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Abstract

LLMs confront inherent limitations in terms001
of its knowledge, memory, and action. The002
retrieval augmentation stands as a vital mecha-003
nism to address these limitations, which brings004
in useful information from external sources to005
augment the LLM. However, existing retrieval006
methods encounter two pressing issues. On007
one hand, the general retrievers are not prop-008
erly optimized for retrieval augmentation hence009
exhibit limited effectiveness; on the other hand,010
the task-specific retrievers excel in the targeted011
retrieval augmentation scenario, while lack the012
versatility to handle diverse scenarios. In this013
work, we propose LLM-Embedder for the014
unified support of diverse retrieval augmen-015
tation scenarios. Our method presents three016
technical contributions. Firstly, we introduce017
a new reward formulation, namely rank-aware018
reward. It exploits the ranking position of the019
desired output among N sampled outputs from020
the LLM, which leads to fine-grained and ro-021
bust computation of reward from the LLM’s022
feedback. Secondly, we design a novel distil-023
lation objective, called graded distillation. It024
incorporates both the absolute value and the025
relative order of the reward for more sufficient026
utilization of the LLM’s feedback. Thirdly, we027
systematically optimize the multi-task learning,028
which effectively unifies the multiple retrieval029
functionalities into one model. In our exper-030
iment, LLM-Embedder notably improves the031
LLM’s performances in various downstream032
tasks, and outperforms both general and task-033
specific retrievers with a substantial advantage.034

1 Introduction035

Large language models (LLMs) present a unified036

foundation to support general artificial intelligence037

applications (Brown et al., 2020a; Chowdhery et al.,038

2022; Touvron et al., 2023). Despite the substan-039

tial improvement over the last-gen methods, LLMs040

still face many severe problems, such as halluci-041

nation (Ji et al., 2023; Bang et al., 2023), limited042
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Figure 1: LLM-Embedder presents a unified embedding
model for the diverse retrieval augmentation scenarios.

memory (Bai et al., 2023b; An et al., 2023), mis- 043

following of instructions (Ouyang et al., 2022; Bai 044

et al., 2022). Many of the challenges can be traced 045

back to the inherent limitations of LLMs in terms 046

of knowledge, memory, and action. Specifically, 047

LLMs cannot internalize the vast and constantly 048

changed world knowledge due to their finite and 049

static parameters. LLMs are incapable of memo- 050

rizing and utilizing long-term information because 051

of the limited context length. Finally, LLMs re- 052

quire manually in-context examples and tools to 053

accomplish complex real-world tasks. 054

Retrieval augmentation stands as a vital mech- 055

anism to address these inherent limitations of the 056

LLM. It brings in useful information from exter- 057

nal sources, such as knowledge, memory pieces, 058

in-context examples, and tools, which substantially 059

enhances the LLM for the generation of desired 060

outputs (Gao et al., 2023). The embedding model 061

(a.k.a. embedder) is a critical part of retrieval aug- 062

mentation, which bridges the LLM’s information 063

needs with external sources. The existing embed- 064

ding models can be briefly partitioned into two 065

categories. One is the general-purpose embedders, 066

which aim to be universally applicable for various 067

retrieval tasks (Izacard et al., 2021; Wang et al., 068

2022b; Xiao and Liu, 2023). Despite their popu- 069
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larity, they are not properly optimized for retrieval070

augmentation, and are thus prone to an inferior ef-071

fectiveness in the corresponding task. The other072

one is the task-specific embedders, which are tai-073

lored for one specific retrieval augmentation sce-074

nario, e.g., knowledge retrieval (Yu et al., 2023)075

and example retrieval (Wang et al., 2023a). How-076

ever, these methods lack versatility across different077

scenarios. As the LLMs require assistance from078

diverse external sources in solving real-world prob-079

lems, it becomes imperative to develop an effective080

and versatile embedding model to support the di-081

verse retrieval augmentation needs.082

In this paper, we present LLM-Embedder, a uni-083

fied embedding model to support a broad range of084

retrieval augmentation scenarios, including knowl-085

edge retrieval, memory retrieval, example retrieval,086

and tool retrieval. Training such a versatile embed-087

ding model presents multiple challenges in terms of088

1) how to learn from the LLM, and 2) how to harmo-089

nize different retrieval tasks. In LLM-Embedder,090

the following technical contributions are presented.091

• Reward Formulation. For each retrieval aug-092

mentation scenario, the embedder is learned from093

the LLM’s feedback, i.e. the retrieval candidate094

needs to be promoted if it contributes to the gener-095

ation of the desired output. Conventional methods096

rely on the generation likelihood (Shi et al., 2023;097

Izacard et al., 2023). However, the absolute gen-098

eration likelihood tends to fluctuate dramatically,099

which may lead to inaccurate estimation of the100

contribution of each retrieval candidate. In LLM-101

Embedder, we propose a new reward formulation102

called rank-aware reward. Essentially, a retrieval103

candidate will receive a higher reward if it can bet-104

ter promote the desired output’s ranking among N105

sampled outputs from the LLM. Thus, it is free106

from dealing with the absolute generation likeli-107

hood, which facilitates a fine-grained and more108

robust computation of the reward.109

• Distillation Objective. Based on the LLM’s110

reward, the embedding model is learned by knowl-111

edge distillation. Typically, this is accomplished112

by minimizing the KL-divergence between the re-113

ward distributions and the relevance distribution114

estimated by the embedder (Shi et al., 2023; Yu115

et al., 2023). In many cases, the reward distribution116

are either polarized (extremely high rewards for117

one candidate while low rewards for others) or flat118

(even rewards for every candidate), which makes119

it difficult to distill fine-grained knowledge with120

KL-Divergence. To address this problem, we de- 121

sign the graded distillation. It integrates both the 122

absolute values of rewards and their relative orders 123

for knowledge distillation, which leads to a more 124

sufficient exploitation of the LLM’s feedback. 125

•Multi-task Learning. LLM-Embedder is trained 126

to support diverse retrieval augmentation scenarios 127

through multi-task learning. However, different 128

scenarios need to capture distinct semantic rela- 129

tionships, hence the multiple training tasks may 130

conflict with each other. To harmonize the learning 131

process, we perform systematic optimization with 132

three techniques: 1) self-paced learning schedul- 133

ing, where lossy tasks can be automatically com- 134

pensated by higher learning rates; 2) homogeneous 135

batching, where training samples from one com- 136

mon task are gathered in the same batch to optimize 137

the impact of in-batch negative sampling; 3) diversi- 138

fied prompting, which presents different tasks with 139

unique prefixes such that the embedding model can 140

better distinguish each of them. 141

To summarize, LLM-Embedder stands as a pi- 142

oneering work for the uniform support of the di- 143

verse retrieval augmentation scenarios of LLMs. It 144

makes threefold technical contributions, and brings 145

valuable inspirations on how to learn from LLM’s 146

feedback and how to harmonize different retrieval 147

tasks. In our experiment, LLM-Embedder achieves 148

a superior performance, where it notably improves 149

the LLM’s performance in a variety of downstream 150

tasks. Meanwhile, its retrieval augmentation’s ef- 151

fect is superior to both general and task-specific 152

retrieval methods. Our model and code will be 153

publicly available to facilitate future research. 154

2 Related Works 155

• Embedding Model maps the input text into 156

dense vector (i.e. embedding) in the semantic 157

space, where the relevance between texts is mea- 158

sured by the similarity between embeddings. It has 159

become the de-facto choice for modern information 160

retrieval systems. There are mainly three research 161

threads for improving the performance of embed- 162

ding models. The first one is leveraging advanced 163

backbone models, including the retrieval oriented 164

models (Liu and Shao, 2022; Wang et al., 2022a) 165

and large language models (Ma et al., 2023; Li 166

et al., 2023). Another thread is enhancing the learn- 167

ing methodology, such as upgrading the negative 168

sampling strategy (Karpukhin et al., 2020; Izacard 169

et al., 2021; Xiong et al., 2020) and incorporating 170
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knowledge distillation from a more precise rank-171

ing model (Qu et al., 2020; Hofstätter et al., 2021;172

Xiao et al., 2022). Last but not least, many recent173

works dedicate to train a universal retriever across a174

wide array of tasks (Wang et al., 2021; Lewis et al.,175

2021; Karouzos et al., 2021; Yu et al., 2022; Su176

et al., 2022; Asai et al., 2022). LLM-Embedder in-177

herits successful practices for training high-quality178

dense retriever, while innovating novel techniques179

to tailor for the multi-task learning of diverse re-180

trieval augmentation scenarios.181

• Retrieval Augmentation is a vital mechanism182

to address the inherent limitations of the LLM in183

terms of knowledge, memory, and action. Con-184

cretely, the LLM can 1) generate factoid answers185

with retrieved knowledge (Gao et al., 2024; Jiang186

et al., 2023); 2) utilize long-context information187

with retrieved memory pieces (Rubin and Berant,188

2023; Wang et al., 2023b; Xu et al., 2023); 3) better189

follow human instruction with retrieved in-context190

examples (Brown et al., 2020b; Cheng et al., 2023);191

4) execute complex tasks with retrieved tools (Qin192

et al., 2023). In practice, there are two common193

options of retrievers: the general retrievers (Robert-194

son et al., 2009; Izacard et al., 2021; Xiao and195

Liu, 2023; Neelakantan et al., 2022) and the task-196

specific retrievers (Yu et al., 2023; Wang et al.,197

2023b; Qin et al., 2023). The general retrievers198

exhibit superior versatility, but may suffer from199

an inferior retrieval quality in retrieval augmenta-200

tion tasks. In contrast, task-specific retrievers are201

more specialized, achieving better performance in202

the targeted scenario, while falling short when han-203

dling other scenarios. Compared with the existing204

works, LLM-Embedder unifies the generality and205

specialty: it comprehensively supports all major206

retrieval augmentation needs of the LLM, mean-207

while achieving the leading performance in every208

retrieval augmentation scenario.209

3 LLM-Embedder210

In this section, we will present the retrieval aug-211

mentation scenarios with LLM-Embedder (§3.1),212

and introduce its training methodology (§3.2).213

3.1 Retrieval Augmentation214

LLM-Embedder targets on the unified support215

for the major retrieval augmentation needs of the216

LLMs, including knowledge retrieval, memory re-217

trieval, example retrieval, and tool retrieval. It218

transforms each retrieval candidate Ci ∈ C into219
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How many seasons 
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⋯
⋯

Rick and Morty is an American ... It has 
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Figure 2: The rank-aware reward for each retrieval can-
didate. It measures the improvement of the rank of the
desired output among multiple sampled outputs.

its embedding Ci ∈ RD and stores all embeddings 220

in a vector DB. It also embeds the user input U 221

into U ∈ RD, then retrieves the top-K relevant 222

candidates based on cosine similarity: 223

Ret(U)← top-K
Ci

{cos(U ,Ci)}. (1) 224

The retrieval result and the user input are synthe- 225

sized with template ψ to prompt the LLM Θ: 226

O ← Θ(ψ(U,Ret(U))). (2) 227

Each retrieval augmentation scenario has its unique 228

formulation of retrieval candidate, user input, and 229

prompt template, which are elaborated as follows. 230

• Knowledge Retrieval. The LLM can generate 231

factoid answers with retrieved knowledge. Each 232

retrieval candidate is a passage from an external 233

knowledge corpus. The user input is usually an 234

explicit question. It can also be a conversation 235

context with a context-dependent question. In this 236

case, we concatenate the entire context as the user 237

input. The retrieved passages and the user input are 238

synthesized according to Template A.1. 239

• Memory Retrieval. The LLM can remember 240

and utilize long context memory with memory re- 241

trieval (Xu et al., 2023). Specifically, the long 242

context split into equal-size chunks {v1, . . . , vn}. 243

When processing the vj , each previous chunk con- 244

catenated with its subsequent chunk is treated as 245

a retrieval candidate, i.e. Ci ← vi + vi+1, i < j. 246

The user input is vi itself. Denote the LLM’s con- 247

text window size as L∗. We maintain the recent L 248
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tokens in the context window, while the rest L∗−L249

are populated with retrieved chunks.250

• Example Retrieval. In-context examples help251

the LLM to better follow human instruction. In-252

stead of relying on manual specification, in-context253

examples can be retrieved automatically to improve254

the performance. Each example contains an op-255

tional task description, an input, and an output,256

which are all concatenated to form a retrieval can-257

didate. The user input is the concatenation of the258

task description and the task-specific input. The re-259

trieved examples and the user input are synthesized260

with Template A.5 to feed into the LLM.261

• Tool Retrieval. The LLM leverages tools to262

execute complex real-world tasks (Qin et al., 2023;263

Yao et al., 2023). Tool retrieval efficiently provides264

useful tools for the LLM. The tool’s description and265

its API are concatenated as the retrieval candidate.266

The user’s request is treated as the user input.267

3.2 Training Methodology268

3.2.1 Reward Formulation269

A retrieval candidate is useful if it can facilitate270

the generation of the desired output (denoted as271

O∗). The absolute value of generation likelihood272

is not an appropriate measurement because it is273

prone to dramatic numerical fluctuations. Alter-274

natively, as shown in Figure 2, we argue that a275

retrieval candidate is useful if it can lead to a better276

ranking position of the desired output among N277

sampled outputs from the LLM’s ({Oi}Ni=1). Based278

on this argument, we descendingly sort the sam-279

pled outputs based their generation likelihoods and280

compute the rank of the desired output among them281

when retrieval is disabled:282

ra ← rank
O∗

({O1, . . . , ON : Oi ∼ Θ(U)}).283

We then compute the rank of the desired output284

with the same operation except that the retrieval285

augmentation is enabled:286

rb ← rank
O∗

({O1, . . . , ON : Oi ∼ Θ(ψ(U,Ci))})287

Finally, the reward for the retrieval candidate Ci is288

computed as its improvement of the rank:289

R(Ci)← ra − rb. (3)290

This reward formulation is free of dealing with291

absolute likelihood values, but focuses on the re-292

trieval candidate’s real impact on facilitating the293

generation of the desired output.294

3.2.2 Distillation Objective 295

Based on the LLM’s rewards, the embedding model 296

is learned through knowledge distillation, so that 297

the relevance estimated by the embedder becomes 298

consistent with the retrieval candidate’s actual use- 299

fulness. Minimizing KL-Divergence between the 300

relevance distribution and the reward distribution is 301

the most typical approach (Shi et al., 2023; Izacard 302

et al., 2023; Yu et al., 2023). However, the reward 303

distribution sometimes exhibits polarized (substan- 304

tially high reward for one candidate while low for 305

others) or flat (even reward for each candidate) pat- 306

terns. The KL-Divergence cannot effectively distill 307

fine-grained knowledge from these distributions. 308

To address this problem, we innovate a graded 309

distillation objective, which integrates both the ab- 310

solute reward values and the relative reward orders 311

for learning. It consists of a series of contrastive 312

losses, where the negatives of each loss include the 313

lower-rewarded candidates and the in-batch candi- 314

dates. All contrastive losses are aggregated with 315

normalized rewards as weights. Formally, given the 316

retrieval candidates {Ci}Mi=1, their normalized re- 317

wards w(Ci)← softmax(R(C∗))[i], the objective 318

is formulated as: 319

N (Ci)← {C : R(C) < R(Ci)} ∪ InBatch(Ci), 320

min
∑
Ci

−w(Ci) log
ecos(U ,Ci)∑

C′∈N (Ci)
ecos(U ,C′)

. (4) 321

The graded distillation objective enjoys two advan- 322

tages. On one hand, it can robustly optimize the 323

embedder from various reward distributions. For 324

the polarized rewards, it will become the one-hot 325

contrastive learning. For the flat rewards, it will al- 326

ways supervise the embedder to prioritize the more 327

useful candidates against the less useful ones, re- 328

gardless of the absolute value of the reward. On 329

the other hand, it incorporates in-batch negatives 330

in the training process, which further improves the 331

discrimination capability of the embedder. 332

3.2.3 Multi-Task Learning 333

LLM-Embedder learns to support the four retrieval 334

augmentation needs with a single model through 335

multi-task learning. Different retrieval tasks call for 336

distinct semantic relationships, which may conflict 337

with each other. Therefore, it’s important to distin- 338

guish these tasks and harmonize the their learning 339

process. In this place, we tailor the multi-task learn- 340

ing framework with three techniques. 341
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• Self-Paced Learning Scheduling. The intrinsic342

learning difficulty of each task may vary, poten-343

tially leading to differences in the model’s learn-344

ing pace for each task. This may result in the345

over-optimization of simpler tasks and the under-346

optimization of more challenging tasks. Inspired347

by (Liu et al., 2019), we propose to dynamically348

adjust the learning pace of each retrieval task to349

address this problem. Specifically, we deem the350

loss of each retrieval task as a proxy to the learning351

condition of that task. Based on it, we amplify the352

learning rate for lossy tasks and reduce the learning353

rate for already learned tasks. To achieve this goal,354

we periodically checkpoint the loss of retrieval task355

T during training, denoted as LT
0 . Given the basic356

learning rate α, and the current loss of the retrieval357

task T , the learning rate of the current optimization358

step is set to α×
√

LT

LT
0

.359

• Homogeneous Batching. The embedding360

model’s discrimination capability benefits from the361

quality and quantity of negative samples (Izacard362

et al., 2021; Wang et al., 2022b), which consist of363

hard negatives and in-batch negatives. The vanilla364

batching strategy often packs training samples from365

different tasks in the same batch. These samples366

are irrelevant to each other and hence adversely367

influence the quality of in-batch negatives. Instead,368

we gather the training samples from the same re-369

trieval task to form every batch. In this way, LLM-370

Embedder should discriminate the positive sample371

against B ×M × Z − 1 negatives from the same372

retrieval task, where B is the batch size, M the373

candidate number, and Z the GPU number.374

• Diversified Prompting. For retrieval task T ,375

two unique instructions ITU , I
T
C are assigned, which376

are prefixed to the user input and the retrieval can-377

didate, respectively. The concatenated sequence is378

encoded into its embedding by LLM-Embedder:379

UT ← encode(ITU+U), CT
i ← encode(ITC+Ci).380

The resulting embedding UT and CT
i are differen-381

tiated across tasks, which helps LLM-Embedder to382

distinguish each task.383

4 Experiment384

The experimental studies aim to investigate three385

research questions. RQ 1. Can LLM-Embedder386

support the LLM’s diverse retrieval augmentation387

need? (§4.2) RQ 2. What is LLM-Embedder’s388

impact on each retrieval augmentation scenario?389

(§4.3) RQ 3. What is the individual contribution of 390

each technique in LLM-Embedder? (§4.4) 391

4.1 Settings 392

4.1.1 Training & Evaluation 393

We introduce the details of training and evaluation 394

on the four retrieval augmentation scenarios. Statis- 395

tics of all training datasets are reported in Table 7. 396

• Knowledge Retrieval. We train LLM-Embedder 397

with three datasets for knowledge retrieval, in- 398

cluding MSMARCO (Nguyen et al., 2016), Nat- 399

ural Questions (Kwiatkowski et al., 2019), and 400

QReCC (Anantha et al., 2020). Note that QReCC 401

does not have well-formed answers for generat- 402

ing rewards, thus, we use the annotated relevance 403

for contrastive learning. We include three datasets 404

to evaluate the impact of knowledge retrieval. 1) 405

MMLU (Hendrycks et al., 2020), a multiple-choice 406

questions dataset that covers a wide range of knowl- 407

edge. We retrieve 3 passages from the MSMARCO 408

Passage corpus (Nguyen et al., 2016), which are in- 409

tegrated as a prompt with the official Template A.2. 410

The metric is accuracy. 2) PopQA (Mallen et al., 411

2022), a question answering dataset that focuses 412

on long-tail entities. We retrieve 3 passages from 413

Wikipedia (Karpukhin et al., 2020), which are inte- 414

grated with the official Template A.3. The met- 415

ric is exact match. 3) QReCC (Anantha et al., 416

2020), a conversational search dataset that requires 417

the retriever to find the relevant passage accord- 418

ing to a conversation context. It already provides 419

the ground-truth passage, we directly evaluate the 420

ranking metric, i.e. NDCG@3 following previous 421

works (Mao et al., 2023). 422

• Memory Retrieval. We consider two tasks 423

for memory retrieval. 1) Long-context conversa- 424

tion with MSC (Xu et al., 2021), where the LLM 425

should generate the ground-truth response. We 426

retrieve 1 historical dialogue turn as additional con- 427

text, which is synthesized with Template A.4. We 428

use its training set to fine-tune LLM-Embedder. 2) 429

Long-range language modeling with Books3 (Gao 430

et al., 2020), ArXiv (Gao et al., 2020), CodePar- 431

rot (Tunstall et al., 2022), and PG19 (Rae et al., 432

2019), where PG19 is held-out from training. We 433

set the chunk size to 128, and maintain a recent 434

context length of 2048. We retrieve 8 chunks and 435

their continuation chunk to prepend to the recent 436

context. Perplexity is the metric for both tasks. 437

• Example Retrieval. We follow LLM-R (Wang 438

et al., 2023a) to use in-context learning tasks from 439
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FLAN (Chung et al., 2022) for training and eval-440

uating the impact of example retrieval. It consists441

of 9 distinct categories with 30 datasets: Closed-442

Book QA (CQA), Commonsense (Comm), Corefer-443

ence (Coref), Paraphrase (Para), Natural Language444

Inference (NLI), Reading Comprehension (RC),445

Sentiment Analysis (Sent), Data2Text (D2T), Sum-446

marization (Summ). We retrieve 8 examples from447

the union of the training set examples, which are448

synthesized with Template A.5. The evaluation449

metric is specified in Table 6.450

• Tool Retrieval. We use the ToolBench (Qin451

et al., 2023) for training and evaluating the tool452

retrieval performance. Akin to QReCC, this dataset453

does not include desired output from the LLM,454

hence we train LLM-Embedder with contrastive455

loss and directly evaluate NDCG@5.456

4.1.2 Baselines457

Firstly, we measure the performance of the LLM458

without retrieval augmentation, denoted as None.459

Secondly, we compare with two types of retrievers.460

1) General retrievers, which aim to support a wide461

range of text retrieval and representation tasks, such462

as question answering, entity retrieval, and dupli-463

cation detection. We include the following widely-464

recognized baselines: BM25 (Robertson et al.,465

2009), Contriever (Izacard et al., 2021), Instruc-466

tor (Su et al., 2022), RetroMAE-BEIR (Liu and467

Shao, 2022), and BGE (Xiao and Liu, 2023). These468

methods are empirically competitive according to469

BEIR (Thakur et al., 2021) and MTEB (Muen-470

nighoff et al., 2022) benchmarks. 2) Task-specific471

embedding models. These models are optimized472

for one specific retrieval augmentation scenario.473

We include the following baselines that excel in474

their respective scenario: ARR (Yu et al., 2023) for475

knowledge retrieval, LLM-R (Wang et al., 2023a)476

for example retrieval, and API-Retriever (Qin et al.,477

2023) for tool retrieval. Since retrieval augmenta-478

tion introduces additional context to the LLM, we479

add a simple yet strong baseline called Recency for480

memory retrieval. It directly extends the context481

window by the length of retrieved context.482

4.1.3 Implementation483

We use Llama-2-7B-Chat (Touvron et al., 2023)484

as the backbone LLM. Besides, we utilize BGE485

base (Xiao and Liu, 2023) to initialize LLM-486

Embedder and fine-tune it as described in §3.2. The487

hyper parameters during fine-tuning are shown in488

Table 9. Although using rewards from Llama-2 7B489

Knowledge Retrieval

Memory Retrieval

Example Retrieval

Tool Retrieval

0.2

0.4

0.6

0.8

1.0
BGE
AAR
LLM-R
API-R
LLM-Embedder

Figure 3: Impact of retrieval augmentation from differ-
ent retrievers (metric values are min-max normalized).

Chat, LLM-Embedder is also applicable to other 490

LLMs and its advantage remains. The experimental 491

results are shown in Appedix D. We use Flat index 492

from faiss (Johnson et al., 2019) for searching. 493

4.2 Overall Analysis 494

The evaluation results of the four retrieval augmen- 495

tation scenarios are presented in Table 1-3. 496

Firstly, compared with the results without re- 497

trieval augmentation, i.e. None, LLM-Embedder 498

delivers more precise answers with the retrieved 499

knowledge (Table 1), improved quality of long- 500

sequence generation with the retrieved memory 501

(Table 2), better instruction following effect with 502

the retrieved examples (Table 3), and more accu- 503

rate tool retrieval (Table 3). Besides, though the 504

LLM’s performance can also by improved by other 505

baseline retrievers, LLM-Embedder always leads 506

to the most amplified retrieval augmentation ef- 507

fect across all scenarios. It outperforms all general 508

retrievers and is competitive against task-specific 509

retrievers, i.e. AAR for knowledge enhancement, 510

LLM-R for example retrieval, and API-Retriever 511

for tool retrieval. This observation validates that 512

the LLM benefits from the retrieved information; 513

meanwhile, LLM-Embedder can provide a strong 514

and unified foundation to support diverse retrieval 515

augmentation needs of the LLM. 516

We can also observe that the task-specific em- 517

bedders optimized for one scenario result in lim- 518

ited performances in others, suggesting that the se- 519

mantic relationships required by different retrieval 520

scenarios are not transferable. To better illustrate 521

this point, we visualize the retrieval augmenta- 522

tion’s impact from five representative methods in 523

Figure 3. Notably, although task-specific embed- 524

ders exhibit competitive performance for their tar- 525

geted scenario, their impacts are severely weakened 526

when applied on other scenarios. In contrast, LLM- 527
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MMLU PopQA QReCC

Method STEM Social Human Other All Avg. PopQA QReCC

None 0.347 0.533 0.509 0.497 0.460 0.206 –
BM25 0.376 0.538 0.505 0.509 0.472 0.349 0.434
Instructor 0.370 0.541 0.511 0.508 0.472 0.353 0.286
Contriever 0.368 0.538 0.508 0.501 0.468 0.328 0.356
RetroMAE-BEIR 0.386 0.546 0.522 0.528 0.485 0.436 0.404
BGE∗ 0.385 0.556 0.519 0.539 0.490 0.449 0.386
AAR† 0.380 0.550 0.513 0.529 0.483 0.479 0.288
API-Retriever 0.354 0.534 0.500 0.507 0.463 0.249 0.114
LLM-R 0.363 0.528 0.502 0.498 0.463 0.251 0.023

LLM-Embedder (Ours) 0.385 0.557 0.523 0.536 0.490 0.505 0.505

Table 1: The impact of knowledge retrieval. “∗” and “†” indicate the SOTA general embedder and the task-specific
embedder, respectively. The best metrics are in bold, and the second-best metrics are underlined.

Conversation Language Modeling

Method MSC Books3 Arxiv CodeParrot PG19 (o.d.)

None 19.350 8.819 3.765 2.766 10.251
Recency 13.957 8.739 3.416 2.599 10.222
BM25 14.651 8.658 3.311 2.459 10.196
Instructor 14.880 8.662 3.355 2.476 10.201
Contriever 14.213 8.646 3.271 2.444 10.162
RetroMAE-BEIR 14.399 8.638 3.290 2.459 10.173
BGE∗ 14.294 8.631 3.291 2.458 10.154
AAR 14.700 8.638 3.326 2.467 10.181
API-Retriever 14.783 8.672 3.386 2.492 10.183
LLM-R 14.475 8.662 3.364 2.472 10.202

LLM-Embedder (Ours) 13.483 8.608 3.232 2.430 10.118

Table 2: The impact of memory retrieval. Recency is to directly extend the context without retrieval.

Embedder demonstrates a steady and competitive528

performance across all scenarios. To summarize,529

the irrelevant or even adverse retrieval patterns530

can be reconciled by one unified embedding model531

on top of our optimized training methodology.532

4.3 Individualized Analysis533

• Knowledge Retrieval. The evaluation results534

of knowledge retrieval are reported in Table 1. We535

make the following observations. 1) Benefit of ex-536

ternal knowledge. On both MMLU and PopQA, we537

can observe significant empirical advantages of the538

retrieval augmentation methods compared with the539

plain LLM, i.e. None. Among all retrieval methods,540

LLM-Embedder is able to return the most accuracy541

knowledge, leading to the best retrieval augmenta-542

tion effect on both datasets. 2) Distinction among543

datasets. The impact of knowledge retrieval is more544

noticeable on PopQA than MMLU. This is because545

PopQA is more knowledge-intensive, with a focus546

on questions about long-tail entities. Moreover, the547

baseline embedding models fail to handle conver-548

sational search queries, resulting in their inferior549

NDCG compared with BM25 on QReCC. In con-550

trast, LLM-Embedder significantly outperfoms all551

baselines on QReCC, again verifying its versatility. 552

• Memory Retrieval. The evaluation results of 553

memory retrieval are reported in Table 2. On one 554

hand, baseline retrievers underperform the Recency 555

baseline on MSC, which translates to the negative 556

impact of the retrieved conversation compared with 557

the recent one. This observation underscores the 558

challenges in effective memory retrieval. On the 559

other hand, the LLM-Embedder retains its superior 560

performance, reducing the perplexity against the 561

all baseline methods on all datasets. 562

• Example Retrieval. The evaluation results of 563

example retrieval are reported in Table 3. We have 564

the following observations. 1) Compared with ran- 565

dom examples, using retrieved examples yields 566

improved performances in most cases. This find- 567

ing underscores the effect of example retrieval for 568

helping the LLM to properly follow instructions. 569

2) BM25’s performance is substantially weaker 570

than its performance in other scenarios. This dis- 571

crepancy can be attributed to the specific nature 572

of in-context learning, where useful examples may 573

have low lexical similarity with the user input. 574

• Tool Retrieval. The evaluation results of exam- 575

ple retrieval are reported in Table 3. We observe 576
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In-Context Learning Tool

Method CQA Comm Coref Para NLI RC Sent D2T Summ Avg ToolBench

None 0.292 0.721 0.658 0.524 0.448 0.489 0.708 0.198 0.145 0.465 –
Random 0.359 0.719 0.589 0.520 0.477 0.553 0.916 0.350 0.357 0.545 0
BM25 0.360 0.702 0.603 0.506 0.458 0.540 0.728 0.302 0.156 0.484 0.512
Instructor 0.500 0.777 0.574 0.631 0.536 0.622 0.915 0.460 0.457 0.604 0.388
Contriever 0.491 0.772 0.562 0.636 0.547 0.630 0.914 0.438 0.444 0.601 0.490
RetroMAE-BEIR 0.459 0.774 0.584 0.576 0.541 0.603 0.929 0.466 0.447 0.594 0.521
BGE∗ 0.472 0.777 0.555 0.617 0.541 0.599 0.928 0.472 0.452 0.597 0.576
AAR 0.481 0.780 0.585 0.589 0.535 0.604 0.921 0.445 0.441 0.594 0.420
API-Retriever† 0.477 0.762 0.547 0.627 0.520 0.610 0.924 0.487 0.442 0.595 0.802
LLM-R† 0.517 0.780 0.583 0.657 0.615 0.622 0.906 0.478 0.488 0.626 0.132

LLM-Embedder 0.516 0.784 0.593 0.656 0.604 0.632 0.922 0.473 0.474 0.627 0.865

Table 3: The impact of example retrieval and tool retrieval.

Method Knwl. Mem. Expl. Tool

LLM-Embedder 0.505 13.483 0.627 0.865
w.o. Rank-Aware Reward 0.485 14.253 0.622 0.861
w.o. Graded Distillation 0.492 13.547 0.610 0.854
w.o. Self-Paced Scheduling 0.492 13.883 0.619 0.809
w.o. Homogeneous Batching 0.447 14.183 0.605 0.836
w.o. Diversified Instruction 0.503 13.942 0.619 0.828

Table 4: Ablation studies of LLM-Embedder.

that the task-specific method, i.e. the API retriever,577

beats other baseline methods by a large margin.578

This is because these baselines are unfamiliar with579

tools and hence fail to properly estimate the rel-580

evance. However, LLM-Embedder continues to581

maintain the leading position, highlighting its un-582

fied support for diverse retrieval tasks.583

4.4 Ablation Studies584

The ablation studies are performed to to evaluate585

the impact from each technical factor. The evalua-586

tion results are reported in Table 4.587

For “w.o. Rank-Aware Reward”, we switch to the588

typical likelihood-based reward formulation (Shi589

et al., 2023). Notably, the performance on knowl-590

edge retrieval and memory retrieval substantially591

decreases. We conjecture that in both scenarios, the592

generation likelihood of the desired output drasti-593

cally fluctuate, resulting in the inaccurate measure-594

ment of the retrieval candidate’s usefulness.595

For “w.o. Graded Distillation”, the graded dis-596

tillation objective is replaced by the typical KL-597

divergence (Izacard et al., 2023). As introduced,598

graded distillation can stay robust to the polarized599

or flat rewards, which leads to more effective us-600

age of the LLM’s feedback. In this place, we can601

observed that LLM-Embedder’s performance is re-602

duced when graded distillation is disabled, espe-603

cially for example retrieval.604

For “w.o. Self-Paced Scheduling”, the learning605

rate is the kept static for all retrieval tasks during606

fine-tuning. We can observe that the performance 607

of tool retrieval drops significantly. This is because 608

the learning for this scenario does not proceed at 609

the same pace as other scenarios, necessitating the 610

dynamic control over learning speed for different 611

retrieval tasks. 612

For “w.o. Homogeneous Negatives”, the ho- 613

mogeneous in-batch negatives are disabled. This 614

change reduces the discrimination capability of the 615

embedder, because a great portion of the in-batch 616

negative samples will come from different tasks, 617

which are irrelevant to the target one. As we can ob- 618

serve, LLM-Embedder’s performance is decreased 619

due to such a change, especially for knowledge re- 620

trieval, where LLM-Embedder should discriminate 621

the relevant passage from a massive corpus. 622

For “w.o. Diversified Instruction”, we remove 623

the task-specific instructions in fine-tuning and 624

evaluation. Without this technique, it becomes 625

harder for the embedding model to distinguish dif- 626

ferent retrieval tasks. This intuition is consistent 627

with the observed result, as LLM-Embedder’s per- 628

formance decreases across all tasks. 629

5 Conclusion 630

In this work, we present LLM-Embedder, a unified 631

embedding model to support the LLM’s diverse 632

retrieval augmentation needs, including knowledge 633

retrieval, memory retrieval, example retrieval, and 634

tool retrieval. We propose three key techniques to 635

facilitate the training of LLM-Embedder, spanning 636

from reward formulation, distillation objective, and 637

multi-task learning recipe. Our experiments show 638

LLM-Embedder’s empirical advantages over both 639

general and task-specific embedding models across 640

all evaluation scenarios. This highlights its effec- 641

tiveness as a foundational building block to support 642

the retrieval augmentation of the LLM. 643
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6 Limitations644

A few recent studies incorporate large language645

models as the embedding backbone and achieve646

new state-of-the-art performance. However, LLM-647

Embedder is a BERT-base scale model. Its scal-648

ing effect remains unexplored. Besides, LLM-649

Embedder is specifically tailored for the four re-650

trieval scenarios. For tasks that fall outside its651

scope of coverage, such as documentation retrieval,652

the effectiveness of the LLM-Embedder may not653

be as robust as that of a strong general embedding654

model like BGE.655

7 Ethical Considerations656

LLM-Embedder is an embedding model that maps657

the text into high-dimensional vectors and relies on658

vector similarity to determine relevance between659

texts. Therefore, it inherits the potential risks of660

the embedding model family. Specifically, LLM-661

Embedder may process a large amount of personal662

or sensitive data, which must be handled with con-663

sent. There is also the security concern as recent664

works have proven it possible to decrypt the orig-665

inal textual information from embedded vectors.666

Lastly, it may perpetuate and amplify biases present667

in the training data, leading to unfair or discrimina-668

tory outcomes.669
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A Prompt Templates1141

Prompt A.1: Rank-Aware Reward (Knowledge)

Knowledge:
<Passage>

Q: <Question> A:

1142

Prompt A.2: MMLU

Knowledge:
<Passage 1>
<Passage 2>
<Passage 3>

The following are multiple-choice questions (with
answers) about <subject>.

<Question>
A. <Option 1>
B. <Option 2>
C. <Option 3>
D. <Option 4>
Answer:

1143

Prompt A.3: PopQA

Knowledge:
<Passage 1>
<Passage 2>
<Passage 3>

Q: <Question 1> A: <Answer 1>
Q: <Question 2> A: <Answer 2>
. . .
Q: <Question 15> A: <Answer 15>
Q: <Question> A:

1144

Prompt A.4: Multi-Session Chat

Speaker 1: <Retrieved/Recent Utterance 1>
Speaker 2: <Retrieved/Recent Utterance 2>
Speaker 1: <Utterance 1>
Speaker 2:

1145

Prompt A.5: In-Context Learning

<Example 1 Input><Example 1 Ouptut>

<Example 2 Input><Example 2 Ouptut>
. . .
<Example 8 Input><Example 8 Ouptut>

<Input>
1146

B Dataset Details1147

The detailed information of in-context learning1148

datasets is reported in Table 6. The statistics of1149

all training and evaluation datasets are reported in1150

Table 7. The average lengths of long-range lan-1151

guage modeling datasets are reported in Table 5.1152

Dataset Average Length

Books3 101010
Arxiv 26735
CodeParrot 217364
PG19 90447

Table 5: Average lengths of long-range language model-
ing datasets.

C Implementation Details 1153

C.1 Instructions 1154

The instructions used for each retrieval task are 1155

shown in Table 8. 1156

C.2 Training Settings 1157

The hyper parameter settings for training LLM- 1158

Embedder are reported in Table 9. 1159

D Impact of LLM-Embedder on 1160

Different LLMs 1161

We evaluate the impact of LLM-Embedder when 1162

augmenting different LLMs to validate its gener- 1163

alization ability. Specifically, we utilize Aquila- 1164

7B-Chat (Aqu, 2023), Qwen-7B-Chat (Bai et al., 1165

2023a), Baichuan2-7B-Chat (Baichuan, 2023), and 1166

Llama-2-13B-Chat (Touvron et al., 2023). The re- 1167

sults are shown in Table 10. We report the average 1168

accuracy for MMLU, accuracy for PopQA, the av- 1169

erage score for in-context learning, and perplexity 1170

for both Multi-Session Chat and Arxiv. Note that 1171

we do not replicate the evaluation of tool learn- 1172

ing and conversational search because their perfor- 1173

mances are directly measured by retrieval metrics. 1174

We can observe that our conclusions in Sec- 1175

tion 4.2 still hold. First of all, retrieval from the ex- 1176

ternal world benefits LLM’s performance in all four 1177

scenarios, since the performance of the plain LLM 1178

(i.e. None) underperforms retrieval-augmented one 1179

(BGE and LLM-Embedder). Besides, our proposed 1180

LLM-Embedder is able to generalize well to other 1181

LLMs and maintain its superiority over BGE on 1182

most datasets (PopQA and ICL in particular). This 1183

observation highlights the practical effectiveness 1184

and versatility of LLM-Embedder. 1185
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Scenario Dataset Corpus Size #Training Samples #Testing Samples

Knowledge Retrieval

MSMARCO 8841823 400870 –
NQ 21051324 58622 –
MMLU 8841823 – 14042
PopQA 21051324 – 14267
QReCC 54573064 29596 8209

Memory Retrieval

MSC – 48925 2763
Books3 – 10000 1000
Arxiv – 10000 757
CodeParrot – 10000 1000
PG19 – – 1000

Example Retrieval Misc. 6283120 591359 177230

Tool Retrieval ToolBench 10439 87322 100

Total – – 1333911 –

Table 7: Statistics of all training and evaluation datasets.

Scenario Task Input Instruction

Knowledge Retrieval

Conversational Search
Query

Encode this query and context for
searching relevant passages:

Key Encode this passage for retrieval:

Others

Query
Represent this query for retrieving

relevant documents:

Key
Represent this document for

retrieval:

Memory Retrieval

Long-Context
Conversation

Query
Embed this dialogue to find useful

historical dialogues:

Key
Embed this historical dialogue for

retrieval:

Long-Range Language
Modeling

Query
Embed this text chunk for finding

useful historical chunks:

Key
Embed this historical text chunk for

retrieval:

Example Retrieval In-Context Learning

Query
Convert this example into a vector

to look for useful examples:

Key
Convert this example into vector for

retrieval:

Tool Retrieval Tool Retrieval

Query
Transform this user request for

fetching helpful tool descriptions:

Key
Transform this tool description for

retrieval:

Table 8: Instructions for each task.
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#GPU 8×A100 (40G)
#Hard Negative (M ) 7
#Sampled Outputs (N ) 10
Batch Size Per GPU (B) 100
Optimizer AdamW
Learning Rate (α) 5e-5
Learning Rate Checkpoint Step 1000
Weight Decay 0.01
Scheduler Linear with warm-up of 0.2
Max Steps 10000
Gradient Checkpointing ✓

Table 9: Hyper parameter settings for fine-tuning.

LLM Embedder MMLU PopQA ICL MSC Arxiv

Llama-2-7B-Chat
None 0.460 0.206 0.465 19.350 3.765
BGE 0.490 0.449 0.597 14.294 3.291
LLM-Embedder 0.490 0.505 0.627 13.483 3.232

Aquila-7B-Chat
None 0.450 0.203 0.515 16.011 3.120
BGE 0.483 0.398 0.573 14.184 2.791
LLM-Embedder 0.485 0.440 0.590 14.184 2.735

Qwen-7B-Chat
None 0.556 0.239 0.535 21.047 2.789
BGE 0.579 0.445 0.633 16.206 2.517
LLM-Embedder 0.576 0.478 0.646 15.452 2.482

Baichuan2-7B-Chat
None 0.523 0.236 0.491 18.971 2.751
BGE 0.553 0.441 0.596 16.076 2.444
LLM-Embedder 0.551 0.485 0.618 15.589 2.413

Llama-2-13B-Chat
None 0.539 0.289 0.461 14.733 3.236
BGE 0.560 0.460 0.620 11.688 2.904
LLM-Embedder 0.558 0.503 0.644 11.538 2.854

Table 10: The impact of LLM-Embedder on different LLMs.
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