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Abstract

Dialect speech recognition has always been one001
of the challenges in Automatic Speech Recog-002
nition (ASR) systems. While lots of ASR sys-003
tems perform well in Mandarin, their perfor-004
mance significantly drops when handling di-005
alect speech. This is mainly due to the obvious006
differences between dialects and Mandarin in007
pronunciation and the data scarcity of dialect008
speech. In this paper, we propose DialectMoE,009
a Chinese multi-dialects speech recognition010
model based on Mixture-of-Experts (MoE) in a011
low-resource conditions. Specifically, Dialect-012
MoE assigns input sequences to a set of experts013
using a dynamic routing algorithm, with each014
expert potentially trained for a specific dialect.015
Subsequently, the outputs of these experts are016
combined to derive the final output. Due to017
the similarities among dialects, distinct experts018
may offer assistance in recognizing other di-019
alects as well. Experimental results on the Ai-020
Datatang dialect public dataset show that, com-021
pared with the baseline model, DialectMoE re-022
duces Character Error Rate(CER) for Sichuan,023
Yunnan, Hubei and Henan dialects by 23.6%,024
32.6%, 39.2% and 35.09% respectively. The025
proposed DialectMoE model demonstrates out-026
standing performance in multi-dialects speech027
recognition.028

1 Introduction029

The application domains of speech recognition030

technology are extensive, encompassing diverse031

fields such as voice assistants, smart homes,032

and automotive voice interaction, among others.033

Thanks to the advancements in deep learning, Au-034

tomatic Speech Recognition(ASR) systems have035

made remarkable strides in recognizing Mandarin036

speech(Malik et al., 2021; Wang et al., 2019; Al-037

harbi et al., 2021). Dialect serves as a prevalent038

mode of everyday communication among the Chi-039

nese populace. However, the performance of ASR040

systems remains limited in dialect speech, posing a041

Figure 1: The tonal distinctions among Standard Man-
darin, Yunnan dialect, and Sichuan dialect.

significant challenge in the field of speech recogni- 042

tion technology(Hinsvark et al., 2021; Alsharhan 043

and Ramsay, 2020) due to the inherent variations 044

and distinct characteristics in pronunciation among 045

dialects and Mandarin. Therefore, improving the 046

accuracy and adaptability of Chinese ASR systems 047

is significant and meaningful for multi-dialect. Our 048

study mainly focuses on Chinese dialects, the pro- 049

posed method can also be generalized to other di- 050

alects. 051

Chinese dialects are typically classified into ten 052

main categories, each exhibiting notable differ- 053

ences in pronunciation, tone, vocabulary, and gram- 054

mar(Ho, 2015). Chinese is a tonal language, where 055

each character corresponds to a specific tone, a 056

feature that is prevalent in most of its dialects as 057

well. The pronunciation of a given Chinese charac- 058

ter with different tones imparts markedly distinct 059

meanings. This underscores the profound signif- 060

icance of tones in the comprehension of Chinese 061

phonetics. (Ho, 2015; Sproat et al., 2004). Fig- 062

ure 1 depicts the tonal distinctions among Stan- 063

dard Mandarin, Yunnan dialect, and Sichuan di- 064
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alect. It is evident that notable differences exist065

in tonal between Standard Mandarin and Yunnan066

dialect as well as Sichuan dialect in the second,067

third, and fourth tones. However, Yunnan dialect068

and Sichuan dialect exhibit a pronunciation sim-069

ilarity in specific tones. The change in tone re-070

veal differences and similarities between Standard071

Mandarin and various dialects. Hence, considering072

both the differences and similarities in pronunci-073

ation among various dialects alongside Standard074

Mandarin becomes crucial for the advancement of075

Chinese speech recognition systems.076

In recent years, numerous researches have fo-077

cused on tackling the challenge of poor perfor-078

mance in dialect speech recognition models(Li079

et al., 2018; Ren et al., 2019; Zhang et al., 2022b).080

The traditional way is based on different modeling081

methods to improve the effect of dialect speech082

recognition. Humphries et al. (1996) employed an083

adaptive method that utilizes a pronunciation vo-084

cabulary with dialect data to capture differences085

between standard and dialect pronunciations. Li086

et al. (2019) proposed a novel method for modeling087

Chinese characters based on radicals, effectively088

addressing the issue of dialect modeling difficulty.089

This method significantly reduces the required size090

of radical dictionaries compared to ordinary char-091

acter dictionaries. Recently, multitask-based meth-092

ods have been widely used in the task of dialect093

speech recognition. Compared with the traditional094

method, the multi-task learning method is more095

efficient. Elfeky et al. (2016) proposed construct-096

ing a dialect classification model and a separate097

speech recognition model for each dialect. The098

dialect classification model is used to select the099

corresponding dialect speech recognition model.100

Dan et al. (2022) proposed a multi-task training101

strategy that combines dialect classification with102

dialect speech recognition, bridging the substantial103

gap between Mandarin and dialect acoustic proper-104

ties. However„ these investigations are contingent105

upon extensive dialectal datasets and do not exam-106

ine the potential influence of commonalities among107

various dialects on model performance.108

To construct a reliable dialect speech recognition109

model in low-resource conditions, Jiang (2023) in-110

troduced a transfer learning-based approach, it in-111

volves a model trained on Mandarin and fine-tunes112

with small-scale dialect data. However, relying113

solely on transfer learning may not adequately cap-114

ture the distinctions between dialects and Mandarin.115

Wang et al. (2023) proposed Aformer model with 116

multi-stage training strategy, which can capture 117

diverse acoustic information in different training 118

stage, enabling the model to effectively adapt to 119

dialect data. The aforementioned studies focus on 120

the training strategy and model expansion, they do 121

not fully consider the differences and similarities 122

between dialects and Mandarin. 123

In this paper, we present DialectMoE, a multi- 124

dialect speech recognition model based on Mixture- 125

of-Experts (MoE), aimed at improving the perfor- 126

mance of multi-dialects speech recognition in low- 127

resource conditions. DialectMoE is architecturally 128

structured with dual encoders: a dialect encoder 129

and a general encoder. The main contributions of 130

the paper include: 131

• We propose a three-stage training methodol- 132

ogy designed to enhance the model’s adapt- 133

ability in addressing low-resource multi- 134

dialect scenarios through different stages. De- 135

tailed specifics will be expounded upon in 136

Section 3.3. 137

• We introduce MoE layers and enhance the 138

dynamic routing algorithm to enable the com- 139

bination of acoustic features from both the 140

input sequence and the dialect encoder during 141

the expert selection process. 142

• The experiment results show that DialectMoE 143

reduces Character Error Rate(CER) compared 144

to the baseline model for Sichuan, Yunnan, 145

Hubei and Henan dialects by 23.6%, 32.6%, 146

39.2% and 35.09%, respectively. 147

2 Related Work 148

2.1 Conformer-based ASR 149

The Conformer, a convolution-augmented Trans- 150

former introduced in (Gulati et al., 2020), has been 151

widely acknowledged as the state-of-the-art end- 152

to-end ASR technology owing to its exceptional 153

performance in ASR tasks. In recent years, sev- 154

eral researchers have proposed Conformer variants 155

(Peng et al., 2022; Sehoon et al., 2023) to further 156

enhance the capabilities of speech recognition. The 157

Conformer module comprises two feed-forward 158

modules, a multi-heads self-attention module, and 159

a convolution module. The output y of one Con- 160

former block for a given input x can be defined as 161
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follows:162

x̂ = x+
1

2
FFN1(x) (1)163

x̃ = x̂+MHSA(x̂) (2)164

x̄ = x̃+Conv(x̃) (3)165

y = LN(x̄+
1

2
FNN2(x̄)) (4)166

where FNN1 denotes the first feedforward module,167

FNN2 denotes the second feedforward network,168

MHSA denotes the multi-head self-attention mod-169

ule, Conv denotes the convolution module, and170

LN denotes layer normalization. For additional171

information regarding the Conformer ASR model,172

please refer to (Gulati et al., 2020).173

During Conformer training, the Joint CTC-174

Attention loss function (Hori et al., 2017) is utilized.175

This loss function is commonly used in present-day176

speech recognition technology. In this paper, the177

joint CTC-Attention loss is incorporated into the178

total loss function. The loss function is outlined as179

follows:180

Lall = (1− λ)Latt + λLctc (5)181

where Latt denotes the decoding loss of the Atten-182

tion decoder, and Lctc denotes the CTC loss., λ is a183

hyper parameter which denotes the weight of these184

two loss.185

2.2 Mixture-of-Experts Based Speech186

Recognition187

The MoE based methods offer a solution for more188

efficient training and inference by selectively acti-189

vating different experts in the model based on differ-190

ent inputs (Jacobs et al., 1991; Shazeer et al., 2017).191

This enables the model to adapt to a wide range of192

inputs and scale to more parameters while main-193

taining a consistent computational cost. The MoE194

based models have demonstrated their effectiveness195

in natural language processing (Fedus et al., 2022;196

Du et al., 2022) and computer vision (Riquelme197

et al., 2021; Fan et al., 2022).198

In real-world application, speech recognition sys-199

tems need to handle various input conditions, in-200

cluding speaker variation, accent variation, and201

acoustic environment (Zilvan et al., 2021). How-202

ever, conventional speech recognition models have203

a fixed computational cost and cannot adapt to the204

complexity of input instances. You et al. (2021,205

2022) explore the MoE based model for speech206

recognition, named SpeechMoE, and propose a207

new router architecture which integrates additional 208

global domain and various embedding into router 209

input to promote adaptability. Additionally, a mul- 210

tilingual speech recognition network (MoLE) was 211

introduced (Kwon and Chung, 2023) to analyze au- 212

dio input data from multiple languages and identify 213

expert networks suitable for each language. Simul- 214

taneously, a language-independent expert network 215

was also introduced, and the selected expert net- 216

work and the language-independent expert network 217

collectively fulfill the language requirements nec- 218

essary for effective speech recognition. 219

Employing the MoE mechanism to determine 220

expert activation during the forward propagation 221

process manifests a notable capacity for accom- 222

modating the inherent variability in multi-dialectal 223

speech across different input sequences. Neverthe- 224

less, the conventional MoE paradigm relies solely 225

on the input sequence for expert selection, and the 226

information in the present input does not inher- 227

ently ensure the optimal suitability of the selected 228

experts. Therefore, the incorporation of supple- 229

mentary dialectal information to facilitate expert 230

selection stands forth as a judicious resolution, en- 231

hancing the precision and adaptability of the chosen 232

experts to the distinctive intricacies characterizing 233

the multi-dialectal speech context. Furthermore, 234

the exploration of MOE-based methods in the do- 235

main of multi-dialect speech recognition remains 236

limited. 237

3 DialectMoE 238

3.1 Overall Architecture of DialectMoE 239

The overall architecture of DialectMoE is shown in 240

Figure 2a. The original audio sequence undergoes 241

preprocessing by the frontend module to extract 242

FBank features. Subsequently, the convolutional 243

downsampling is applied to temporally downsam- 244

ple the audio feature sequence. The dialect encoder, 245

consisting of 6 layers of vanilla Conformer encoder, 246

captures dialect information from the feature se- 247

quences. On the other hand, the general encoder 248

comprises 12 layers of DialectMoE encoder blocks, 249

are responsible for capturing speech information 250

in a normal manner. Both encoders share the same 251

input but focus on different aspects of information. 252

The detailed structure of the DialectMoE block 253

is presented in Figure 2b. With the DialectMoE 254

block, the input sequence firstly passes through 255

the Feed-Forward Network (FFN) layer, followed 256

by Attention and Convolutional Neural Network 257
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Figure 2: (a) DialectMoE overall architecture, where the general encoder consists of N DialcetMoE blocks. (b)
Architecture of the DialectMoE encoder block module.

(CNN) layer to extract global and local information,258

respectively. Then the appropriate expert within259

the MoE layer is selected based on the dynamic260

routing. The output of experts are multiplied by the261

weight assigned by the router layer.262

Compared to the widely used vanilla Conformer263

block(Gulati et al., 2020), our DialectMoE block264

incorporates MoE layers to address complex and265

variable scenarios encountered in real-world situa-266

tions. The dialect information captured by the di-267

alect encoder is weighted by the router layer, which268

enables the router layer to choose more appropriate269

experts based on both dialect features and general270

features obtained from two encoders. This dynamic271

routing mechanism proves more effective in intri-272

cate speech scenarios, especially those involving273

multiple dialects.274

3.2 Dialect Adaptive Dynamic Expert Routing275

In the context of multi-dialect speech recognition,276

effectively addressing the diversity of dialectal vari-277

ations is crucial. We present a novel dynamic rout-278

ing algorithm aimed at enhancing the adaptability279

and generalization of the model to diverse dialects280

speech input sequences. The proposed algorithm281

leverages the input sequences from the current282

MoE layer and the dialect information provided by283

the dialect encoder to select appropriate experts. To284

evaluate the impact of different dialect embedding285

on routing, we consider the following three strate-286

gies: input sequence concat dialect embedding,287

Figure 3: Illustration of dynamic routing algorithm.

input sequence add dialect embedding, and only 288

use embedding(embed) of dialects. The output of 289

the dialect encoder is denoted as XD
encoder ⊆ RT×d, 290

where T represents the sequence length and d de- 291

notes the feature dimension. Assuming that there 292

are N experts, the output r ⊆ RT×N of the routing 293

layer can be defined as follows. : 294

r = Wr · Concat(x̄,XD
ecndoer) (6) 295

r = Wr ·Add(x̄,XD
ecndoer) (7) 296

r = Wr · XD
ecndoer (8) 297

where Wr represents the weight parameter of the 298

router layer, and x̄ denotes the output of the convo- 299

lution module. These three dynamic routing strate- 300

gies are the ones we consider employing. It is worth 301
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noting that while the general router layer selects302

experts based on the input sequence x̄, the algo-303

rithm we designed intuitively makes more sense as304

it incorporates the output of the dialect encoder to305

select the most suitable expert.306

The router layer selects the expert with the high-307

est probability through dynamic routing, which is308

based on the input sequence r. The dynamic rout-309

ing probability is then defined as follows:310

pi =
expri∑N
j=1 exp

rj
(9)311

where pi ⊆ RT×N is the probability that the i312

expert is selected, the output Omoe ⊆ RT×d of the313

MoE layer can be formally defined as follows:314

Omoe = pi · Ei(x̄) (10)315

where Ei is the output of the i expert selected. Fig-316

ure3 illustrates the process of dynamic routing.317

In order to incorporate dialect information into318

the decoder, DialectMoE incorporates an informa-319

tion fusion step by combining the outputs of two320

separate encoders. This fusion process, illustrated321

as the Acoustic Fusion Module(AFM) in Figure322

2(a), occurs prior to transmitting the results to the323

decoder. The fusion process is defined as follows.324

XA
encoder = Concat(XG

encoder,XD
encoder) (11)325

where XA
encoder denotes the result of fusion of in-326

formation output by two two different encoders,327

and XG
encoder denotes the result output by a general328

encoder.329

The comprehensive loss function for speech330

recognition comprises the combined CTC-331

Attention loss(Hori et al., 2017), as explained332

previously, along with the supplementary balance333

loss(Fedus et al., 2022). The complete formulation334

of the loss function is as follows:335

Lall = λLctc + (1− λ)Latt + αLb (12)336

where α is the weight of the balance loss (α = 0.1)337

and λ is the weight of the speech recognition loss338

(λ = 0.3), Lb denotes the balance loss.339

3.3 Training Strategies340

Considering the significant disparity in the quan-341

tities of Mandarin and dialect data, low-resource342

dialect speech recognition scenarios commonly ex-343

hibit limited labeled dialect speech data, typically344

ranging from a few to tens of hours. This insuf- 345

ficiency hampers the development of a reliable 346

speech recognition model. To address this issue, 347

this study introduces a multi-stage training strategy. 348

The training process encompasses the following 349

sequential steps: 350

1. Pre-training: The Conformer model is used as 351

a general encoder for DialectMoE to imple- 352

ment pre-training on Mandarin datasets. The 353

pre-training step allows the model to capture 354

various common speech features, thus reduc- 355

ing the complexity of learning for the dialect 356

recognition task. 357

2. Training Dialect Encoder: A Conformer En- 358

coder is initialized as a dialect encoder and is 359

trained on the dialect classification task using 360

both dialect and Mandarin data. The objective 361

of this step is to enable the dialect encoder to 362

learn the acoustic differences between Man- 363

darin and dialects, assisting the general en- 364

coder in dialect speech recognition tasks. 365

3. Training DialectMoE: The parameters of the 366

dialect encoder are frozen, and the second 367

feedforward network layer in the pre-trained 368

Conformer model is initialized with N experts. 369

Use only low-resource dialect training data to 370

train the final DialectMoE model. 371

By pre-training phase, the initial model acquires 372

a substantial set of effective parameters, thereby 373

conferring notable advantages for last training 374

stages. In the second phase, the dialect encoder 375

is trained on a dialect identification task, enabling 376

it to focus on differences between multi-dialects 377

and Mandarin. In the last stage, only multi-dialect 378

data is used for training, This strategic approach en- 379

hances DialectMoE’s capability to adeptly capture 380

shared acoustic characteristics across diverse di- 381

alects. This approach enhances DialectMoE’s capa- 382

bility to adeptly capture shared acoustic character- 383

istics across multi-dialects. The proposed method 384

is evaluated based on extensive comparison and 385

ablation experiments, which are comprehensively 386

detailed in Section 4. 387

4 Experiments 388

4.1 Datasets 389

The Aishell dataset (Bu et al., 2017) serves as the 390

Mandarin speech corpus in this study. This exten- 391

sive collection of Mandarin Chinese speech data, 392
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Dataset Train(h) Test(h)
Aishell 164 10
Sichuan(SC) 28.5 1.5
Yunnan(YN) 28.5 1.5
Henan(HN) 0 1.5
Hubei(HB) 0 1.5

Table 1: Details of both Dialect and Mandarin datasets.

encompasses diverse acoustic scenarios such as393

reading and dialogue.394

For the Chinese dialect dataset, an open-source395

dataset provided by AiDatatang1 is utilized in this396

study. It comprises a training set of 30 hours of397

Sichuan and Yunnan dialects and a test set of 1.5398

hours featuring Henan and Hubei dialects. Within399

this study, Sichuan(SC) and Yunnan(YN) dialects400

are used to test the adaptability of the model to401

multi-dialect data, and Henan(HN) and Hubei(HB)402

dialects are used to test the generalization of the403

model to multi-dialect data. More details are shown404

in Table1.405

4.2 Experiment Setup406

All experiments were conducted using the407

Wenet(Zhang et al., 2022a) end-to-end speech408

toolkit. Our methodology involved extracting an409

80-dimensional log-Mel filter bank (Fbank) as the410

acoustic input feature, with a window size of 25411

ms and a step size of 10 ms. To ensure feature412

normalization, we applied cepstrum mean variance413

normalization (CMVN) calculated from the train-414

ing set on Fbank. To augment the low-resource415

dialect data, we employed speed perturbation and416

SpecAugment(Park et al., 2019) techniques. No417

additional language models were incorporated into418

the experiments.419

For the pre-training model, we utilized a Con-420

former encoder trained on the Mandarin dataset.421

The general encoder of DialectMoE consists of 12422

Conformer encoder layers with a feed-forward di-423

mension of 2048 and an attention dimension of 256,424

employing 4 self-attention heads. This model was425

trained using the Adam optimizer (Kingma and Ba,426

2014). Furthermore, we adopted the warmup learn-427

ing schedule (Gotmare et al., 2018) for the initial428

25K training iterations and set the label smoothing429

(Szegedy et al., 2016) weight and dropout to 0.1430

for model regularization. The decoder consists of431

a 6-layer Transformer, while the dialect encoder432

1https://www.datatang.com

comprises a 6-layer Conformer encoder. The loss 433

function for the dialect classification task applies 434

cross-entropy loss to all training datasets. 435

The proposed DialectMoE is initialized with pre- 436

trained general encoder, dialect encoder, and de- 437

coder. The second feedforward layer in each Con- 438

former layer of the general encoder is initialized 439

as an N expert (N = 4), with the expert param- 440

eters being the pre-trained feedforward network 441

parameters. Training employed the same Adam 442

optimizer, and the number of warm-up steps in the 443

pre-training learning plan was adjusted to 10000, 444

with an initial learning rate of 0.001. 445

4.3 Main Results 446

In this paper, we meticulously design comparison 447

experiments with other speech recognition mod- 448

els to showcase the effectiveness of our proposed 449

method. The experimental results presented in 450

this study were reproduced using the open-source 451

speech processing toolkit Wenet (Zhang et al., 452

2022a). Table2 illustrates the performance of each 453

ASR model in dialect speech recognition under 454

low-resource conditions. The evaluation metric 455

employed is the Character Error Rate (CER). 456

M1 represents the Conformer model that was 457

exclusively pre-trained on the Aishell Mandarin 458

dataset, consisting of 178 hours of data. 459

M2 denotes the model fine-tuned from M1 using 460

the low-resource dialect dataset. 461

M3 corresponds to the model trained directly on 462

the combined dataset of both dialect and Mandarin 463

speech. 464

M4 and M5 refer to the multi-tasking models 465

trained on the combined dataset, with a distinction 466

that M4 predicts the dialect category in the en- 467

coder while the decoder focuses on recognizing the 468

speech text, whereas M5 predicts both the dialect 469

category and the speech text in the decoder. 470

M6 represents the multi-pass model proposed in 471

(Wang et al., 2023) for the training of the Aformer. 472

M7 signifies the DialectMoE model proposed in 473

this paper. 474

The results obtained from the M1 model demon- 475

strate a notably poor performance in recognizing 476

dialectal speech within the Mandarin speech recog- 477

nition model. However, by fine-tuning the M1 478

model with dialect data, the CER of the M2 model 479

for Sichuan and Yunnan dialects is significantly 480

reduced, although further optimization is still re- 481

quired. To address this, our paper proposes the Di- 482

6
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ID Model Params(M) SC YN HN HB
M1 Conformer (Mandarin) 46.1 M 82.75 81.42 82.26 87.47
M2 FT-Conformer 46.1 M 15.60 14.06 54.91 57.18
M3 Conformer (Mandarin+Dialect) 46.1 M 13.86 12.02 41.28 48.37
M4 MT-Conformer(DID+ASR) 47.2 M 17.79 15.64 47.78 56.55
M5 MT-Conformer(DID&ASR) 46.2 M 16.09 14.05 41.28 48.37
M6 Aformer 68.3 M 13.21 12.76 35.32 39.89
M7 DialectMoE 93.8 M 11.91 9.84 33.38 37.11

Table 2: CER(%) on Chinese Dialect ASR task. FT represents the fine-tuning step and MT represents the
multitask-based approach.

Strategy SC YN HN HB
normal 13.43 11.83 35.22 38.67
embed 12.53 10.20 34.95 38.65
concat 12.18 9.97 33.55 37.09
add 12.41 10.36 34.19 37.23
normal+fusion 13.92 12.19 35.27 38.72
embed+fusion 12.23 10.21 33.50 37.55
concat+fusion 11.91 9.84 33.38 37.11
add+fusion 12.49 10.13 33.66 37.65

Table 3: Ablation of different routing strategy.

alectMoE model, which surpasses existing studies483

and baselines in terms of performance. In compari-484

son to the fine-tuned model of M2, the DialectMoE485

model exhibits a reduction in CER of 23.6% and486

32.6% for the Sichuan and Yunnan dialects, re-487

spectively. Additionally, it achieves a reduction488

of 39.2% and 35.09% for the Henan and Hubei489

dialects, respectively.490

4.4 Ablation Studies491

4.4.1 Ablation of dynamic routing strategy492

This paper incorporates ablation experiments to493

investigate the effectiveness of the proposed dy-494

namic routing algorithm and model design. Table495

3 presents the impact of utilizing different dynamic496

routing algorithms and the merging of two encoder497

outputs before the decoder. In "normal", the dy-498

namic routing algorithm proposed in this paper is499

not employed, and the experts are directly selected500

based on the input sequence, similar to the ap-501

proach in (Fedus et al., 2022). The strategy column502

in Table3 indicates the usage of different dynamic503

routing algorithms: "embed" signifies the utiliza-504

tion of only the dialect encoder outputs, "concat"505

denotes the concatenation of the dialect encoder506

outputs with the input sequence, and "add" indi-507

cates the summation of the dialect encoder outputs508

with the input sequence. The "fusion" entry indi-509

Model Params(M) SC YN HN HB
MoE-2e 68.5M 12.39 10.21 33.84 38.37
MoE-4e 93.8M 11.91 9.84 33.38 37.11
MoE-8e 134.5M 12.94 10.44 34.09 38.26

Table 4: Ablation of experts number.

cates whether or not the two encoder outputs should 510

be fused before reaching the decoder., whether they 511

go through AFM. The experiments employing the 512

”concat+fusion“ strategy along with the fusion of 513

the two encoder outputs demonstrate optimal re- 514

sults across the four different dialect test sets. 515

4.4.2 Ablation of experts number 516

To investigate the impact of initializing a different 517

number of experts in DialectMoE on the overall 518

model performance, we conducted an experiment 519

with varying numbers of experts, specifically 2, 4, 520

and 8. The experimental results, as shown in Ta- 521

ble4, highlight that the model size increases with an 522

increasing number of experts. However, the com- 523

mon notion that a larger number of model partici- 524

pants leads to improved performance does not hold 525

true under low-resource conditions. The results 526

indicate that, for low-resource dialect data, an ex- 527

cessive number of experts does not enhance model 528

performance; in fact, it diminishes it. Experimental 529

evidence supports the conclusion that setting the 530

number of experts to 4 is more appropriate in this 531

context.It is noteworthy that when the number of 532

experts is set to 2, the number of model parame- 533

ters matches the number of Aformer(Wang et al., 534

2023) parameters. However, despite this similarity, 535

our results outperform the baseline. This finding 536

further validates the efficacy and correctness of our 537

proposed method. 538
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Top-k Time(s) SC YN HN HB
4 1.46s 12.01 10.03 33.31 37.08
2 0.94s 11.93 9.81 33.57 37.24
1 0.68s 11.91 9.84 33.38 37.11

Table 5: Ablation of the number of experts selected.

4.4.3 Ablation of the number of experts539

selected540

In the vanilla MoE, a top-k approach is employed541

to select a combination of k experts for routing the542

input sequence. However, in this paper, a Softmax543

approach, specifically top-1, is utilized. To fur-544

ther investigate the effectiveness of the proposed545

dynamic routing algorithm, experiments were con-546

ducted to explore the impact of the number of se-547

lected experts. As presented in Table5, when the548

number of selected experts is set to 4, there is an549

improvement in performance for dialects that are550

not part of the training dataset (Henan and Hubei di-551

alects). This suggests that increasing the number of552

selected experts can enhance the model’s general-553

ization to external data. The model’s performance554

remains similar when the number of selected ex-555

perts is 2 or 1. However, it is worth noting that556

the decoding time for a single speech increases by557

approximately 53% when the number of selected558

experts is 4 compared to when it is 1. This in-559

dicates that the number of selected experts has a560

minimal impact on the model’s performance but561

significantly affects decoding efficiency, which is562

crucial for a robust speech recognition system.563

4.5 Layer-Wise Analysis of Experts564

In Figure 4, we present a visualization of the expert565

weights applied to the test sets corresponding to566

Sichuan and Kunming dialects. We can observe567

certain patterns in the weights. Across the initial568

three layers of the model, both dialects manifest a569

heightened degree of distinctiveness in expert selec-570

tion, indicative of specific groups of experts concen-571

trating exclusively on dialect-specific information.572

Within the intermediate layers of the model, expert573

weights display a diminished prominence, yet dis-574

cernible differences persist in the expert weights575

associated with the two dialects. This observation576

suggests that varying combinations of experts im-577

plicitly encapsulate distinctive information pertain-578

ing to dialectal variations. In the concluding three579

layers of the model, the deployed experts exhibit580

near-identical characteristics, thereby indirectly af-581

firming the model’s proficiency in capturing shared582

Figure 4: The expert weights are visualized on Sichuan
dialect and Kunming dialect.

features between Sichuan and Kunming dialects. 583

5 Conclusion 584

In this manuscript, we present a multi-dialectal 585

speech recognition model based on MoE termed 586

DialectMoE. Structurally, it incorporates a dual- 587

encoder architecture, wherein the general encoder 588

is dedicated to acquiring general acoustic repre- 589

sentations, and the dialect encoder is specialized 590

for acquiring acoustic representations across var- 591

ious dialects. A refinement in the dynamic rout- 592

ing strategy within the MoE layer of the universal 593

encoder has been introduced to enable the selec- 594

tion of appropriate experts based on the acoustic 595

information specific to the dialect in the input se- 596

quence. Furthermore, we propose a three-stage 597

training methodology to facilitate DialectMoE in 598

learning distinct tasks at different phases, thereby 599

enhancing its adaptability and performance across 600

varying aspects of the multi-dialectal speech recog- 601

nition task. Experimental results demonstrate that 602

the proposed DialectMoE model achieves remark- 603

able performance in multi-dialects speech recogni- 604

tion tasks. 605

6 Limitations 606

While the MoE-based approach can effectively en- 607

hance model performance, it inherently results in 608

an increase in the number of model parameters. 609

This increase in parameters can lead to higher train- 610

ing costs and longer inference times, which are in- 611

evitable consequences. Therefore, it is imperative 612

to conduct further research on model compression 613

techniques to mitigate these issues. 614
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