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Abstract
The programming skill is one crucial ability001
for Large Language Models (LLMs), necessi-002
tating a deep understanding of programming003
languages (PLs) and their correlation with nat-004
ural languages (NLs). We examine the impact005
of pre-training data on code-focused LLMs’006
performance by assessing the comment den-007
sity as a measure of PL-NL alignment. Given008
the scarcity of code-comment aligned data in009
pre-training corpora, we introduce a novel data010
augmentation method that generates comments011
for existing code, coupled with a data filtering012
strategy that filters out code data poorly cor-013
related with natural language. We conducted014
experiments on three code-focused LLMs and015
observed consistent improvements in perfor-016
mance on two widely-used programming skill017
benchmarks. Notably, the model trained on the018
augmented data outperformed both the model019
used for generating comments and the model020
further trained on the data without augmenta-021
tion.022

1 Introduction023

The development of Large Language Models024

(LLMs) has made remarkable strides across various025

domains, including the field of code understanding026

and generation. Works such as CodeGen (Nijkamp027

et al., 2022), StarCoder (Li et al., 2023a), and Code028

Llama (Roziere et al., 2023) have achieved sig-029

nificant breakthroughs in the task of natural lan-030

guage to code (NL2Code). Moreover, aligning nat-031

ural language descriptions with their correspond-032

ing execution code to expand code-related train-033

ing corpus to further enhance the model’s cod-034

ing capabilities has become a research focus for035

scholars (Yin et al., 2018; Ahmad et al., 2021;036

Wang et al., 2021b; Neelakantan et al., 2022; Muen-037

nighoff et al., 2023). Code Llama (Roziere et al.,038

2023), which is currently one of the most popular039

code LLMs, also mentioned that 8% of their sample040

data was sourced from natural language datasets041

language #Chars of Comment #Chars Comment Density
C# 5.4B 30.8B 0.1764

C++ 6.6B 38.0B 0.1753
Go 3.0B 19.6B 0.1553

Java 12B 66.8B 0.1917
JavaScript 6.3B 46.9B 0.1352

PHP 5.1B 42.3B 0.1207
Python 9.6B 44.1B 0.2187
Ruby 0.9B 5.18B 0.1821
Rust 1.1B 6.44B 0.1641

TypeScript 2.4B 20.1B 0.1207
Average 5.3B 32.0B 0.1670

Table 1: Comment density across ten mainstream pro-
gramming languages in StarCoder (Li et al., 2023a).
#Chars of Comment indicates the number of non-white
characters of the code comment. #Chars is the total
number of non-white characters. In fact, high quality
repositories even have comment density exceeding 40%,
such as the case of mini redis1. This suggests that the ex-
isting code dataset indeed contains too few comments.

related to code. In fact, comments are the natural 042

language components that are inherently related 043

to code. Guo et al. (2022) had conducted ablation 044

experiments to demonstrate that training models on 045

code data with comments leads to improved ability. 046

Moreover, the textbook and exercise data proposed 047

by Gunasekar et al. (2023a), which is considered a 048

prior work in the field of code LLMs, can be con- 049

sidered a form of comment in a sense. However, 050

generating a large amount of such data using GPT 051

is infeasible due to cost considerations. 052

Considering that the alignment between natural 053

language and code has not yet been relatively ex- 054

plored, comments serve as a representative and cru- 055

cial bridge between the two. Therefore, the primary 056

objective of this work is to explore the significance 057

of comments. An intuitive supposition posits that 058

an augmentation in training corpus that aligns code 059

and natural language (comments) will invariably 060

enhance the model’s performance. To quantify this 061

alignment, we initially delineate “comment density” 062

1https://github.com/tokio-rs/mini-redis
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Figure 1: Illustrates the workflow of our proposed self-augmentation method. Firstly, it enables LLMs to generate
comments for code through instruction tuning. Then, LLMs generate comments for existing code. The further
training is conducted on enriched code data with comments, aiming to achieve self-augmentation.

as the ratio of the number of non-white characters063

in comments to the total number of non-white char-064

acters and then examine how different levels of065

comment density impact downstream tasks.066

As shown in Table 1, existing comments in code067

are limited. This severely hinders our goal of im-068

proving model performance and training efficiency069

by increasing the amount of aligned corpus be-070

tween code and natural language. Therefore, we071

propose a novel method aimed at generating more072

aligned data, which is characterized by utilizing073

the powerful generation capabilities of LLMs to074

generate comments for the original code data. To075

accomplish this, we require a model capable of076

understanding code and providing corresponding077

comments. From this perspective, our method can078

also be viewed as a form of specialized data dis-079

tillation. While, unlike traditional data distillation080

methods that rely on a teacher model, our approach081

accomplishes knowledge distillation through self-082

supervision. This represents the key distinction083

between our method and existing data distillation084

techniques. Table 2 provides detailed information085

on existing works.086

To ensure that the code remains unchanged dur-087

ing LLMs generation and accelerate the genera-088

tion process, we propose a constrained generation089

approach that generates data on a line-by-line ba-090

sis, thereby circumventing the procedure of LLMs091

deleting, modifying the original code or producing092

new code. Considering the need to exercise caution093

in trusting the comments added by the model, we 094

introduce a discriminator in this study to filter out 095

extreme cases. The discriminator evaluates the gen- 096

erated comments and filters out samples that exhibit 097

significant differences from the original code. In 098

our experiments, we observe that utilizing LLMs 099

for comments generation not only enhances the 100

capabilities of the base model but also facilitates 101

self-augmentation. The overall framework of this 102

work is depicted in Figure 1 103

We highlight our contributions as follows: 104

• We discovered that the density of comments 105

in pre-training code significantly affects the 106

performance of LLM models in downstream 107

tasks, and based on this, we proposed a new 108

data augmentation method. 109

• We introduced a new inference method for 110

generating comments, forming an efficient 111

self-augmentation pipeline. 112

• Our method achieved substantial improve- 113

ments on Llama 2, Code Llama, and In- 114

ternLM2. 115

2 Related Work 116

2.1 Alignment between Code and Natural 117

Language 118

Yin et al. (2018) proposed the effective uti- 119

lization of highly correlated Natural Language- 120

Programming Language (NL-PL) pairs to enhance 121

2



Models SFT Pretaining Natural Language Code Samples Tokens
phi-1(Gunasekar et al., 2023b) ✓ ✓ ✓ - 1B

WizardCoder(Luo et al., 2023a) ✓ ✓ 78K -
WaveCoder(Yu et al., 2023) ✓ ✓ 20K -

phi-1.5(Li et al., 2023b) ✓ ✓ - 20B
WizardLM(Xu et al., 2023) ✓ ✓ 250K -
Genie(Yehudai et al., 2024) ✓ ✓ 300K -

Self-Instruct(Wang et al., 2023) ✓ ✓ 82K -
Ours ✓ ✓ 6.5M 15.2B

Table 2: Existing data distillation methods rely on a teacher model to acquire knowledge, and are limited by the
amount of available data.

the capabilities of code models in tasks such as122

code retrieval, summarization, and generation. Ah-123

mad et al. (2021) employed Denoising Pre-training124

to establish semantic relationships between natu-125

ral language and code, resulting in promising out-126

comes. Similarly, Wang et al. (2021b) focused on127

aligning natural language and code by incorporat-128

ing NL2Code and Code2NL generation tasks into129

the pre-training phase. Neelakantan et al. (2022)130

achieved superior performance over CodeBERT in131

the code retrieval task by employing contrastive132

learning to align code and natural language. Muen-133

nighoff et al. (2023) enhanced the code model’s134

ability to generate code that follows natural lan-135

guage by utilizing commit messages.136

The significance of comments as a component137

inherently related to code has also garnered con-138

siderable interest in research. Feng et al. (2020)139

employed the Masked Language Modeling (MLM)140

task on code data with comments to train a pre-141

trained model, yielding excellent results. Wang142

et al. (2021a), on the other hand, utilized Con-143

trastive Learning to align code with comments.144

Furthermore, Guo et al. (2022) conducted ablation145

experiments to demonstrate that training models on146

code data with comments leads to improved out-147

comes. In order to align natural language (NL) and148

code, Christopoulou et al. (2022) conducted a two-149

stage training specifically on the pairs of NL-code.150

This approach resulted in a significant performance151

improvement of approximately 70% compared to152

the single-stage training. While PL-NL alignment153

is of paramount importance, it is challenging to154

obtain naturally aligned data at the scale required155

for pre-training purposes.T herefore, we employ156

LLMs to generate corresponding natural language157

expressions based on the existing code.158

2.2 Data Augmentation in the Field of Code 159

Code augmentation techniques can be categorized 160

into Rule-based Techniques and Model-based Tech- 161

niques. Rule-based methods often involve tech- 162

niques such as replacing variable names, renaming 163

method names, and inserting dead code to trans- 164

form code snippets. Some code transformations 165

also consider deeper structural information, such as 166

control-flow graphs (CGFs) and use-define chains 167

(UDGs) (Quiring et al., 2019). Model-based Tech- 168

niques commonly utilize pre-trained models to re- 169

place non-keywords in the original data (Song et al., 170

2022). Another approach employed is similar to 171

Back-Translation, where code translation tasks are 172

augmented by translating between two program- 173

ming languages using natural language as an inter- 174

mediate language (Sennrich et al., 2015). 175

In addition, there are also several methods based 176

on Example Interpolation Techniques. For instance, 177

Dong et al. (2022) merges rule-based techniques 178

for source code models with mixup to blend the 179

representations of the original code snippet and 180

its transformed counterpart. Li et al. (2022) intro- 181

duces two novel interpolation techniques, namely 182

Binary Interpolation and Linear Extrapolation, for 183

source code models. Diverging from the aforemen- 184

tioned approach, we present a novel methodology 185

as the pioneering endeavor to enhance comments 186

by leveraging existing code. 187

2.3 Data Distillation in the Field of LLMs 188

In this work, our approach of data augmentation 189

through the utilization of LLMs can be regarded 190

as a form of data distillation. Such tasks typically 191

rely on two processes: generation and filtering. Un- 192

natural Instructions and Self-Instruct (Honovich 193

et al., 2023; Wang et al., 2023) have employed this 194

method in the creation of an instruction dataset. 195

While following the aforementioned two steps, 196
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language c-sharp cpp go java javascript
Instruct Num 447 364 425 435 458

language python php ruby rust typescript
Instruct Num 495 449 466 391 462

Table 3: We constructed over 4000 instruction data from
a total of 10 mainstream code of StarCoder (Li et al.,
2023a).

WizardLM and WizardCoder (Xu et al., 2023; Luo197

et al., 2023a) utilized an Instruction Evolver to gen-198

erate more diverse data. In fact, as the competency199

of the Teacher model has advanced, numerous stud-200

ies have gradually phased out the step of using a201

discriminator to filter data (Gunasekar et al., 2023b;202

Li et al., 2023b).203

However, the data generated by these methods204

all originates from the Teacher model, which of-205

ten limits them to the knowledge of the Teacher.206

To mitigate this limitation, GENIE (Yehudai et al.,207

2024) proposes generating task-specific examples208

from the content. Similarly, in WaveCode (Yu et al.,209

2023), the code generation task involves generat-210

ing instructions from code. Taking a step further,211

our method completely liberates itself from the212

constraints of a teacher model, enabling highly ef-213

ficient generation of large-scale pre-training data.214

3 Method215

Indeed, generating comments for existing code by216

using LLMs is not a simple task for us with two217

principal challenges. Firstly, LLMs often struggle218

to effectively follow the “add comments” instruc-219

tion, resulting in code loss or insufficient comment220

additions, especially for longer code files. Sec-221

ondly, generating comments for large-scale pre-222

training code data can be computationally expen-223

sive, leading to significant training costs for the en-224

tire model. Appendix A is a bad case where LLMs225

fail to follow the instruction of “add comments”.226

3.1 Instruction Tuning for Comment227

Generation228

In order to endow LLMs with the capacity to rig-229

orously follow “add comments” instructions, we230

deliberately constructed an Instruction dataset for231

fine-tuning LLMs.232

Instruction Dataset In this work, we selected233

over 4000 samples from the 10 distinguished234

programming languages discussed in StarCoder235

Datasets (Li et al., 2023a). These samples were236

Prompt: Please add detailed comments to the following code:
```python
from ..remote import RemoteModel
class NetworkDevicesGridRemote(RemoteModel):

properties = ("id",
"DeviceID",
"DeviceIPDotted",
"DeviceName",
"DeviceType",
)

```

Output: ```python\n<|EOT|>\n```

Figure 2: If the LLM discovers code with low training
value, it will output <|EOT|> to implement an implicit
filtering mechanism.

then augmented with corresponding comments us- 237

ing the GPT-4 model (OpenAI, 2023), resulting 238

in the creation of an extensive instruction dataset. 239

Following a meticulous manual screening process, 240

we refined the dataset, retaining a total of 4394 241

high-quality instruction data instances. Then, we 242

convert the prompt and code into Markdown for- 243

mat. Please find the sample of our instruction data 244

from Appendix B 245

To mitigate the risk of the model overfitting 246

to the specific characteristics of the instruction 247

data, we incorporated additional datasets: CodeAl- 248

paca (Chaudhary, 2023) and Evol-Instruct-Code- 249

80k (Luo et al., 2023b). To ensure the unique- 250

ness of our instructions, we meticulously removed 251

any instruction data with comments that over- 252

lapped with the CodeAlpaca and Evol-Instruct- 253

Code-80k datasets. After creating instruction data, 254

we use it to finetune our base model: CodeLlama- 255

7b (Roziere et al., 2023) and obtain a code com- 256

ments generator. 257

For a comprehensive overview of the language 258

distribution within our instruction dataset for com- 259

ment generation, please refer to Table 3 260

Implicit Filter Although the StarCoder (Li et al., 261

2023a) dataset underwent certain filtering pro- 262

cesses, there are still some data instances that lack 263

training value (e.g., containing only module im- 264

ports, version specifications, or very simple class 265

definitions). To counteract this predicament, we 266

incorporated particular samples within the instruc- 267

tion datasets, wherein the output was designated 268

as “<|EOT|>” to signify that the model does not 269

deem the input code is worth adding comments. 270

This strategy is designed with the objective of en- 271

dowing the model with the capacity to recognize 272

high-quality code data throughout the process of 273

comments generation. Figure 2 provides an exam- 274

ple of such a sample. 275
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Algorithm 1: Constrained Generation
Input :x, C = {C1, . . . , Cn}
Output :y

1 y ← [];
2 while true do
3 o← LLM(x, y);
4 if not gen_code (y, o) then
5 APPEND (y, o);
6 else
7 EXTEND (y, POP (C));

8 if stop (y) then
9 break;

3.2 NL-Aligned Code Data Generation276

To ensure the preservation of the original code dur-277

ing the comments generation process and to facili-278

tate a degree of acceleration, we introduce a novel279

method of constrained generation. Indeed, preser-280

vation of the original code is crucial to avoid the281

model generating illusory, repetitive code. Further282

details and information regarding this aspect can283

be found in the Appendix C284

Constrained Generation In the task of generat-285

ing comments for existing code, there is a notable286

characteristic in the LLM’s decoding stage: the287

generated content of the model can be easily sep-288

arated into comments and code on a line-by-line289

basis. Since the code is precisely the input given290

to the model, we can directly skip the process of291

generating code by the model.292

More formally, let C = {Ci} represent the293

code data for which comments are to be gener-294

ated, where Ci denotes the i-th line of the code.295

Let x = {prompt, C} be the input sequence, and296

ylt be the t-th token generated by the LLM in the297

l-th line. It is worth noting that this generation298

process is performed on a line-by-line basis.299

ylt ∼

{
P (y|x, y<l, yl<t) yl<t is comment,
Cj yl<t is code.

(1)300

In fact, during the process of generating each301

line of data of LLMs, it is possible to determine302

whether a particular line is code or not by using303

regular expressions with just a few initial tokens.304

Please refer to Algorithm 1 for the pseudo code305

and Figure 3 for an illustration of our method.306

Explicit Filter To exclude exceedingly poor in-307

stances in the comments generated by LLMs and308

ensure the quality of generated comments, we in-309

troduced two additional filtering rule:310

• Excluding code data generated by LLMs that 311

does not adhere to the markdown format. 312

• Excluding code data generated by LLMs 313

where the discrepancy in length between the 314

generated code and the original code exceeds 315

100%. 316

3.3 Self Augmentation 317

Upon executing the aforementioned two processes, 318

we will acquire a high-quality code dataset with 319

extensive comments. We can then proceed to con- 320

duct additional training to augment the capabilities 321

of our base model, resulting in a better code LLM. 322

This process engenders a self-augmentation feed- 323

back loop. Subsequently, the better LLm model 324

will serve as the base code LLm for the next it- 325

eration of self-augmentation, to be performed re- 326

peatedly. The overall process of our approach is 327

illustrated in Figure 1. 328

4 Experiments 329

We initially lay the foundation with empiri- 330

cal evidence on the Llama 2 model (Touvron 331

et al., 2023), illustrating that the fortification 332

of alignment between code and natural lan- 333

guage—particularly through the amplification of 334

comment density—profoundly influences down- 335

stream tasks. Subsequently, we apply our proposed 336

methodology to the Code Llama model (Rozière 337

et al., 2023), underscoring its capacity not merely 338

to bolster weak baselines such as Llama 2, but also 339

to achieve self-augmentation on models like Code 340

Llama, distinguished by their exceptional perfor- 341

mance in code generation tasks. Moreover, we have 342

substantiated through the InternLM2 (Team, 2023) 343

which is the most recent state-of-the-art LLm in 344

the field. that the PL-NL alignment data, gener- 345

ated by CodeLLama, retains its efficacy for other 346

models. All models were validated on the Hu- 347

manEval (Cobbe et al., 2021) and MBPP (Austin 348

et al., 2021) datasets. 349

4.1 Dataset 350

As an initial step, we elected to utilize the Python 351

data from StarCoder (Li et al., 2023a) as our exper- 352

imental validation dataset, henceforth referred to as 353

SP (StarCoder Python) to circumvent any potential 354

confusion. Leveraging the instruct data formulated 355

in the preceding section, we enacted instruct tuning 356

on the CodeLlama-7b model, thereby equipping it 357

with the capability to generate comments for code. 358
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Figure 3: Illustration of the constrained generation algorithm. During the generation process, the code will be
directly copied into the output until it encounters the marker indicating the beginning of a comment (#, ”’ or """ for
Python). The commented portion is generated by the code comment generator until the end of the comment (\n, ”’
or """, correspondingly).

This model was subsequently employed to append359

comments to the SP dataset.360

Owing to the existence of code data in StarCoder,361

characterized by an excessive number of tokens, the362

procedure of incorporating comments frequently363

surpasses the model’s maximum sequence length.364

Consequently, we opted to exclude this subset of365

data from the comment addition process, preserv-366

ing it for subsequent datasets.367

Within our approach, we integrated both implicit368

and explicit filters to ensure the integrity of the369

code data and the generated comments. As a result,370

a considerable proportion of data was unable to371

pass through the implicit filter (model outputting372

<|EOT|>) or the explicit filter during the comment373

generation process. We adopted two distinct strate-374

gies to address this situation:375

• Discarding the data that failed to traverse376

the implicit or explicit filter, culminating377

in a superior-quality dataset labeled Com-378

mentPack / Remove (CP/Remove, remove379

<|EOT|> samples in comment-packed python380

data).381

• Substituting the model’s output with the origi-382

nal code data for instances that were unable to383

pass through either filter, leading to a lower-384

quality dataset (maintaining the same scale as385

the original dataset), designated as the Com-386

mentPack / Restore (CP/Restore, substitute387

raw StarCoder data for <|EOT|> samples in388

comment-packed python dataset) dataset.389

Moreover, to streamline comparisons with the390

CP/Remove dataset, we gathered the corresponding391

original data for these instances, thereby construct-392

ing the StarCoder Python / Remove (SP/Remove,393

Dataset #Samples Comment Density (%) #Tokens
StarCoder Python 12.8M 21.87 20.8B

StarCoder Python / Remove 6.54M 23.08 13.1B
StarCoder Python / Absent 12.8M 0.0 16.7B

CommentPack / Restore 12.8M 32.59 21.5B
CommentPack / Remove 6.54M 38.23 15.2B

Table 4: Number of samples, comment density and
number of tokens of the corresponding code datasets.

remove <|EOT|> samples in original python dataset 394

of StarCoder) dataset. 395

In addition, to validate the importance of com- 396

ments in the code dataset, we utilized regular ex- 397

pressions to eliminate all comments from the SPO 398

dataset, thus creating a pure code dataset. This 399

dataset solely consists of code samples without 400

any accompanying comments, named StarCoder 401

Python / Absent (SP/Absent, means the absence 402

of comments in the python dataset of StarCoder) 403

Table 4 provides a detailed overview of the datasets 404

mentioned. 405

4.2 Training Details 406

Further Training Our optimizer is AdamW 407

(Loshchilov and Hutter, 2019) with β1 and β2 value 408

of 0.9 and 0.95. We use a cosine scheduler with 250 409

warm-up steps, and set the final learning rate to be 410

1/10 of the peak learning rate. We use a batch size 411

of 4M tokens which are presented as sequences of 412

4,096 tokens for Llama 2, 16384 tokens for Code 413

Llama and InternLM 2. 40B tokens in total. We set 414

the initial learning rate to 1e−5 for Llama 2, 3e−6 415

for Code Llama and InternLM2. 416

Instruction Training To further assess the per- 417

formance of our model, we conducted instruction 418

tuning using the dataset proposed by Alchemist- 419

Coder(ano, 2024). The training was performed 420
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MODEL DATA
HumanEval MBPP

pass@1 pass@5 pass@10 pass@1 pass@5 passs@10
Llama2-7b - 12.25 19.75 23.73 20.81 29.1 37.75
Llama2-7b SP/Absent 16.46 27.87 34.22 19.00 40.10 48.16
Llama2-7b SP 17.07 31.09 39.06 20.40 52.45 50.90
Llama2-7b CP/Restore 23.17 31.79 38.84 29.20 41.20 49.34
CodeLlama-7b - 31.10 45.75 56.81 42.80 56.50 64.82
CodeLlama-7b SP 32.32 43.70 53.41 45.00 58.03 65.41
CodeLlama-7b SP/Remove 33.54 46.87 57.33 44.80 57.68 65.23
CodeLlama-7b CP/Restore 32.32 47.81 57.27 44.20 57.10 64.97
CodeLlama-7b CP/Remove 39.02 51.89 61.5 43.00 56.70 64.99
InternLM2-7b-base - 32.32 49.64 60.13 41.40 54.06 62.23
InternLM2-7b-base SP 35.98 49.82 59.57 43.00 56.24 64.18
InternLM2-7b-base CP/Remove 40.20 50.9 60.78 43.00 56.87 64.99
InternLM2-7b - 43.29 56.31 67.64 44.00 57.72 63.10
InternLM2-7b SP 42.70 59.67 70.72 42.60 61.61 67.15
InternLM2-7b CP/Remove 49.39 58.04 68.27 47.80 64.89 71.12

Table 5: Experiment results of further pre-training. "-" indicates the origin model without tuning. Almost all of the
base models achieved leading performance on dataset SC/Remove, especially in the results of Pass@1.

with a batch size of 512K tokens, organized as se-421

quences of 8192 tokens. We employed a learning422

rate of 1e−5 and trained the model for 2 epochs423

on a cluster consisting of 32 NVIDIA A100-80GB424

GPUs.425

4.3 Data Distillation426

Table 5 shows the experimental results conducted427

on the Llama2-7b model. The results clearly428

demonstrate that as the comment density increases429

(with a comment density of 0 for “SP/Absent”430

and a density of 38.23% for “CP/Remove”), the431

model’s performance exhibits significant improve-432

ments transitioning from 16.46 to 23.17 on Hu-433

manEval dataset, 19.00 to 29.20 on MBPP dataset.434

435

From Figure 4(a), it is clear that when train-436

ing with the same number of tokens, data with437

a higher comment ratio achieves better results in438

downstream tasks. This result indicates that, un-439

der the same amount of data, a higher comment440

density makes it easier to learn the code, improves441

the alignment between natural language and code,442

and is more beneficial for code generation-oriented443

downstream tasks444

4.4 Self-Augmentation445

Firstly, Table 5 provides a comprehensive overview446

of the results obtained from Further Training of447

Code Llama on the SP and CP/Restore datasets.448

The analysis reveals that merely replacing the fil-449

MODEL DATA HumanEval MBPP
CodeLlama-7b - 63.40 53.20
CodeLlama-7b SP 66.46 55.80
Instruct Num CP/Remove 65.85 58.60

Table 6: Experiment Pass@1 result in HumanEval and
MBPP of Instruction Fine-tuning."-" indicates the origin
model without tuning.

tered data, removed by explicit and implicit fil- 450

ters, with the original data does not significantly 451

improve the model’s performance on downstream 452

tasks. However, when the filtered data is com- 453

pletely removed (as observed in Code Llama’s re- 454

sults on SP and SP/Remove), a certain degree of 455

improvement can be observed on the HumanEval 456

evaluation set. Although this improvement may not 457

be substantial, it still underscores the necessity of 458

the filters. Similar conclusions can be drawn from 459

the comparison of Code Llama’s further training 460

results on CP/Restore and CP/Remove datasets. 461

For the same filtered data, the addition of more 462

comprehensive comments leads to significant per- 463

formance gains on HumanEval after further train- 464

ing (as evident from Code Llama’s results on 465

CP/Remove and CP/Restore). However, it should 466

be acknowledged that the structure of MBPP’s data 467

and the way we incorporate data into the code dif- 468

fer significantly, and we did not achieve substantial 469

improvements during the further training phase on 470

MBPP. Nevertheless, we discovered that this does 471
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Figure 4: HumanEval performance variation with respect to the number of training tokens.

not imply a lack of substantial performance en-472

hancement for the model. In fact, as show in Table473

6, when Code Llama undergoes instruction tuning474

after further pre-training on SP and CP/Remove475

datasets, it further enhances the model’s adaptabil-476

ity to the MBPP dataset, resulting in a notewor-477

thy improvement of 5.4% pass@1 on CP/Remove.478

Please refer to the Appendix D for the results of479

Pass@5 and Pass@10.480

Furthermore, the comment generated by our ap-481

proach on Code Llama remain effective for other482

models as well (as demonstrated by the comparison483

with further training results on SP and CP/Remove484

of InternLM2, where Code Llama’s comments485

yield a significant improvement of 6% pass@1486

on HumanEval for the InternLM2-7b-base model,487

6.6% pass@1 on HUmanEval, 5.2% pass@1 on488

MBPP for the InternLM2-7b model).489

Lastly, Figure 4(b) demonstrates that the data490

quality of SP/Remove surpasses that of SP. Further-491

more, after incorporating comments into SP/Re-492

move (CP/Remove), there is a significant quali-493

tative improvement in the dataset’s quality. This494

leap in data quality can be observed if we acknowl-495

edge the close correlation between data quality and496

downstream tasks, under the assumption that the497

base model remains consistent.498

4.5 Constrained Generation499

We have implemented the Constraint Generation500

method on LMDeploy2 and demonstrated its effec-501

tiveness in accelerating decoding under different502

experimental. Despite LMDeploy already incor-503

porating various acceleration techniques such as504

page attention, our method exhibits notable speed505

2https://github.com/InternLM/lmdeploy
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Figure 5: Heat map of speedup ratio across different
combinations of instance numbers and batch sizes.

improvements. 506

As evident from Figure 5, the results indicate 507

that our method achieves the most significant accel- 508

eration when the batch size and instance number 509

are relatively small. Even when the GPU is oper- 510

ating at maximum capacity (e.g., batch_size=128, 511

instance_num=128), our method still provides a 512

certain degree of speed enhancement. 513

5 Conclusion 514

In this paper, we propose a novel method of code 515

data augmentation that generates comments for ex- 516

isting code. We validate its effectiveness on three 517

different LLMs. This signifies a novel paradigm 518

shift towards self-augmentation for code LLMs, 519

thereby illuminating the latent potential for LLMs 520

to self-evolve and enhance. 521
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6 Limitation522

In this paper, although we have successfully elimi-523

nated the reliance on data distillation with a teacher524

model, it is important to note that performing data525

augmentation on the pre-training dataset still incurs526

considerable GPU overhead. Additionally, using527

"<|EOT|>" as the model’s output in the implicit528

filter stage may not align well with the behavioral529

patterns typically exhibited by a language model.530

It might be more beneficial to consider using natu-531

ral language instead. Furthermore, during the next532

iteration of self-augmentation, we observed only533

marginal improvements, which is why these results534

were not reported in the main experiments. Fur-535

ther exploration and investigation are needed in this536

regard.537
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tion. CoRR, abs/2312.14187.746

A Bad Cases of Comment Generation by747

LLMs748

749
1 Prompt: Please add detailed comments to750

the following code751
2 ‘‘‘python752
3 # https ://www.hackerrank.com/challenges/753

save -the -prisoner754
4755
5 # this is too slow756
6757
7758
8 def save(n, sweets , s):759
9 sweets -= 1760

10 while sweets: # while we have candy761
11 if s == n: # if we reach the762

end , reset763
12 s = 0764
13 else:765
14 s += 1 # increase the id766
15 sweets -= 1767
16 return s768
17769
18770
19 t = int(input().strip())771
20 for a0 in range(t):772
21 n, m, s = input().strip().split(’ ’)773
22 n, m, s = [int(n), int(m), int(s)]774
23775
24 print(save(n, m, s))776
25777
26 ‘‘‘778
27 Model Output:779
28 ‘‘‘python780
29 # This code is designed to solve the "781

Save the Prisoner" problem on782
HackerRank.783

30 # The problem is as follows:784
31785
32 # There are N prisoners standing in a786

circle waiting to be executed. The787
executions occur around a circular788
table , and each execution takes789
exactly one minute. The executions790
are carried out starting from the791
prisoner at position 1 and moving792
clockwise until the last prisoner is793
executed. The executions are794

carried out such that each prisoner795
is guaranteed to be executed.796

33797
34 # Given N, the total number of prisoners798

, M, the number of executions per799
hour , and S, the position of the800
prisoner to be executed next , find801
the position of the prisoner to be802
executed in the Nth hour.803

35804
36 # The provided code is an implementation805

of a solution to this problem. It806
uses a while loop to simulate the807
executions of the prisoners ,808
decrementing the number of remaining809
sweets with each execution.810

37811

38 # The code first decrements the number 812
of remaining sweets by 1. Then , it 813
checks if there are any remaining 814
sweets. If there are , it continues 815
the loop. 816

39 817
40 # If the prisoner to be executed next (S 818

) is equal to N, it means that the 819
circle has returned to the beginning 820
, so it resets S to 0. Otherwise , it 821
increments S by 1 to move to the 822

next position. 823
41 824
42 # Finally , it returns the value of S, 825

which represents the position of the 826
prisoner to be executed in the Nth 827

hour. 828
43 829
44 # This code is too slow because it does 830

not take into account the fact that 831
the executions occur around a 832
circular table , which means that the 833
order of executions may not be in a 834
strict linear sequence. 835

45 # A more efficient solution would be to 836
consider the fact that each 837
execution takes exactly one minute , 838
and the circle returns to the 839
beginning after M executions per 840
hour. 841

46 # This would allow the code to predict 842
the position of the prisoner to be 843
executed in each hour , and thus find 844
the position of the prisoner to be 845

executed in the Nth hour. 846
47 ‘‘‘ 847848

Listing 1: a bad case where LLMs fail to follow the
instruction of “add comments”.

B A Sample of Instuctions Data 849

850
1 Prompt: Please add detailed comments to 851

the following code 852
2 ‘‘‘python 853
3 import sys 854
4 import os 855
5 import glob 856
6 857
7 if len(sys.argv) != 2: 858
8 print("Error: wrong format .\ nUsage: 859

python find_class.py [class_name]" 860
) 861

9 sys.exit (0) 862
10 863
11 searching_class_name = sys.argv [1] 864
12 865
13 def find_class(class_name): 866
14 file_list = glob.glob(’*.txt’) 867
15 file_list.sort() 868
16 # iterate through the text files 869
17 file_found = False 870
18 for txt_file in file_list: 871
19 # open txt file lines to a list 872
20 with open(txt_file) as f: 873
21 content = f.readlines () 874
22 # remove whitespace characters like 875

‘\n‘ at the end of each line 876

11

https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2312.14187


23 content = [x.strip() for x in877
content]878

24 # go through each line of eache file879
25 for line in content:880
26 class_name = line.split()[0]881
27 if class_name ==882

searching_class_name:883
28 print(" " + txt_file)884
29 file_found = True885
30 break886
31 if not file_found:887
32 print(" No file found with that888

class")889
33890
34 print("Ground -Truth folder:")891
35 os.chdir("../ground -truth")892
36 find_class(searching_class_name)893
37 print("\nPredicted folder:")894
38 os.chdir("../ predicted")895
39 find_class(searching_class_name)896
40897
41 ‘‘‘898
42 Model Output:899
43 ‘‘‘python900
44 # import necessary libraries901
45 import sys902
46 import os903
47 import glob904
48905
49 # check if the command line arguments906

are valid907
50 if len(sys.argv) != 2:908
51 print("Error: wrong format .\ nUsage:909

python find_class.py [class_name910
]")911

52 sys.exit (0)912
53913
54 # get the class name from the command914

line arguments915
55 searching_class_name = sys.argv [1]916
56917
57918
58 # function to find the class in the text919

files920
59 def find_class(class_name):921
60 # get all text files in the current922

directory923
61 file_list = glob.glob("*.txt")924
62 file_list.sort()925
63 # flag to check if the class is926

found in any file927
64 file_found = False928
65 # iterate through the text files929
66 for txt_file in file_list:930
67 # open txt file lines to a list931
68 with open(txt_file) as f:932
69 content = f.readlines ()933
70 # remove whitespace characters934

like ‘\n‘ at the end of each935
line936

71 content = [x.strip() for x in937
content]938

72 # go through each line of each939
file940

73 for line in content:941
74 class_name = line.split()[0]942
75 # if the class name matches943

the input class name944
76 if class_name ==945

searching_class_name:946

77 print(" " + txt_file) 947
78 file_found = True 948
79 break 949
80 # if the class is not found in any 950

file 951
81 if not file_found: 952
82 print(" No file found with that 953

class") 954
83 955
84 956
85 # find the class in the ground -truth 957

folder 958
86 print("Ground -Truth folder:") 959
87 os.chdir("../ground -truth") 960
88 find_class(searching_class_name) 961
89 962
90 # find the class in the predicted folder 963
91 print("\nPredicted folder:") 964
92 os.chdir("../ predicted") 965
93 find_class(searching_class_name) 966
94 967
95 ‘‘‘ 968969

Listing 2: a sample of our instuctions data.

C Bad Cases of Original Generation 970

971
1 Prompt: Please add detailed comments to 972

the following code 973
2 ‘‘‘python 974
3 import functools 975
4 import logging 976
5 977
6 978
7 @functools.lru_cache 979
8 def component_logger(name: str): 980
9 return logging.getLogger(name) 981

10 982
11 ‘‘‘ 983
12 Model Output: 984
13 ‘‘‘python 985
14 import functools 986
15 import logging 987
16 988
17 989
18 # Decorator to cache the results of the 990

function , using the function 991
arguments as the cache key 992

19 # This will make the function faster by 993
returning the cached result when the 994
same inputs are provided 995

20 @functools.lru_cache 996
21 def component_logger(name: str): 997
22 # This function is responsible for 998

creating a logger object for a 999
given component 1000

23 # The logger object is used to log 1001
messages for a specific 1002
component 1003

24 1004
25 # Get the logger for the given 1005

component name 1006
26 # The logger is a singleton object 1007

that can be used to log messages 1008
for a specific component 1009

27 # The ’name’ parameter is used to 1010
identify the component for which 1011
the logger is being created 1012

28 logger = logging.getLogger(name) 1013
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291014
30 # Set the log level to INFO1015
31 # This is the default log level in1016

Python logging module , which1017
means that only log messages of1018
level INFO or higher will be1019
displayed1020

32 logger.setLevel(logging.INFO)1021
331022
34 # Create a file handler to log1023

messages to a file1024
35 # This handler will write log1025

messages to a file named ’1026
component_name.log’1027

36 # The log messages will be written1028
in the ’INFO’ level1029

37 file_handler = logging.FileHandler(f1030
"{name}.log")1031

38 file_handler.setLevel(logging.INFO)1032
391033
40 # Create a formatter for the file1034

handler1035
41 # The formatter will format the log1036

messages in a specific format1037
42 formatter = logging.Formatter("%(1038

asctime)s - %( levelname)s - %(1039
message)s")1040

43 file_handler.setFormatter(formatter)1041
441042
45 # Add the file handler to the logger1043
46 # The file handler will be used to1044

write log messages to the file1045
47 logger.addHandler(file_handler)1046
481047
49 # Return the logger object1048
50 # This logger object can be used to1049

log messages for the specified1050
component1051

51 return logger1052
521053
53 ‘‘‘10541055

Listing 3: a bad case where an LLM generates an
illusion using the original generation approach.

1056
1 Prompt: Please add detailed comments to1057

the following code:1058
2 ‘‘‘python1059
3 # 16) E x e r c c i o Python 16:1060
4 # Crie um programa que leia um n m e r o1061

Real qualquer pelo teclado e mostre1062
na tela a sua p o r o Inteira.1063

51064
6 ’’’ IMPORTANDO MODULO1065
7 from math import trunc1066
8 num = float(input(’Digite um valor:’))1067
9 print(’O valor digitado foi {} e a sua1068

p o r o inteira {}’ .format(num ,1069
trunc(num)))1070

10 ’’’1071
111072
12 #SEM IMPORATAR MODULO1073
13 #Recebe o n m e r o em float e tranforma1074

para inteiro1075
14 num = float(input(’Digite um valor:’))1076
15 print(’O valor digitado foi {} e a sua1077

porcao inteira {}’.format(num ,1078
int(num)))1079

161080
17 ‘‘‘1081

18 Model Output : 1082
19 ‘‘‘python 1083
20 # 16) E x e r c c i o Python 16: 1084
21 # Crie um programa que leia um n m e r o 1085

Real qualquer pelo teclado e mostre 1086
na tela a sua p o r o Inteira. 1087

22 1088
23 # IMPORTANDO MODULO 1089
24 # O m d u l o math fornece f u n e s 1090

m a t e m t i c a s comuns , incluindo 1091
f u n e s para raiz quadrada , 1092
p o t n c i a , arredondamento , etc. 1093

25 # O m t o d o trunc() retorna o n m e r o 1094
truncado , ou seja , ele arredonda o 1095
n m e r o para baixo , eliminando as 1096
casas decimais. 1097

26 from math import trunc 1098
27 1099
28 # Recebe o n m e r o em float e tranforma 1100

para inteiro 1101
29 # O m t o d o input() pede ao u s u r i o um 1102

valor e retorna uma string , e n t o 1103
convertemos essa string em um 1104
n m e r o float. 1105

30 num = float(input("Digite um valor:")) 1106
31 1107
32 # Imprimindo o n m e r o e sua p o r o 1108

inteira 1109
33 # Usamos o m t o d o format () para inserir 1110

os valores num e trunc(num) na 1111
string de s a d a . 1112

34 print("O valor digitado foi {} e a sua 1113
p o r o inteira {}".format(num , 1114
trunc(num))) 1115

35 1116
36 # SEM IMPORATAR MODULO 1117
37 # Recebe o n m e r o em float e tranforma 1118

para inteiro 1119
38 num = float(input("Digite um valor:")) 1120
39 1121
40 # Imprimindo o n m e r o e sua p o r o 1122

inteira 1123
41 # Usamos o m t o d o int() para converter 1124

o n m e r o em um n m e r o inteiro. 1125
42 print("O valor digitado foi {} e a sua 1126

p o r o inteira {}".format(num , 1127
int(num))) 1128

43 1129
44 ‘‘‘ 11301131

Listing 4: a bad case example of LLMs generating
duplicate data. using the original generation approach.

D Experiment Result of Instruction 1132

Fine-Tuning 1133

Table 7 presents the complete results of instruction 1134

fine-tuning on the Humaneval and MBPP datasets 1135

for Pass@1 to Pass@10 1136

E Ethics Statement 1137

We use OpenAI GPT to generate part of the train- 1138

ing data. The terms of use can be accessed from 1139

OpenAI’s official website3. 1140

3https://openai.com/policies/terms-of-use
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Model DATA
HumanEval MBPP

pass@1 pass@5 pass@10 pass@1 pass@5 passs@10
CodeLlama-7b - 63.40 81.11 86.29 53.20 65.14 71.21
CodeLlama-7b SP 66.46 80.91 86.46 55.80 65.60 71.25
CodeLlama-7b CP/Remove 65.85 80.7 86.27 58.60 65.00 71.14

Table 7: Experiment results of instruction fine-tuning. Lines of DATA marked as "-" indicate the reported values of
the origin model.

We use CodeAlpaca and Evol-Instruct-Code-80k1141

datasets for instruction tuning. They are distributed1142

under CC-By-NC 4.0 license. You can get a copy1143

of the licenses from their GitHub repositories4.1144

We perform experiments using StarCoder as the1145

validation dataset. The StarCoder dataset is dis-1146

tributed under Terms of Use for The Stack5.1147

We employ Code Llama to generate comment.1148

According to Code Llama’s license6, you will not1149

use the Llama Materials or any output or results1150

of the Llama Materials to improve any other large1151

language model (excluding Llama 2 or derivative1152

works thereof).1153

The experiments are performed on Llama 2,1154

Code Llama and InternLM2. Their weights are1155

distributed under their corresponding licenses7.1156

Out of ethical considerations, we will release the1157

CommentPack datasets and the further pre-trained1158

model checkpoints only for research purpose under1159

any relevant licenses.1160

4https://github.com/sahil280114/codealpaca/
blob/master/DATA_LICENSE https://github.com/
nlpxucan/WizardLM/blob/main/WizardCoder/DATA_
LICENSE

5https://hf-mirror.com/datasets/bigcode/
the-stack#terms-of-use-for-the-stack

6https://github.com/facebookresearch/
codellama/blob/main/LICENSE

7https://github.com/facebookresearch/
llama/blob/main/LICENSE https://github.
com/facebookresearch/codellama/blob/main/
LICENSE https://github.com/InternLM/InternLM#
license
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