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Abstract

This paper proposes a novel method, which learns to de-

tect saliency of face images. To be more specific, we obtain

a database of eye tracking over extensive face images, vi-

a conducting an eye tracking experiment. With analysis on

eye tracking database, we verify that the fixations tend to

cluster around facial features, when viewing images with

large faces. For modeling attention on faces and facial

features, the proposed method learns the Gaussian mixture

model (GMM) distribution from the fixations of eye track-

ing data as the top-down features for saliency detection of

face images. Then, in our method, the top-down features

(i.e., face and facial features) upon the the learnt GMM are

linearly combined with the conventional bottom-up features

(i.e., color, intensity, and orientation), for saliency detec-

tion. In the linear combination, we argue that the weight-

s corresponding to top-down feature channels depend on

the face size in images, and the relationship between the

weights and face size is thus investigated via learning from

the training eye tracking data. Finally, experimental re-

sults show that our learning-based method is able to ad-

vance state-of-the-art saliency prediction for face images.

The corresponding database and code are available online:

www.ee.buaa.edu.cn/xumfiles/saliency detection.html.

1. Introduction

According to the study on the human visual system

(HVS) [17], when a person looks at a scene, she/he may pay

much visual attention to a small region (the fovea) around

a point of eye fixation with high resolutions. The other re-

gions, namely the peripheral regions, are captured with lit-

tle attention at low resolutions, such that humans can sur-

vive from the processing of tremendous visual data. Visual

attention therefore is a key to perceive the world around hu-

mans, and it has been widely studied in psychophysics, neu-

rophysiology, and even computer vision societies [1]. With

computation on features of either images or videos, saliency
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detection is an effective way to predict the human visual at-

tention attracted by different regions of a scene. As the out-

put of saliency detection, the saliency map of an image or a

video frame has been widely applied in object detection [3],

object recognition [8], image retargeting [20], image quality

assessment [6], and also image/video compression [25].

The existing methods on saliency detection can be clas-

sified into two categories: bottom-up and top-down meth-

ods. The representative bottom-up method on detecting im-

age saliency is Itti’s model [13], which combines center-

surround features of color, intensity, and orientation togeth-

er. Afterwards, Koch and Ullman [24] extended Itti’s mod-

el by incorporating the proto-object inference in the salien-

cy map. Most recently, there has been extensive advanced

work (e.g., [5, 7, 10, 11, 26]) on bottom-up saliency detec-

tion.

In fact, top-down visual features play a crucial role in

determining the saliency of a scene. Hence, the top-down

saliency detection methods have been broadly studied in

[4, 22, 28]. Cerf et al. [4] found out that face is an impor-

tant top-down feature to attract visual attention, as in their

experiments faces were fixed on in 88.9% within first two

fixations (7 subjects viewing 150 face images). Therefore,

they proposed to combine Viola & Jones (VJ) face detec-

tor [23] with Itti’s model [13] for improving the saliency

detection accuracy over face images. Since it is more rea-

sonable to learn how important face is for attracting visual

attention, several state-of-the-art methods [12, 15, 27] have

been proposed to apply machine learning algorithms in top-

down saliency detection of Cerf’s work [4]. For example,

Zhao [27] utilized the fixations on face images to quantify

the weight of the face channel on attracting visual attention.

Most recently, Jiang et al. [14] has extended Cerf’s work [4]

to saliency detection in a scene with multiple faces, i.e.,

saliency detection in a crowd. In their work, multiple kernel

learning (MKL) is applied to learn a more robust discrimi-

nation between salient and non-salient regions in multi-face

scenes, for detecting saliency in a crowd.

Although the existing work has taken into account one

or more faces on saliency detection, it does not explore the

distribution of eye fixations within faces. As shown in Fig-
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(a) Fixation Heatmap (b) Fixations on face (c) Isotropic GM (d) Learnt GMM
Figure 1. Examples for saliency prediction vs fixations in face region, selected from [15]. The red dots represent the fixations recorded by the eye tracker.

Note that both saliency and fixations belonging to face regions are displayed.

ure 1, a simple isotropic Gaussian model (GM) assumption

for saliency distribution in face [4, 27] has the limitation on

modeling visual attention attracted by faces. As can be seen

in this figure, for images with small faces, non-isotropic G-

M is more accurate in modeling saliency distribution inside

face. For images with large faces, a single GM is not ef-

fective, as the fixations tend to cluster around the facial fea-

tures (e.g., eyes). Accordingly, saliency distribution, in the

form of Gaussian mixture model (GMM), need to be learnt

from eye fixations on face images. Figure 1-(d) shows that

the saliency with the learnt GMM distribution is more con-

sistent with the ground truth visual attention. Specifically,

one non-isotropic Gaussian component should be utilized

for images with small faces, whereas more than one com-

ponents can be applied for images with large faces. This

paper thereby proposes a learning-based saliency detection

method, which learns various GMMs and the corresponding

weights across different face sizes1, for predicting visual at-

tention on free-viewing face images.

The main contributions of this paper are listed as follows:

• We establish a large eye tracking database for visual

attention analysis on face images, in which 510 im-

ages with faces at different sizes were free-viewed by

24 subjects. The ground truth fixations on viewing al-

l 510 images are available2. The analytical results on

our database reveal that humans tend to be attracted by

faces. Specifically, when the face sizes are large, the

majority of visual attention on faces is drawn by fa-

cial features. Such results motivate our learning-based

method on saliency detection of face images.

• We model human visual attention attended to face re-

gions using GMM distribution, which is learnt from

eye fixations of training images in our database. Note

that the visual attention model of this paper is for free-

view scenario without any specific task. Specifically,

we utilize Expectation Maximization (EM) algorith-

m [18] to learn GMM distribution of saliency in face

region from the ground truth fixations. Based on the

learnt GMM, two feature channels (on face and facial

1In this paper, face size means the proportion of pixel number of the

face region to that of whole image.
2www.ee.buaa.edu.cn/xumfiles/saliency detection.html.

features) are integrated as the top-down information in

saliency detection. For the integration, we argue that

weights of the proposed top-down feature channels de-

pend on face size, and they can also be learnt from the

training face images.

2. Database and analysis

Face, as the top-down cue [4], is of great importance to

draw visual attention over face images. It is further intuitive

that the facial features, such as eyes, may attract a large

amount of visual attention. Thus, this section concentrates

on figuring out how significant the face and facial features

are to attract visual attention. Section 2.1 discusses the eye

tracking database we established for the statistical analy-

sis. In Section 2.2, a method on automatically extracting

the face and facial features is presented, as the preliminary

for our statistical analysis of visual attention. Section 2.3

analyzes the importance of face and facial features to visu-

al attention, via investigating the data of our eye tracking

database.

2.1. Database of eye tracking on face images

For the analysis of visual attention on face images,

we conducted the eye tracking experiment to establish a

database of eye tracking on various face images. In our

database, 510 face images were randomly selected from

Google with the following criteria. (1) The original reso-

lution of all images is 1920× 1080. (2) All images contain

only one frontal face, in which the turning degree of head

is less than 45◦. (3) The sizes of faces in 510 images vary

from 0.0016 to 0.3018. Figure 2 shows the various sizes

of faces across those 510 images. Note that the images in

Figure 2 are sorted in accordance with the ascending order

of their face sizes.

There were a total of 24 subjects (14 male and 10 female,

aging from 19 to 35) served as observers in the eye tracking

experiment. All subjects have either corrected or uncorrect-

ed normal eyesight. Note that two among 24 subjects were

experts, who worked on the research field of saliency detec-

tion. The other 22 subjects did not have any background in

saliency detection, and they were native to the purpose of

the eye tracking experiment.
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Figure 2. The distribution of face sizes in all 510 images, where the im-

ages are sorted by increased face sizes.

In the eye tracking experiment, a Tobii TX300 eye track-

er, integrated with a monitor of 23-inch LCD displaying

screen, was used to record the eye movement at a sample

rate of 300 Hz. The resolution of the monitor was set to

be 1920× 1080, the same as the resolution of images. All

subjects were seated on an adjustable chair at a distance of

60 cm from the monitor of the eye tracker. Therefore, the

visual angle of the stimuli was about 26.8◦ × 46.0◦. Be-

fore the experiment, subjects were instructed to perform the

9-point calibration for the eye tracker. During the experi-

ment, each image was presented for 4 seconds, followed by

a 2-second black image for a drift correction. All subjects

were asked to free-view each face image. To avoid eye fa-

tigue, the images were equally divided into 3 groups, each

of which contained 170 images. After viewing one group of

images, subjects had a 5 minute rest, and then were required

to recalibrate the eye tracker before viewing the next group

of images. Note that the displaying orders of both groups

and images were random to further reduce the influence of

eye fatigue on eye tracking results.

After the experiment, 151,511 fixations were collected.

Averagely, each image had about 300 fixations. All the im-

ages, eye tracking data, and corresponding Matlab code are

available on the Web to provide the ground truth data for

saliency detection research.

2.2. Automatic detection on face and facial features

For analyzing the eye fixations on different parts of face,

the regions for face and facial features have to be extracted

in a face image. Generally speaking, our extraction tech-

nique is based on a real-time face alignment method [21].

To be more specific, several key feature points obeying the

point distribution model (PDM) are located in an image us-

ing the method in [21], which combines the local detection

(texture information) and global optimization (facial struc-

ture) together. Here, 66 key feature points, produced by the

PDM, are connected to precisely identify the contours and

regions of face and facial features.

2.3. Analysis of visual attention on face and facial
features

Now, we move to analyzing visual attention on face and

facial features, based on the statistics of our eye tracking

database. Note that all 510 images with 151,511 fixation-

s are used for the statistical analysis. In order to quanti-

Figure 3. Proportions of eye fixations and pixel numbers for the regions

of face and background.

fy visual attention on face, we plot in Figure 3 the per-

centages of fixations over all 510 images falling into face

and background, respectively. We also plot in Figure 3 the

proportions of pixels belonging to face and background, re-

spectively. Note that faces were extracted using the method

mentioned above. From this figure, we can see that although

faces averagely take up 5.7% of whole images, they attract

62.3% of eye fixations. This verifies that the visual attention

on face is significantly more than that on background.

Beyond, there is an insight that visual attention on face

increases along with the enlarged face size in the image.

To validate such an insight, we show in Figure 4 the pro-

portions of fixations on faces versus face sizes, for all 510

images in our database. As can be seen from this figure,

all points for proportion of fixations on face are above the

random hit curve. Here, the random hit curve means the

probability that a fixation randomly falls into the region of

face. Again, this implies that face is with rather large salien-

cy in an image. Besides, one may see from Figure 4 that the

increase of fixation fitting curve is much faster than that of

random hit, alongside the enlarged face size. Therefore, it

can be concluded that much more attention is paid to face

once the face is viewed at a large size.

Next, we discuss the statistical analysis on the eye fix-

ations falling into different regions of face, to investigate

the visual saliency of facial features, i.e., left eye, right eye,

nose, and mouth. It is intuitive that the facial features are of

great significance to visual attention, when the image is dis-

played with a close up view of face. Thus, it is interesting

to find out the fixation proportions of facial features at var-

ious face sizes. Figure 5 shows the proportions of fixations

on each facial feature versus face sizes, over all 510 im-

ages. From this figure, we can find out that more attention

is drawn in all facial features than the random hit. Besides,

it can be also observed that the fixation fitting curves for

facial features, especially eyes, increase more sharply than

the random hit, when face approaches large size. However,

there is no proportion growth of fixations on nose region.

It is probably because the visual attention shifts from face

center (i.e., nose) to other facial features, such as eyes. In

general, we can draw the conclusion that facial features of

eyes and mouth are more salient, when the face has a large

size in the image.

Together, Figures 3, 4, and 5 suggest that face and fa-

cial features have potential on drawing the majority of at-
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Figure 4. Statistical results on fixations belonging to face at different sizes

for all 510 images. Note that the values of vertical and horizontal axes are

proportions of fixations and size belonging to face within an image. Here,

each point stands for the proportion of fixations belonging to face at one

image. Then, the red line is the linear fitting curve on those points. Besides,

the green line of random hit indicates the proportion for fixations randomly

falling into the face region. Obviously, it is the same as the proportion of

face region to the whole image.

tention, and that the visual attention on face and facial fea-

tures (except the nose) rises along with the enlarged face

size. Therefore, both face and facial features need to be tak-

en into consideration for saliency detection, and the weights

corresponding to these two channels should be relevant to

face sizes. In the next section, the proposed method is to

be introduced, which adds the channels of face and facial

features to the conventional Itti’s model [13].

3. The proposed method

This section mainly works on the proposed method for

modeling saliency on face and facial features. In Section

3.1, we discuss preprocessing on the fixations for learning

GMM. Next, GMM is learnt from the preprocessed training

fixations, to be discussed in Section 3.2. Then, we present

in Section 3.3 the saliency detection method based on the

learnt GMM. Finally, in Section 3.4 we propose the way of

obtaining optimal weights learnt from our database.

3.1. Preprocessing

For learning GMM, preprocessing has to be conducted

to calibrate and normalize the eye fixations. Specifically, to

avoid the uncertainty of face positions in different images,

all fixations belonging to face region have to be calibrated

in the following way.

As seen from Figure 6, Point A, the upper left point of

PDM, is set to be the original point of the fixation coordi-

nate in the face. Then, the coordinates (x, y) of fixations

are calibrated to be (x∗, y∗) via translation:
{

x∗ = x− xA

y∗ = y − yA,
(1)

where (xA, yA) is the coordinate for Point A.

Next, to deal with varying sizes of faces and facial fea-

tures, fixations need to be normalized based on the width

of face. To be more specific, the Euclidean distance l be-

tween Points A and B (as shown in Figure 6) is calculated

Figure 6. Coordinate calibration and normalization on 66-point PDM.

to be the face width, as the unit length for fixation coordi-

nates. As such, the normalized coordinates (x′, y′) can be

calculated as follows,
⎧

⎪

⎨

⎪

⎩

x′ =
x∗

l

y′ =
y∗

l
.

(2)

Finally, the positions for eye fixations attended to faces can

be represented in a uniformed coordinate system. This way,

all fixations in faces from different images can be processed

together for learning GMM.

3.2. Learning GMM

As aforementioned, the facial features attract a large

amount of visual attention, once the face is of large size.

Therefore, we can use the GMM to model the facial fea-

ture channel, which has large-valued saliency within facial

features. Assuming that x = (x′, y′) is the calibrated and

normalized coordinate of point (x, y) within a face, the G-

MM can be written as a linear superposition of Gaussian

components in the form:

K
∑

k=1

πkNk(µk,Σk), (3)

and

Nk(x) = exp {−
1

2
(x− µk)

T
Σ

−1

k
(x − µk)}, (4)

where πk , µk, Σk are the mixing proportion, mean, and

variance of the k-th Gaussian component. In (3), K is the

total number of Gaussian components.

In fact, the GMM can be learnt from fixations of eye

tracking data. Here, the EM algorithm [18] is applied to

learn the GMM on the calibrated and normalized fixations

falling into face regions. For the face channel, the similar

way is utilized to learn GMM distribution of face, where on-

ly one Gaussian component, corresponding to face, is con-

sidered. For the learnt results of GMMs on both face and

facial feature channels, refer to Section 4.

3.3. Saliency detection

Given the learnt GMM, the top-down conspicuity maps

on face channel (F) and facial feature channel (G), denot-

ed by C(F) and C(G), can be worked out on the basis of

(3) and (4). However, for saliency detection the mean val-

ues µk in (3) and (4) are replaced by the central points of
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(a) Right eye (b) Left eye (c) Nose (d) Mouth
Figure 5. Fixations versus size of each facial feature for all 510 images. Note that the values of vertical axis are portions of fixations falling into each facial

feature, whereas the values of horizontal axis stand for portions of face size in an image. Here, each point means the proportion of fixations belonging to the

corresponding facial feature at one image. Then, the red line is the linear fitting curve on those points. Besides, the green line of random hit indicates that

proportion for fixations randomly fall into the facial feature region, such that it is the same as the proportion of facial feature size to the whole image size.

Figure 7. Procedure of our learning-based saliency detection method.

facial features, when the number of Gaussian components

is 4. This is because there may exist the deviation between

the statistical centroids of Gaussian components and the de-

tected central points of facial features (i.e., eyes, nose, and

mouth). Note that the face detection method is mentioned

in Section 2.2.

Next, similar to [4], the top-down conspicuity maps are

integrated with the bottom-up conspicuity maps of color

(C), intensity (I), and orientation (O). As a result, the final

saliency map M can be generated by

M = wCC(C) + wIC(I) + wOC(O) + wF C(F) + wGC(G),
(5)

where C(·) is the normalized conspicuity map on each fea-

ture channel. C(C), C(I), and C(O) can be obtained by the

method in [24], whereas C(F) and C(G) need to be yield-

ed upon the learnt GMM as aforementioned. In addition,

w = [wC , wI , wO, wF , wG]
T are weights corresponding to

feature channels. They can be computed by least square fit-

ting. For more details on computing these weights, refer to

the next subsection. Figure 7 shows an example of overall

procedure on our learning-based saliency detection method.

3.4. Learning optimal weights

Now, the remaining task for saliency detection with (5) is

to determine weights w = [wC , wI , wO, wF ,wG]
T for each

conspicuity map. In this subsection, we focus on the com-

putation on learning optimal weights w from the training

data of our eye tracking database. Let mh be the vectorized

human fixation map of a training image. Given mh, we

follow the way of [27] to obtain weights w for each train-

ing image, by solving the following ℓ2-norm optimization

formulation:

argmin
w

‖Vw−mh‖2, s.t. ||w||1 = 1,w ≥ 0, (6)

where V is a matrix with each column denoting the vector-

ized conspicuity maps of C, I, O F, and G. Note that for

each single image, (6) is solved to obtain an optimal weight

w corresponding to this image. To solve (6), the disciplined

convex programming approach [9] is utilized in our method.

Then, the optimal weights can be obtained for each single

training image. Note that the weight optimization in our

method is different from that of [27] which works on the

weights by fitting all training images.

Next, given the learnt weights for each individual im-

age, we concentrates on working out the optimal weights of

saliency detection, in light of different weights w of vari-

ous trailing images. Specifically, we find that the optimal

weights are dependent on face sizes. This is also consistent

with the observation of Section 2.3, in which both face and

facial features tend to attract much more attention when face

is with large size. Thereby, it is worth figuring out the re-

lationships between wF and face size, and between wG and

face size. Here, the polynomial fitting is applied to model

such relationship. Consequently, assuming that s is the face

size, wF and wG can be expressed as follows,

wF (s) =

I
∑

i=0

ais
i, (7)

and

wG(s) =
I

∑

i=0

bis
i, (8)

where {ai}Ii=1
and {bi}Ii=1

are the parameters of quadratic

functions to fit for wF and wG, respectively. As analyzed

in Section 4, I = 4 is capable of producing the precise

fitting on the pairs of weight and face size. Therefore, the
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fourth order polynomial fitting is applied in this paper, and

the values for {ai}4i=1
and {bi}4i=1

are to be discussed in

Section 4.

After achieving wF and wG, other weights wC , wI , and

wO are averaged over all training images to acquire the

ratios between them. Then, once wF and wG have been

calculated by (7) and (8), wC , wI , and wO can be deter-

mined according to the averaged ratios, with the constraint

on ||w||1 = 1. Values for the learnt parameters and ratios

to yield weights w are to be reported in Section 4. Finally,

the saliency map of a face image can be worked out via (5)

with the learnt optimal weights.

4. Experimental results

In this section, experimental results are presented to e-

valuate the saliency detection performance of our method.

In Section 4.1, we provide the training results on the GMMs

and weights, which were learnt from ground truth fixations.

In Section 4.2, we show the testing results of our method,

in comparison with other 8 state-of-the-art methods: Itti et

al. [13], Cerf et al. [4], Zhao et al. [27], Judd et al. [15],

Duan et al. [5], Hou et al. [11], Erdem et al. [7], and Zhang

et al. [26]. In the experiments, the area under ROC curve

(AUC), normalized scanpath saliency (NSS) [19], and lin-

ear correlation coefficient (CC) [1] on all test images, were

compared for evaluating the accuracy of saliency detection.

In addition, the saliency maps of several test images are also

provided for the comparison.

4.1. Training Result

In our experiment, we divided our eye tracking database

of 510 images (as presented in Section 2.1) into training

and test sets. For the training set, 360 images with 106,067

fixations were selected. For the test set, the remaining 150

images were chosen, which have 45,444 fixations. Note that

there is no overlap between the training and test sets.

Learnt GMMs. In our experiments, we used the method

of Section 3.2 to learn the GMMs for both face and facial

feature channels of saliency detection, from the ground truth

fixations of all 360 training images. For the face channel,

the GMM was learnt with only one Gaussian component.

The mean of the Gaussian component is simply assumed to

be the position of nose tip point in each image (detected by

the face alignment method [21]), as it can be seen as the

center of face. Then, the covariance matrix for the Gaus-

sian component was learnt from training data, and its learnt

values are

Σ1 =

(

0.024 0
0 0.039

)

. (9)

As can be seen above, there exists the anisotropy in learnt

GMMs, rather than the assumption on isotropy of Gaussian

distribution in [4].

For the facial feature channel, the number of Gaussian

components has to be confirmed first. To determine the

number of Gaussian components, we plot in Figure 8 the

distributions of the learnt GMMs, with different numbers

of Gaussian components. From this figure, we can see that

the contours for GMMs with more than three components

are similar. Accordingly, four-component GMM is utilized

in our saliency detection method. This is also consistent

with our analysis in Section 2.3 that visual attention tend-

s to cluster around four facial features (i.e., left and right

eyes, nose, and mouth). Hence, we assume that means of

Gaussian components are the positions of the centers of

facial features. The parameters of the learnt GMM in our

learning-based method are tabulated in Table 1.

Learnt weights. Next, we obtained the optimal weight

of each channel for the conspicuity maps of each individual

image, using the optimization method of Section 3.4. As

aforementioned, the optimal weights wF and wG for face

and facial feature channels depend on the face size. Fig-

ures 9-(a) and -(b) plot the pairs of the face size and the

corresponding optimal weight. Also, the curves on fitting

those pairs of weight and face size are shown in Figures 9-

(a) and -(b). We further show in Figure 9-(c) the Pearson’s

correlation coefficient (PCC) [16] on evaluation the fitting

performance. It can be seen from this figure that PCC is

nearly convergent for both face and facial feature channel-

s, once the the order of polynomial fitting is greater than 3.

In our experiments, the fourth order polynomial fitting were

therefore adopted. Then, the values for fitting coefficients

a5, a4, a3, a2, a1 and a0 of (7) are 6345.8, −2931.2, 491.0,

−36.4, and 1.1, and values for b5, b4, b3, b2, b1 and b0 of (8)

are −6474.3, 3146.4, −545.1, 38.6, and −0.1. Beyond, the

ratio for wC : wI : wO is 8 : 3 : 30, as the averaged opti-

mal weights of color, intensity, and orientation channels are

0.016, 0.006, and 0.06. Finally, the saliency maps of all test

images can be worked out by (5), with the aforementioned

GMMs and optimal weights.

4.2. Testing Results

AUC. In order to quantify the accuracy of saliency de-

tection, we tabulate in Table 2 the AUC results of our and

other 8 methods. In this table, the AUC values are averaged

over all 150 test images. Here, the results with and with-

out center bias (CB) are provided. For fair comparison, all

methods used the same CB filter [5]. As seen from Table 2,

the methods with top-down features, i.e., Cerf et al. [4], Jud-

d et al. [15], Zhao et al. [27] and ours, perform better than

the bottom-up methods. This is because face, as a high-level

feature, is crucial for improving saliency detection accura-

cy. Furthermore, our method outperforms other 8 state-of-

the-art top-down and bottom-up methods in terms of AUC.

Especially, there is 0.02 AUC improvement over Zhao et

al. [27], which also integrates the the top-down face chan-
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Table 1. The parameters of the learnt GMM
k=1 k=2 k=3 k=4

features right eye left eye nose mouth

πk 0.192 0.306 0.222 0.280

Σk

(

0.007 0.001

0.001 0.009

) (

0.013 −0.002

−0.002 0.012

) (

0.035 0.003

0.003 0.032

) (

0.011 −0.001

−0.001 0.033

)
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Figure 8. Contours of GMMs with various numbers of Gaussian components, learnt in our experiments.
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all 360 test images, and the red lines are the fourth order polynomial curves on fitting all the blue dots. In (c), the orders of polynomial fitting curves versus

PCC of fitting are plotted.
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Figure 10. Average ROC curves for all 150 test face images, by our and

other state-of-the-art methods. Note that all methods here are without any

CB.

nel and learns its corresponding weight from training data.

The possible reason for our method outperforming Zhao et

al. [27] is that (1) the GMM distribution of saliency of face

region is learnt from training data and then incorporated in

our method, and that (2) the weights of top-down channels

are learnt regarding face size. Moreover, we show in Figure

10 the ROC curves of saliency detection by our and other 8

state-of-the-art methods. Clearly, our method is superior to

other methods.

NSS and CC. For a more comprehensive evaluation [2],

we move to the comparison of NSS and CC metrics for

saliency detection on all test images. NSS is computed to

imply the relevance between fixation locations and saliency

predictions, and CC measures the strength of a linear re-

lationship between human fixation map and saliency map.

The averaged NSS and CC results (with their standard devi-

ations) of saliency detection by our and other state-of-the-

art methods are also tabulated in Table 2. Note that meth-

ods with a larger NSS value or a CC value closer to +1/-1,

can better predict the human fixations. Therefore, it can

be seen from this table that our method performs signifi-

cantly better than other state-of-the-art methods, in terms of

both NSS and CC metrics. Specifically, there are at least

1.02 improvement of NSS and 0.17 enhancement of CC in

our method without CB modeling. For saliency detection

with CB modeling, similar NSS can CC improvement can

be found in our method.

Saliency map. Figure 11 shows the saliency maps of 10

randomly selected test images, detected by eye tracking da-

ta, our, and other 8 methods. From this figure, we can see

that compared to all other methods, our method is able to

well locate the saliency regions, much closer to the maps of

human fixations. To be more specific, for images with smal-

l face (i.e., from first to fourth rows), the saliency maps by

our method are much more similar to those of human fixa-

tions than other methods, as the learnt non-isotropic Gaus-

sian distribution of saliency in face region is adopted. For

images with large face (i.e., from fifth to tenth rows), our

method yields the appropriate maps, which well reflect the

saliency distribution of regions of face and facial features

using the learnt GMM. Moreover, our method is adaptive to

predict human attention on faces with different sizes, since

the optimal wights for face and facial feature channels in

our method can be adjusted according to face size.
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Figure 11. Saliency maps of several face images, produced by our and other state-of-the-art methods as well as by human fixations. Note that these images

(from top to bottom) are sorted in the ascending order of face sizes. Also, note that the saliency maps here are without any CB.

Table 2. The comparison of our and other methods with and without CB model, for mean values (standard deviation) of AUC, NSS, and CC
Metrics CB Model Our method Itti [13] Cerf [4] Judd [15] Zhao [27] Duan [5] Hou [11] Erdem [7] Zhang [26]

AUC
Without CB 0.90(0.04) 0.78(0.10) 0.86(0.06) 0.77(0.10) 0.88(0.05) 0.79(0.09) 0.70(0.16) 0.84(0.06) 0.82(0.11)

With CB 0.90(0.04) 0.82(0.07) 0.87(0.05) 0.86(0.06) 0.88(0.04) 0.85(0.06) 0.79(0.10) 0.84(0.06) 0.86(0.07)

NSS
Without CB 3.38(0.78) 1.08(0.54) 1.68(0.47) 1.00(0.50) 2.36(0.73) 1.17(0.60) 0.71(0.74) 1.64(0.87) 1.38(0.73)

With CB 3.41(0.78) 1.33(0.55) 1.82(0.50) 1.40(0.32) 2.42(0.71) 1.56(0.59) 1.09(0.73) 1.60(0.93) 1.74(0.71)

CC
Without CB 0.80(0.08) 0.29(0.13) 0.46(0.09) 0.28(0.13) 0.63(0.10) 0.29(0.14) 0.19(0.20) 0.46(0.21) 0.37(0.18)

With CB 0.82(0.07) 0.39(0.13) 0.53(0.10) 0.42(0.07) 0.68(0.09) 0.41(0.13) 0.32(0.19) 0.47(0.23) 0.49(0.17)

5. Conclusions

For saliency detection on face images, we have proposed

in this paper a learning-based method to take into account

the top-down channels of face and facial features. To facili-

tate saliency analysis of face images, we first established an

eye tracking database including 510 face images. Working

on our database, GMMs were learnt from the training fix-

ations to model the top-down saliency distributions within

face. Combining our GMM-based top-down features (i.e.,

face and facial feature) with the conventional bottom-up

features (i.e., color, intensity, and orientation), our saliency

detection method can accurately predict human visual atten-

tion on face images. Moreover, weights corresponding to

top-down features were optimized by learning the relation-

ship between the weights and face size, since the amount of

visual attention on face is relevant to the face size. Finally,

experimental results validated that our method significantly

advanced saliency detection on face images, as our method

drastically outperformed other 8 state-of-the-art methods, in

terms of AUC, CC, and NSS.
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ing human gaze using low-level saliency combined

with face detection. In NIPS, pages 241–248, 2008.

1, 2, 5, 6, 8

[5] L. Duan, C. Wu, J. Miao, L. Qing, and Y. Fu. Visual

saliency detection by spatially weighted dissimilarity.

In CVPR, pages 473–480. IEEE, 2011. 1, 6, 8

[6] U. Engelke, H. Kaprykowsky, H. Zepernick, and

P. Ndjiki-Nya. Visual attention in quality assessmen-

t. Signal Processing Magazine, IEEE, 28(6):50–59,

2011. 1

[7] E. Erdem and A. Erdem. Visual saliency estimation

by nonlinearly integrating features using region co-

variances. Journal of vision, 13(4):11, 2013. 1, 6,

8

[8] D. Gao, S. Han, and N. Vasconcelos. Discriminan-

t saliency, the detection of suspicious coincidences,

and applications to visual recognition. Pattern Anal-

ysis and Machine Intelligence, IEEE Transactions on,

31(6):989–1005, 2009. 1

[9] M. Grant and S. Boyd. Graph implementations for

nonsmooth convex programs. In Recent Advances in

Learning and Control, Lecture Notes in Control and

Information Sciences, pages 95–110. 2008. 5

[10] J. Harel, C. Koch, and P. Perona. Graph-based visual

saliency. In NIPS, pages 545–552, 2006. 1

[11] X. Hou, J. Harel, and C. Koch. Image signature:

Highlighting sparse salient regions. Pattern Analy-

sis and Machine Intelligence, IEEE Transactions on,

34(1):194–201, 2012. 1, 6, 8

[12] Y. Hua, Z. Zhao, H. Tian, X. Guo, and A. Cai. A

probabilistic saliency model with memory-guided top-

down cues for free-viewing. In ICME, pages 1–6,

2013. 1

[13] L. Itti, C. Koch, and E. Niebur. A model of saliency-

based visual attention for rapid scene analysis. Pat-

tern Analysis and Machine Intelligence, IEEE Trans-

actions on, 20(11):1254–1259, 1998. 1, 4, 6, 8

[14] M. Jiang, J. Xu, and Q. Zhao. Saliency in crowd. In

ECCV, 2014. 1

[15] T. Judd, K. Ehinger, F. Durand, and A. Torralba.

Learning to predict where humans look. In ICCV,

pages 2106–2113, 2009. 1, 2, 6, 8

[16] J. Lee Rodgers and W. A. Nicewander. Thirteen ways

to look at the correlation coefficient. The American

Statistician, 42(1):59–66, 1988. 6

[17] E. Matin. Saccadic suppression: a review and an anal-

ysis. Psychological bulletin, 81(12):899, 1974. 1

[18] T. K. Moon. The expectation-maximization algorith-

m. Signal processing magazine, IEEE, 13(6):47–60,

1996. 2, 4

[19] R. J. Peters, A. Iyer, L. Itti, and C. Koch. Components

of bottom-up gaze allocation in natural images. Vision

research, 45(18):2397–2416, 2005. 6

[20] M. Rubinstein, D. Gutierrez, O. Sorkine, and

A. Shamir. A comparative study of image retargeting.

In ACM transactions on graphics (TOG), volume 29,

page 160. ACM, 2010. 1

[21] J. Saragihand, S. S. Lucey, and J. Cohn. Face align-

ment through subspace constrained mean-shifts. In

ICCV, pages 1034–1041, 2009. 3, 6

[22] A. Torralba. Modeling global scene factors in atten-

tion. JOSA A, 20(7):1407–1418, 2003. 1

[23] P. Viola and M. Jones. Rapid object detection using

a boosted cascade of simple features. In ICCV, vol-

ume 1, pages I–511, 2001. 1

[24] D. Walther and C. Koch. Modeling attention to salien-

t proto-objects. Neural networks, 19(9):1395–1407,

2006. 1, 5

[25] M. Xu, X. Deng, S. Li, and Z. Wang. Region-of-

interest based conversational hevc coding with hier-

archical perception model of face. Selected Topics

on Signal Processing, IEEE Journal of, 8(3):475–489,

2014. 1

[26] J. Zhang and S. Sclaroff. Saliency detection: a boolean

map approach. In ICCV, pages 153–160, 2013. 1, 6, 8

[27] Q. Zhao and C. Koch. Learning a saliency map using

fixated locations in natural scenes. Journal of vision,

11(3):9, 2011. 1, 2, 5, 6, 7, 8

[28] G. Zhu, Q. Wang, and Y. Yuan. Tag-saliency: Combin-

ing bottom-up and top-down information for saliency

detection. Computer Vision and Image Understand-

ing, 118:40–49, 2014. 1

3915


