2 [48] and PARAFAC [18]. Second, for more dif-

ficult scene graph prediction tasks on Visual Genome [23],

we show significant improvements over the recent state-of-
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Total Relationship Detection Results: Ours (top caption) and [29] (bottom caption)

Jperson, on, motorcycleK
Jperson, wear, motorcycleK

Jbench, next to, benchK
Jbench, on, benchK

Jperson, on, snowboardK
Jperson, hold, snowboardK

Jkite, next to, kiteK
Jkite, fly, kiteK

Jperson, at, tableK
Jperson, on, tableK

Zero-shot Relationship Detection Results: Ours (top caption) and [29] (bottom caption)

Jroof, above, elephantK
Jroofs, on, elephantK

Jpost, behind, carK
Jpost, front of, carK

Jplate, front of, personK
Jplate, on, personK

Jsofa, under, personK
Jsofa, behind, personK

Jplate, next to, glassesK
Jplate, wear, glassesK

(a) Total Predicate (b) Total Phrase (c) Total Relationship (d) ZS Predicate (e) ZS Phrase (f) ZS Relationship

Figure 6: The total visual relationship detection (top row in green box) and the zero-shot visual relationship detection results (middle row in orange box)

on Scene Graph dataset using our algorithm (top caption) and [29] (bottom caption). The correct and incorrect predictions are highlighted in green and red

respectively. Visual relationship detection results (bottom row) on Scene Graph using ours (red), Lu et al. (green) and CP (blue). Best viewed in color.

the-art message passing network model by Xu et al. [52] us-

ing our end-to-end pipeline that integrates our tensor-based

relational module with their message passing model [52].

The dense prior inferred from our provably robust relational

module directly influences both the training and testing of

the pipeline in a holistic manner as shown in Fig. 3. In both

evaluations, we measure the true positive rate from the top p

confident predictions referred to as recall at p (R@p) since

not all ground truth labels can be annotated.

5.1. Scene Graph Dataset

We used the same set of 5000 training (<1% unique tu-

ples) and 1000 test images with n = 100 object categories

and m = 70 predicates as in [29].

Visual Relationship Prediction Setup. The procedure of

constructing the low-rank multi-relational matrix X̂ is iden-

tical to the description in Sec. 4.2 where in this case we use

the Scene Graph dataset. Then, the predicted predicate be-

tween object i and j is k∗ = argmaxk φijX̂(i, j, k) based

on a vector of ‘probability distribution’ of predicates where

φij is a weight based on a simple word-vector distance be-

tween the categories i and j.

Prediction Tasks. We setup three different prediction

experiments of varying difficulties (see Fig. 5 and supple-

ment for details): (a) Predicate, (b) Phrase and (c) Re-

lationship predictions. These are performed at R@p for

p ∈ {100, 50, 20} in two settings: (1) Total and (2) Zero-

shot (test set not observed in training).

5.2. Visual Genome Dataset

We used the cleaned up version of the dataset follow-

ing [52] to account for poor/ambiguous annotations which

consists of 108, 077 images 25 objects and 22 relationships

where we used 70% for training and 30% for testing. For

the experiments, we used the most appearing n = 150 ob-

ject categories and m = 50 predicates (11.5 objects and 6.2
relationships per image on average).

Prediction Setup. Once the pipeline is trained following

Sec. 4.2, the prediction result is simply the forward propa-

gation output of the pipeline except we now set θ = 1 to

fully use the relational prior k∗RL.

Scene Graph Prediction Tasks. Detecting a scene graph

requires inference on three parts: predicate, object class and

bounding box which requires accurate predictions on these

parts incrementally [52] as shown in Table 1. For all these

tasks, we used R@p for p ∈ {100, 50, 20}.

5.3. Results on Relationship Learning Tasks

Visual Relationship Detection on Scene Graph. We show

visual relationship detection results on the Scene Graph

dataset using CP [18], Lu et al. [29] and our algorithm

(Tucker [48] results in supplement) at the bottom of Fig. 6.

For all tasks, our results outperform other methods. Espe-

cially, our zero-shot prediction (Fig. 6 (d)) results substan-

tially outperform the state-of-the-art ([29]) by ∼ 40% in all

recalls. In much more difficult phrase (b,e) and relation-

ship (c,f) detection (Fig. 6), we achieve improvements in all

tasks under almost all recalls. We observe that our zero-shot
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Scene Graph Prediction Results Incorrect GT

Figure 7: Scene graph classification results on Visual Genome using ours and [52]. For each column, the predicted objects (blue ellipses) and their

relationships (yellow ellipses) are constructed as a scene graph its top image. The bounding boxes labels reflect our prediction results. For difficult

predictions (green dashed boundary) where our model has correctly predicted (top green) and while [52] has misclassified (bottom red) are shown. The

rightmost column is an example of a case where our model provides more accurate predictions (pot and bowl) than those of the ground truth (box and cup).

Prediction Tasks Predicate Object B-box

Predict Predicate (PredCls) X

Classify SG (SgCls) X X

Generate SG (SgGen) X X X

Table 1: Scene graph detection tasks. Check marks indicate required

prediction components. The tasks become incrementally more demanding

from top (PredCls) to bottom (SgGen).

predicate detection results (Fig. 6 (d)) given known object

pairs is competitive with the total phrase detection results

by [29] (Fig. 6 (b)) given unknown object pairs. This im-

plies that while accurate object detection is crucial for visual

relationship detection, more difficult zero-shot learning is a

less critical factor for our algorithm.
Scene Graph Prediction on Visual Genome. We now

show the scene graph prediction results (Fig. 8) on Visual

Genome using Xu et al. [52] and our pipeline (Fig. 3). We

also evaluated [29] on the same tasks, but the model did not

scale well to the task complexity so the performances were

lower than the other two methods by large margins (see sup-

plement for full comparisons). (a) PredCls: Our model

provides significant improvements in the predicate detec-

tion tasks in all recalls by at most ∼30% in R@20. Since

this task only demands predicate predictions, such large im-

provements demonstrate that the tensor-based RL module

functions as an effective prior for inferring visual relation-

ships by better utilizing the large but sparse dataset. (b) Sg-

Cls: The results on the scene graph classification (Fig. 8(b))

show that our model improves object classifications as well

in all recalls where our R@50 result is on par with R@100

of [52]. The boost in predicate prediction improves overall

inference on the interconnected object and predicate infer-

ence of the SG module [52] during the training. (c) SgGen:

On the last task which also predicts the bounding box, our

model showed ∼10% improvements in all recalls over [52].

Remarks. We observe that our RL module provides

boosts on not only the predicate detection (PredCls) but

Code available on https://github.com/shwang54

(a) PredCls (b) SgCls (c) SgGen

Figure 8: Scene graph detection task (see Table 1) results on Visual

Genome using ours (red) and [52] (cyan). Our pipeline without the RL

module show results similar to [52] (cyan).

also the interdependent object classification tasks (SgCls

and SgGen) enabled by our composite pipeline (Fig. 3), and

this is our initial hypothesis: relationship learning is a bot-

tleneck which needs to be focused on. Second, as seen in the

rightmost column of Fig. 7, such rare mislabeled or seman-

tically ambiguous samples become extremely difficult to in-

fer, but the prior from the RL module could provide strong

‘advice’ on such outliers based from its dense knowledge

spanning entire relationship space. Additional interesting

successful/failed prediction results are in the supplement.

6. Conclusion
We presented a novel end-to-end pipeline for the visual

relationship detection problem. We first exploits a simple

tensorial representation of the training data and derives a

powerful relational prior based on a algebraic formulation

to obtain latent “factorial” representations from the sparse

tensor via a novel spectral initialization. Our results sug-

gest that the factors can be provably learned from observa-

tions only logarithmic in the number of relationships given

the ill-posedness of the problem. With this regularization,

we show how informing an end-to-end visual relationship

detection pipeline with such a distilled prior yields state-of-

the-art in predicate and scene graph predictions.
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