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Abstract

Most human activity analysis works (i.e., recognition or

prediction) only focus on a single granularity, i.e., either

modelling global motion based on the coarse level move-

ment such as human trajectories or forecasting future de-

tailed action based on body parts’ movement such as skele-

ton motion. In contrast, in this work, we propose a multi-

granularity interaction prediction network which integrates

both global motion and detailed local action. Built on a bi-

directional LSTM network, the proposed method possesses

between granularities links which encourage feature shar-

ing as well as cross-feature consistency between both global

and local granularity (e.g., trajectory or local action), and

in turn predict long-term global location and local dynam-

ics of each individual. We validate our method on several

public datasets with promising performance.

1. Introduction

In collective activities, predicting multi-person interac-

tion in multi-granularity including action and trajectory de-

tails of each individual is a challenging problem. It has

many applications, such as group activity analysis, social

event prediction and collective activity recognition.

Most works for human motion prediction mainly focus

on a single person in a single granularity. Namely, they

either forecast human activity by analyzing the action in-

formation of each person, or predict human movement only

focusing on its trajectory. Previous works [19, 4, 15] utilize

deep RNNs to model human dynamics. These works only

consider local human action, but without global motion, i.e.,

trajectory. Other works [2, 25, 29] only focus on human tra-

jectory prediction in crowd spaces without considering the

information of detailed action. All above works utilize only
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Figure 1. Given a short video clip, we propose a method to pre-

dict future group interaction in multi-granularity, including global

motion (trajectory) and local motion (part movement )

one type of information to independently analyze the com-

plex human activity. However, global and local informa-

tion (i.e., trajectory and human action) describe the human

activity from different views. Only using one of these in-

formation can not comprehensively represent the activity,

especially in details. We believe that considering both gran-

ularities, i.e., global and local information, and their inter-

actions, can definitely help action analysis, i.e., prediction.

We present the first study on multi-person interaction

prediction focusing on multi-granularity. To predict the ac-

tion and trajectory details of each individual involved in

a group activity, we propose a method considering both

global and local granularities, i.e., trajectory and detailed

body part movements. As shown in Figure.1, taking a short

video clip with various number of persons as input, we aim

to predict a sequence of future skeletal motion data and tra-

jectory for all individuals.

This multi-person interaction prediction in a panoramic

view is a challenging task. On the one hand, existing works

only focus on a single granularity, but the information in

single granularity is not sufficient to represent individual
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dynamics in group activity. Namely, predicting group inter-

action in multi-granularity must take information of differ-

ent views into consideration, including coarse level move-

ment and fine level actions. Since information between dif-

ferent granularities is related, it is significant to model their

interactions. On the other hand, in group activities, the ac-

tion of individuals and positional information of the next

frame are interacted with both their own dynamic informa-

tion and the information of people associated. As collective

activities always contain a varying number of people, the

proposed network must be flexible enough to model mutual

interactions simultaneously.

To address these issues, we propose a multi-granularity

group interaction prediction architecture, which features

a single-granularity prediction LSTM (sLSTM) combined

with a novel multi-granularity interaction network. This

network contains intra-granularity interaction sub-network

and inter-granularity interaction sub-network. i.e., the pro-

posed network focuses on different granularities including

trajectory and detailed action. Each sLSTM contains an en-

coder to capture spatio-temporal continuity. Then to model

the interaction between different individuals within gran-

ularity, we propose two intra-granularity interaction sub-

networks to model interaction in trajectory and action re-

spectively. Further more, to model the interaction between

different granularities, an inter-granularity interaction sub-

network based on bi-directional LSTM is employed for its

capability of preserving long memory in two directions.

The proposed method has been comprehensively evaluated

on several public datasets with three evaluation metrics. Ex-

perimental results demonstrate that our method can well ad-

dress group interaction prediction problem.

2. Related work

Group Activity Analysis. Previous works on group ac-

tivity analysis usually focus on group activity recognition.

Lan et al. [17] proposed an adaptive latent structure learning

recognizing group activities which jointly captures group

activity, individual actions, and interactions among them.

Social roles in [21] and [16] were proposed as the expected

behavior of an individual in the context of a group. Choi

and Savarese [9] unified tracking multiple people, recogniz-

ing individual actions, interactions and collective activities

in a joint framework. In the work of Ibrahim et al. [13], a hi-

erarchical deep temporal model has been used to aggregate

person-level information for whole activity understanding.

Bagautdinov et al. [3] have unified locations of individu-

als, social actions and collective activities in an end-to-end

framework. Wang et al. [28] unified the interactional fea-

ture modeling process for single person dynamics, intra-

group and inter-group interactions utilizing LSTM. Shu et

al. [23] proposed a confidence-energy recurrent network to

recognizing human activities at distinct semantic levels. All

of above methods only focus on coarse-grained recognition,

including recognizing individual actions, interactions, and

collective activities. However, it is not sufficient to under-

stand group activity and perform reasonable activity pre-

diction only based on recognition results. To address this

issue, we propose to predict multi-granularity group inter-

action which is more challenging than recognition.

Multi-granularity Analysis. Multi-granularity analysis

has been successfully applied in many tasks including track-

ing, segmentation and classification [26, 31, 8, 32]. Wang

et al. [26] proposed a fine-grained categorization framework

trained from multiple granularity labels, and the results out-

perform most of the existing approaches. Yang et al. [31]

introduced a Multiple Granularity Analysis framework for

video segmentation in a coarse-to-fine manner. Chen et al.

[8] proposed to use multi-granularity topics to generate fea-

tures for short text, and this method can significantly re-

duce the classification errors. Multi-granularity embedding

method proposed in [32] has been proved to improve word

embedding by further leveraging both characters and radi-

cals. The success of multi-granularity method inspires us to

model group interaction in the multi-granularity manner for

human motion prediction.

Human Motion Prediction. Modelling human mo-

tion plays an important role in many tasks including ac-

tivity recognition [22, 34], motion generation [19, 15] and

robotics [5]. Prior works have addressed this problem by

using Hiden Markov Models(HMMS) [18], Gaussian pro-

cess [27], restricted Boltzman machine(CRBM)[24] and

random forest [10]. Recently, deep recurrent neural net-

works (RNN) have shown its superiority in sequence learn-

ing. Fragkiadaki et al. [11] proposed an ERD network.

Jain et al. [15] proposed a method combining spatiotem-

poral graphs with RNNs. Martinez et al. [19] introduced

a sequence-to-sequence model using a residual architec-

ture which has obtained state-of-the-art performance. And

Butepage et al. [4] used deep learning frameworks to extract

deep feature representation for human motion prediction.

Most of the above methods use joint angle data from H3.6M

[14], which limits the development of human analysis. To

deal with this problem, we propose a multi-granularity data

generator to directly process on the 2D coordinates. Be-

sides, although these previous works show satisfactory per-

formance in modelling single person dynamics, the multi-

person prediction problem involving interactions has not

been well addressed. To the best of our knowledge, we are

the first study focus on multi-granularity group interaction

prediction.

3. Methodology

Previous human activity analysis works only consider

single granularity, either focus on trajectory or focus on ac-

tion. However single granularity information can not com-
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Figure 2. Overview of our multi-granularity interaction network at t time step, ∆act is the change value of action and ∆tra is the change

value of trajectory. We use intra-granularity interaction sub-network and inter-granularity interaction sub-network to model interaction and

predict trajectory and local body part’s action. After combining them, our method outputs the generated skeleton data for next time step.

pletely represent the activity information. Additionally, dif-

ferent from single-person activity, individuals are interre-

lated and play different social roles in group activity. This

motivates us to propose a multi-granularity interaction net-

work to focus on multiple granularity and model the inter-

action between them.

As illustrated in Figure.2, proposed network consists of

three parts. First, an input data generator splits every in-

dividual skeleton into a center point representing global lo-

cation and other relative points representing local action de-

tails. Then, an intra-granularity interaction sub-network and

an inter-granularity interaction sub-network are deployed to

capture the interaction within granularity and between dif-

ferent granularity respectively, and predict different gran-

ularity information including trajectory and action for the

next frame. In the end, we combine the trajectory with ac-

tion information to obtain final actual skeletons.

3.1. Multigranularity Data Generator

In group activity, each individual is involved with two

basic granularities. One is the location in frame repre-

senting the spatial information. And the other is local ac-

tion represented by skeletons. Previous works which model

human motion or interaction, only pay attention to single

granularity. However, both granularities are essential for

correctly understanding the activity and precisely predict-

ing future motion.Thus we propose a multi-granularity data

generator to gain different granularity features.

The multi-granularity data generator takes a short video

clip as input, crops individuals according to bounding box,

then uses pose estimation method [6] to extract coordinates

of skeleton key joints, and splits every individual skeleton

into a center point and other relative points. First, utilizing

human pose estimation network, each individual is repre-

sented by a feature vector which consists of xy-coordinates

of K skeleton key points in every frame. Then, supposing

that Sn,t = {Xk
n,t}, k = 1, 2, ...,K denotes the skeleton

data of n-th individual at t time step, and Xk
n,t denotes the

xy-coordinates of the k-th key point. For modelling multi-

granularity, we select the center point in individual skele-

tons to represent the spatial information, which is usually

the center of body. And other key points in skeleton are

represented by the coordinates relative to the center point,

which contain the information of individual action. Sup-

pose we choose Xc
n,t as the center point, and use following

equations to represent the position Cn,t and action Rn,t re-

spectively:

Cn,t = Xc
n,t, (1)

Rn,t = {Xk
n,t − Cn,t}, k = 1, 2, ...K, k 6= c, (2)

where Cn,t is the absolute coordinates of center point and

Rn,t denotes the rest coordinates relative to Cn,t at t time

step for n-th individual. We standardize Rn,t by mean sub-

traction and division by the standard deviation along each

dimension. And Cn,t subtracts the mean of all individual

center coordinates to preserve relative spatial location in-

formation. After obtaining Cn,t and Rn,t, the features in

two granularities, we apply proposed multi-granularity in-

teraction network for group activity prediction.
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3.2. Multigranularity Interaction Prediction Net
work

As mentioned above, individual features are partitioned

into two granularities. Because individuals are interrelated

in group activities, it is then important to model the interac-

tion in granularity features, including intra-granularity in-

teraction (i.e., trajectory to trajectory, action to action) and

inter-granularity interaction (i.e., trajectory to action). To

address this issue, we propose two different interaction sub-

networks to capture these interaction, while also predict the

features (i.e., trajectory and action) for the next time step.

3.2.1 Granularity Feature Encoding

As illustrated in Figure.2, two single-granularity LSTMs

(sLSTM) are proposed to encode different granularity fea-

tures for each individual. One encodes the trajectory fea-

tures and the other encodes the action features. We denote

by Cn,t and Rn,t the trajectory and action features of n-th

individual at t time step respectively. Then in encode-stage,

each single-granularity LSTM encodes the input (Cn,t or

Rn,t), and returns the output (ocn,t or orn,t) and hidden state

(hcn,t or hrn,t) at t time step for n-th individual, as Equation

follows:

[ocn,t, h
c
n,t] = ψ1(Cn,t, h

c
n,t−1), (3)

[orn,t, h
r
n,t] = ψ2(Rn,t, h

r
n,t−1), (4)

where ψ1, ψ2 denote trajectory sLSTM unit and action

sLSTM unit. ocn,t and orn,t denote the corresponding outputs

of the two sLSTMs. We suppose that there are N individ-

uals in the group activity at t time step, Oc
t = {ocn,t}, n =

1, 2, ..., N denotes the encoded trajectory features of all in-

dividuals at t time step, Similarly, Or
t = {orn,t} denotes

the encoded action features of all individuals at t time

step. Then Oc
t and Or

t are taken as the input of the inra-

granularity interaction network to capture the interaction

between features in the same granularity.

3.2.2 Intra-granularity Interaction Network

In group activity, individuals adjust their paths and actions

by reasoning about other individuals. Thus, after obtain-

ing encoded features in different granularities, we need to

capture the interaction of individuals in various granularity.

First, we propose intra-granularity interaction network to

capture the implicit interaction between features in the same

granularity. More specifically, we use two intra-granularity

interaction networks including trajectory interaction sub-

network and action interaction sub-network to capture

the interaction between trajectories and the interaction be-

tween actions respectively.

We propose the intra-granularity interaction sub-network

inspired by [7], and the two intra-granularity interaction

+

+

+

+

A

BC

Gathering
Concatenate

fc
relu

A action_feature 
B action_feature 
C action_feature

P

Figure 3. Intra-granularity interaction network

sub-networks have the same structure except for different

dimensions of parameters. As illustrated in Figure.3, the

intra-granularity interaction sub-network is composed of an

encoder and a decoder. Supposing there are N individuals

in a group activity and ocn,t, o
r
n,t denote the encoded trajec-

tory features and encoded action features of n-th individual

at t time step. When modelling the impact from other indi-

viduals to n-th individual in action granularity at t time step,

the input to the interaction sub-network is a vector consist of

N − 1 pairwise concatenation, {[or1,t, o
r
n,t], [o

r
2,t, o

r
n,t], ...}.

Most previous works only model the interaction between

adjacent individuals instead of all individuals [2, 7]. How-

ever, our target is more focus on interactive pattern learn-

ing, thus we take all individuals into consideration. After

obtaining the input, the encoder encodes all the pairwise

concatenation and sums all the encodings as the whole im-

pact P from other individuals to the n-th individual. Then

whole impact P is concatenated with orn,t as the input to the

decoder, and the decoder predicts the action change value

∆act of the n-th individual for t + 1 time step. The whole

process is as follows:

pi = φ1(o
r
i,t, o

r
n,t;Wp), i 6= n, (5)

P =
N∑

i=1,i 6=n

pi, (6)

∆act = φ2(φ1(P, o
r
n,t;We);Wl) (7)

where φ1(.) is an embedding function with RELU non-

linearlity, φ2(.) is an common embedding function. Wp,We

and Wl are embedding weights. At last, the action inter-

action network predicts the action change value ∆act for

all individuals. Similarly, the trajectory interaction network

predicts the trajectory change value ∆tra for all individuals.

3.2.3 Inter-granularity Interaction Network

Intra-granularity interaction sub-network only captures the

interaction between features in the same granularity without
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considering the relationship between features in different

granularities, e.g. interaction between trajectory and action.

To address this issue, we propose an inter-granularity inter-

action sub-network to model the cross-granularity interac-

tion. Instead of directly modelling the interaction between

trajectory features and action features, we model the inter-

action between ∆act and ∆tra. On the one hand, it helps

avoid memorizing the environment. On the other hand, the

relationship between original trajectory features and action

features is hard to model. However, the change of trajectory

can represent the general motion trend of the action. Cor-

respondingly, the change of action can reflect the motion of

trajectory to some extent. Thus modelling the relationship

between ∆act and ∆tra is more reasonable.

Trajectory

Action

BLSTM
Encoder Decoder

fc

Figure 4. Inter-granularity interaction network

The inter-granularity interaction sub-network takes the

prediction of intra-granularity interaction sub-network as

input. For an individual, firstly, ∆act and ∆tra are embed-

ded into a same latent space using different encoders. Then,

because features in different granularity are mutually influ-

enced, a bi-directional LSTM is proposed to model the in-

teraction in the latent space. Finally, different encoders out-

put the final prediction. The encoders and decoders consist

of MLPs. In other words, the inter-granularity interaction

network is proposed to learn the implicit links between tra-

jectory and action, then the network utilizes the links to re-

fine the predictions from intra-granularity and output more

reasonable and accurate prediction results. For n-th individ-

ual at t time step, the decoder outputs ∆′
act and ∆′

tra, and

Qc
n,t = Xc

n,t +∆′
tra and Qr

n,t = Xr
n,t +∆′

act are the final

outputs representing the prediction for t+ 1 time step.

3.3. Temporal Prediction

Each single-granularity LSTM of each person uses

sequence-to-sequence architecture. Supposing the input

video clip has T frames. After T time steps encoding, for n-

th individual, we obtain the predicted value Qc
n,T and Qr

n,T

from multi-granularity interaction prediction network at T

time step, and Qc
n,T and Qr

n,T are the predictions for abso-

lute coordinates of center points and relative coordinates of

other joints of the n-th individual.

In the decode-stage, starting from t = T , we take Qc
n,t

and Qr
n,t as the input to the different single-granularity

LSTMs of n-th individual at t + 1 time step. And then the

output Qc
n,t+1 and Qr

n,t+1 from multi-granularity interac-

tion prediction network at t + 1 time step will be taken as

the input to the single-granularity LSTMs at t+2 time step.

After Tp time steps decoding, we obtain predictions includ-

ing absolute coordinates of center points C ′
n,t = Qc

n,t and

relative coordinates of other joints R′
n,t = Qr

n,t for n-th in-

dividual at t time step, where t = T + 1, T + 2, ..., T + Tp
and n = 1, 2, ..., N . Then, we de-normalize the predictions

and combine them together to reconstruct the skeleton data.

Follows are the definitions of loss for training

3.4. Loss Definition

When modelling multi-granularity interaction, we focus

more on loss in different granularity rather than absolute

loss. To this end, we introduce multi-granularity loss as

follows:

Ltra =

N∑

n=1

T+Tp∑

t=T+1

(C ′
n,t − Ĉn,t)

2,

Lact =

N∑

n=1

T+Tp∑

t=T+1

(R′
n,t − R̂n,t)

2,

L = Lact + λLtra + ‖W‖
2

(8)

where C ′
n,t is the predicted absolute coordinates of the cen-

ter point, R′
n,t is the predicted relative coordinates of other

points, Ĉn,t and R̂n,t are the corresponding ground truth. λ

is used to balance the weights of action loss and trajectory

loss.

4. Experiments

We perform extensive experiments on two challenging

human interaction datasets, SBU Dataset [33] and Choi’s

New Dataset [9]. To quantify the impact of modeling multi-

granularities, we not only compare the prediction results

with related methods, but also with specific designed base-

lines. And further discussions are also provided.

4.1. Implementation Details

We implement our proposed method using Tensorflow

[1]. In granularity features encoding, the hidden state size

of trajectory LSTM and action LSTM are set as 32 and

128. In intra-granularity interaction encoding, the hidden

units of encoders and decoders are easy to get in Figure.3.

Besides, in inter-granularity interaction network, the hid-

den state size of bi-direction LSTM is set as 32. In order

to avoid exploding gradient in LSTMs, we apply gradient

clipping by 5. We trained our model in two steps (intra-

granularity interaction, inter-granularity interaction). First,
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Table 1. The average displacement error for SBU Dataset

Activity approching kicking punching hugging pushing

Tp 4 6 8 10 4 6 8 10 4 6 8 10 4 6 8 10 4 6 8 10

SP [19] 0.17 0.34 0.61 1.01 0.32 0.57 0.78 1.01 0.31 0.61 0.77 0.91 0.24 0.46 0.70 0.95 0.25 0.61 1.05 1.55

S-LSTM [2] 0.11 0.25 0.52 0.93 0.27 0.49 0.70 0.90 0.21 0.41 0.61 0.79 0.29 0.46 0.65 0.82 0.23 0.51 0.85 1.25

B-LSTM 0.14 0.28 0.51 0.83 0.23 0.39 0.62 0.89 0.19 0.36 0.54 0.73 0.22 0.35 0.49 0.68 0.19 0.33 0.47 0.61

SG-IN 0.12 0.23 0.38 0.57 0.19 0.32 0.51 0.71 0.18 0.35 0.50 0.67 0.19 0.36 0.53 0.69 0.13 0.24 0.37 0.52

O-Intra 0.15 0.31 0.55 0.83 0.38 0.65 0.96 1.31 0.26 0.46 0.67 0.92 0.24 0.47 0.64 0.86 0.17 0.34 0.58 0.89

MG-Concat 0.13 0.25 0.41 0.62 0.27 0.43 0.62 0.82 0.24 0.40 0.56 0.75 0.22 0.34 0.53 0.67 0.16 0.26 0.43 0.78

Ours 0.12 0.17 0.23 0.31 0.20 0.32 0.48 0.63 0.18 0.32 0.46 0.60 0.17 0.32 0.44 0.65 0.14 0.23 0.32 0.47

Table 2. The average displacement error for Choi’s New Dataset

Activity gathering queueing walking together chasing

Tp 4 6 8 10 4 6 8 10 4 6 8 10 4 6 8 10

SP [19] 0.30 0.56 0.89 1.16 0.35 0.67 0.98 1.33 0.27 0.37 0.62 0.87 0.32 0.46 0.68 0.97

S-LSTM [2] 0.27 0.42 0.56 0.77 0.32 0.48 0.65 0.83 0.26 0.35 0.43 0.53 0.28 0.39 0.53 0.67

B-LSTM 0.24 0.36 0.46 0.57 0.27 0.39 0.50 0.64 0.25 0.32 0.40 0.51 0.25 0.33 0.46 0.58

SG-IN 0.23 0.29 0.44 0.51 0.25 0.32 0.46 0.58 0.23 0.28 0.39 0.49 0.25 0.31 0.42 0.53

O-Intra 0.31 0.49 0.65 0.86 0.42 0.65 0.89 1.24 0.51 0.76 0.92 1.16 0.48 0.71 0.91 1.19

MG-Concat 0.21 0.33 0.45 0.71 0.34 0.56 0.73 0.85 0.32 0.43 0.62 0.81 0.33 0.48 0.67 0.83

Ours 0.19 0.28 0.38 0.48 0.23 0.29 0.41 0.53 0.23 0.27 0.36 0.47 0.22 0.26 0.38 0.51

we train the network only with inter-granularity interaction

network with learning rate 0.001, and on this basis, we train

the whole multi-granularity interaction network with learn-

ing rate 0.0005, on a single GPU (TITAN X) using Stochas-

tic Gradient Descent algorithm.

In SBU dataset, we observe 6 frames (0.4sec) and predict

10 frames (0.67sec). In Choi’s new dataset, we sample the

video at 5HZ, and we observe 5 frames (1sec) and predict

10 frames (2secs). Then we analyze short-term and long-

term prediction performance like [11, 12, 15, 19].

4.2. Baselines

To quantify the impact of our contributions, we design

experiments from two aspects. First, to prove the effect of

multi-person interaction and compare the ability of different

structures for modeling interaction, we propose following

single-granularity baselines. Note that the input to the net-

work is the normalized skeleton data without using multi-

granularity data generator.

• Single-person method (SP). We use the state-of-the-

art single-person prediction method in [19] to model

each individual in a group activity without considering

interaction between each other.

• Social LSTM (S-LSTM). This baseline uses Social

LSTM proposed in [2] to model interaction and pre-

dict skeleton data.

• Bi-directional LSTM (B-LSTM). Similar to S-LSTM,

in this baseline, we use bi-directional lstm instead of

social lstm.

• Single-granularity interaction network (SG-IN). This

baseline uses the interaction network illustrated in Fig-

ure.3 to model multi-person interaction.

To illustrate the advantages of multi-granularity and to

explore feasible interaction approach, following baselines

are introduced. Note that input to the network is the out-

puts of multi-granularity data generator, i.e., with multi-

granularity data generator.

• Only intra-granularity interaction (O-Intra). Com-

pared with our method in Figure.2, this baseline

doesn’t use inter-granularity interaction network.

• Multi-granularity concat (MG-Concat). In this base-

line, features in different granularities are concatenated

as input to SG-IN to model whole interaction.

4.3. Evaluation Metric

We report the prediction error with three metrics. First

we define error as follows:

Err =

T∑

1

N∑

1

(yi,t − ˆyi,t)
2 (9)

where N is the number of the individuals in the video, and

T is the length of predicted frames.

Average displacement error: The error over all pre-

dicted skeleton data and the ground truth in a group activ-

ity. In this situation, yi,t is the predicted coordinates of all

skeletal joints for i-th individual at t time step, and ˆyi,t is

the ground truth.

Multi-granularity error: The error of features in differ-

ent granularities including trajectory error and action error.

For trajectory, yi,t is the predicted absolute coordinates of
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Figure 5. Predicted detailed actions and trajectories of each individual in a gathering activity using different methods

center joint. And for action, yi,t is the predicted relative

coordinates of other joints

Skeleton joint error: We compute the error for each

skeleton joint. For each joint, yi,t is the predicted coordi-

nates of this joint.

4.4. SBU Dataset

SBU dataset[33] is an interaction dataset with two sub-

jects. It contains about 300 sequences of 8 class interac-

tions, including approaching, departing, pushing, kicking,

punching, exchanging objects, hugging, and shaking hands.

Except departing, there is significant interaction in the rest

activities. Due to the lack of training data and the difference

between training and testing data, we augment the data by

flipping and rotation (we rotate all individuals as a whole ac-

cording to z-coordinate based on 3D coordinate and project

them to 2D). Besides we run 5-fold training and testing as

suggested in [33] for each activity.

Table 1 illustrates the average displacement error of all

methods. As shown in Table 1, SP method has high er-

ror because it ignores the interaction between individuals.

And in single-granularity experiments, three baselines in-

cluding S-LSTM, B-LSTM and SG-IN all outperform the

SP baseline. More specifically, SG-IN performs best among

the three, which proves SG-IN has greater capacity in mod-

elling interaction. And in multi-granularity experiments,

O-Intra and MG-Concat perform poorly, their error is even

higher than using SP method in some activities. It empha-

sizes the importance of modelling interaction between fea-

tures in different granularities and it is not a feasible way

to concatenate them directly. Compared with all baselines,

our method performs best in long-term prediction in all ac-

tivities. Figure 6 shows an example of the punching activ-

ity using SP, S-LSTM and our method. As can be seen, in

short-term prediction, the predictions among three methods

are almost the same. However, with the increase of pre-

diction time, the difference between the three methods is

becoming more and more obvious, which has demonstrated

the advantages of our method in long-term modelling group

interaction.

t=1 t=3 t=5 t=7 t=9

GT

SP

S-LSTM

Ours

Figure 6. The results of punching activity in SBU dataset using

three different methods

We also evaluate experimental results using multi-

granularity error metric. The first row of Figure 7 shows

an example of the punching activity. It has clearly demon-

strated that our method is robust in predicting long-term in-

teraction. With the increase of prediction time, the error

of method increases slowest compared with other baselines.

Meanwhile, it also shows that SG-IN outperforms S-LSTM

and B-LSTM. Due to that most of skeleton joints are basi-

cally not moving in most of the interactions, we don’t use

the skeleton joint error metric to evaluate the results.

From these experiments, we demonstrate the effect of

multi-person interaction and compare different interaction

methods. Moreover, we validate the advantages of multi-

granularity analysis and its feasible interaction approach.
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Figure 7. Multi-granularity errors including trajectory error and

action error of kicking activity in SBU dataset and approching ac-

tivity in Choi’s New Dataset.

4.5. Choi’s New Dataset

Choi’s New Dataset [9] is composed of 32 video clips

with 6 collective activities: gathering, talking, dismissal,

walking together, chasing and queueing. Similarity, we take

experiments on all activities except talking, dismissal. We

use methods in [6] and [20] to estimate 3-dimension coordi-

nates and augment data by rotation, flipping. We randomly

divide the augmented data into 3 subjects and run 3-fold

training and testing as suggested in [9].

For Choi’s new dataset, the quantitative results of all

baselines and our method are reported in Table 2. Differ-

ent from SBU dataset, interactions in Choi’s new dataset

contain more than two subjects and individual trajectory

changes are obvious, which make this dataset more chal-

lenging. And results show that our proposed method per-

forms best in both short-term and long-term prediction.

That proves that our multi-granularity interaction prediction

method is more competent in group interaction prediction.

It can also be proved from the last row of Figure 7. Figure 5

shows an example of gathering activity with three individ-

uals. To better compare results from different methods, we

display each person’s action and trajectory separately. Us-

ing SP, the actions of all individuals convergence to a mean

value quickly. Although, the results improves a little using

S-LSTM, the actions are still not natural. And our method

performs best and produces natural continuous action and

trajectory.

In order to better compare with single-person method

and other baselines, we track one person in the group inter-

action and compare mean errors of different skeleton joints.

We split the joints into three parts: trunk, upper limbs and

lower limbs. Figure 8 is the result of a test example from

gathering in Choi’s new dataset. It is obvious that the error

of our method is lowest in most of joints, especially in the

key points of movement, such as knees, ankles. Besides, the

overall error of our method is the lowest.
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Figure 8. We track an individual in approching activity, and anal-

yse the overall error and each joint’s error using different methods.

4.6. Video Generation

Since we have predicted each person’s skeleton, we use

the method in [30] to generate videos based on predicted

skeleton sequences. The following are two examples. We

note that paired with our generated skeletons, the output

videos are realistic.

GT

Generated

GT

Generated

Figure 9. The generated video sequence based on predicted skele-

ton data

5. Conclusions

In this paper, we focus on group interaction prediction

and propose a multi-granularity interaction network. We

use intra-granularity interaction sub-network to capture in-

teractions in the same granularity separately. And built on a

bi-directional LSTM, the intgeraction network takes cross-

granularity interaction into account and predicts long-term

dynamic information of each individual in group activities.

Results on two public datasets have validated the effective-

ness and rationality of our method.
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