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ABSTRACT

When optimizing machine learning models, there are various scenarios where gra-
dient computations are challenging or even infeasible. Furthermore, in reinforce-
ment learning (RL), preference-based RL that only compares between options has
wide applications, including reinforcement learning with human feedback in large
language models. In this paper, we systematically study optimization of a smooth
function f : Rn → R only assuming an oracle that compares function values at
two points and tells which is larger. When f is convex, we give two algorithms

using Õ(n/ϵ) and Õ(n2) comparison queries to find an ϵ-optimal solution, respec-

tively. When f is nonconvex, our algorithm uses Õ(n/ϵ2) comparison queries to
find an ϵ-approximate stationary point. All these results match the best-known
zeroth-order algorithms with function evaluation queries in n dependence, thus
suggesting that comparisons are all you need for optimizing smooth functions us-
ing derivative-free methods. In addition, we also give an algorithm for escaping
saddle points and reaching an ϵ-second order stationary point of a nonconvex f ,

using Õ(n1.5/ϵ2.5) comparison queries.

1 INTRODUCTION

Optimization is pivotal in the realm of machine learning. For instance, advancements in stochas-
tic gradient descent (SGD) such as ADAM (Kingma & Ba, 2015), Adagrad (Duchi et al., 2011),
etc., serve as foundational methods for the training of deep neural networks. However, there exist
scenarios where gradient computations are challenging or even infeasible, such as black-box adver-
sarial attack on neural networks (Papernot et al., 2017; Madry et al., 2018; Chen et al., 2017) and
policy search in reinforcement learning (Salimans et al., 2017; Choromanski et al., 2018). Conse-
quently, zeroth-order optimization methods with function evaluations have gained prominence, with
provable guarantee for convex optimization (Duchi et al., 2015; Nesterov & Spokoiny, 2017) and
nonconvex optimization (Ghadimi & Lan, 2013; Fang et al., 2018; Jin et al., 2018a; Ji et al., 2019;
Zhang et al., 2022; Vlatakis-Gkaragkounis et al., 2019; Balasubramanian & Ghadimi, 2022).

Furthermore, optimization for machine learning has been recently soliciting for even less informa-
tion. For instance, it is known that taking only signs of gradient descents still enjoy good perfor-
mance (Liu et al., 2019; Li et al., 2023; Bernstein et al., 2018). Moreover, in the breakthrough of
large language models (LLMs), reinforcement learning from human feedback (RLHF) played an
important rule in training these LLMs, especially GPTs by OpenAI (Ouyang et al., 2022). Com-
pared to standard RL that applies function evaluation for rewards, RLHF is preference-based RL
that only compares between options and tells which is better. There is emerging research interest
in preference-based RL, where various works have established provable guarantees for learning a
near-optimal policy from preference feedback (Chen et al., 2022; Saha et al., 2023; Novoseller et al.,
2020; Xu et al., 2020; Zhu et al., 2023; Tang et al., 2023). Furthermore, Wang et al. (2023) proved
that for a wide range of preference models, preference-based RL can be solved with small or no
extra costs compared to those of standard reward-based RL.

In this paper, we systematically study optimization of smooth functions using comparisons. Specif-

ically, for a function f : Rn → R, we define the comparison oracle of f as OComp
f : Rn × Rn →

1
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{−1, 1} such that

OComp
f (x,y) =

{

1 if f(x) ≥ f(y)
−1 if f(x) ≤ f(y)

. (1)

(When f(x) = f(y), outputting either 1 or −1 is okay.) We consider an L-smooth function
f : Rn → R, defined as

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ ∀x,y ∈ R
n.

Furthermore, we say f is ρ-Hessian Lipschitz if

∥∇2f(x)−∇2f(y)∥ ≤ ρ∥x− y∥ ∀x,y ∈ R
n.

In terms of the goal of optimization, we define:

• x ∈ Rn is an ϵ-optimal point if f(x) ≤ f∗ + ϵ, where f∗ := infx f(x).

• x ∈ Rn is an ϵ-first-order stationary point (ϵ-FOSP) if ∥∇f(x)∥ ≤ ϵ.

• x ∈ Rn is an ϵ-second-order stationary point (ϵ-SOSP) if ∥∇f(x)∥ ≤ ϵ and λmin(∇2f(x)) ≥
−√ρϵ.1

Our main results can be listed as follows:

• For an L-smooth convex f , Theorem 2 finds an ϵ-optimal point in O(nL/ϵlog(nL/ϵ)) compar-
isons.

• For an L-smooth convex f , Theorem 3 finds an ϵ-optimal point in O(n2 log(nL/ϵ)) comparisons.

• For an L-smooth f , Theorem 4 finds an ϵ-FOSP using O(Ln log n/ϵ2) comparisons.

• For an L-smooth, ρ-Hessian Lipschitz f , Theorem 5 finds an ϵ-SOSP in Õ(n1.5/ϵ2.5) compar-
isons.

Intuitively, our results can be described as comparisons are all you need for derivative-free meth-
ods: For finding an approximate minimum of a convex function, the state-of-the-art zeroth-order
methods with full function evaluations have query complexities O(n/

√
ϵ) (Nesterov & Spokoiny,

2017) or Õ(n2) (Lee et al., 2018), which are matched in n by our Theorem 2 and Theorem 3 using
comparisons, respectively. For finding an approximate stationary point of a nonconvex function,
the state-of-the-art zeroth-order result has query complexity O(n/ϵ2) (Fang et al., 2018), which is
matched by our Theorem 4 up to a logarithmic factor. In other words, in derivative-free scenarios for
optimizing smooth functions, function values per se are unimportant but their comparisons, which
indicate the direction that the function decreases.

Among the literature for derivative-free optimization methods (Larson et al., 2019), direct search
methods by Kolda et al. (2003) proceed by comparing function values, including the directional di-
rect search method (Audet & Dennis Jr, 2006) and the Nelder-Mead method (Nelder & Mead, 1965)
as examples. However, the directional direct search method does not have a known rate of conver-
gence, meanwhile the Nelson-Mead method may fail to converge to a stationary point for smooth
functions (Dennis & Torczon, 1991). As far as we know, the most relevant result is by Bergou et al.
(2020), which proposed the stochastic three points (STP) method and found an ϵ-optimal point of

a convex function and an ϵ-FOSP of a nonconvex function in Õ(n/ϵ) and Õ(n/ϵ2) comparisons,
respectively. STP also has a version with momentum (Gorbunov et al., 2020). Our Theorem 2
and Theorem 4 can be seen as rediscoveries of these results using different methods. In addition,

literature on dueling convex optimization also achieves Õ(n/ϵ) for finding an ϵ-optimal point of
a convex function (Saha et al., 2021; 2022). However, for comparison-based convex optimization
with poly(log 1/ϵ) dependence, Jamieson et al. (2012) achieved this for strongly convex functions,

and the state-of-the-art result for general convex optimization by Karabag et al. (2021) takes Õ(n4)
comparison queries. Their algorithm applies the ellipsoid method, which has Õ(n2) iterations and

each iteration takes Õ(n2) comparisons to construct the ellipsoid. This Õ(n4) bound is noticeably
worse than our Theorem 3. As far as we know, our Theorem 5 is the first provable guarantee for
finding an ϵ-SOSP of a nonconvex function by comparisons.

1This is a standard definition among nonconvex optimization literature for escaping saddle points and reach-
ing approximate second-order stationary points, see for instance (Nesterov & Polyak, 2006; Curtis et al., 2017;
Agarwal et al., 2017; Carmon et al., 2018; Jin et al., 2018b; Allen-Zhu & Li, 2018; Xu et al., 2018; Zhang et al.,
2022; Zhang & Gu, 2023).
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Techniques. Our first technical contribution is Theorem 1, which for a point x estimates the direc-
tion of ∇f(x) within precision δ. This is achieved by Algorithm 2, named as Comparison-GDE
(GDE is the acronym for gradient direction estimation). It is built upon a directional preference
subroutine (Algorithm 1), which inputs a unit vector v ∈ Rn and a precision parameter ∆ > 0, and
outputs whether ⟨∇f(x),v⟩ ≥ −∆ or ⟨∇f(x),v⟩ ≤ ∆ using the value of the comparison oracle

for OComp
f (x+ 2∆

L v,x). Comparison-GDE then has three phases:

• First, it sets v to be all standard basis directions ei to determine the signs of all∇if(x) (up to ∆).

• It then sets v as 1√
2
(ei− ej), which can determine whether |∇if(x)| or |∇jf(x)| is larger (up to

∆). Start with e1 and e2 and keep iterating to find the i∗ with the largest | ∂
∂i∗∇f(x)| (up to ∆).

• Finally, for each i ̸= i∗, It then sets v to have form 1√
1+α2

i

(αiei∗ − ei) and applies binary search

to find the value for αi such that αi|∇i∗f(x)| equals to |∇if(x)| up to enough precision.

Comparison-GDE outputs α/∥α∥ for GDE, where α = (α1, . . . ,αn)⊤. It in total uses
O(n log(n/δ)) comparison queries, with the main cost coming from binary searches in the last
step (the first two steps both take ≤ n comparisons).

We then leverage Comparison-GDE for solving various optimization problems. In convex op-
timization, we develop two algorithms that find an ϵ-optimal point separately in Section 3.1 and
Section 3.2. Our first algorithm is a specialization of the adaptive version of normalized gradient
descent (NGD) introduced in Levy (2017), where we replace the normalized gradient query in their
algorithm by Comparison-GDE. It is a natural choice to apply gradient estimation to normalized
gradient descent, given that the comparison model only allows us to estimate the gradient direction
without providing information about its norm. Note that Bergou et al. (2020) also discussed NGD,
but their algorithm using NGD still needs the full gradient and cannot be directly implemented by
comparisons. Our second algorithm builds upon the framework of cutting plane methods, where we
show that the output of Comparison-GDE is a valid separation oracle, as long as it is accurate
enough. Moreover, we note that Cai et al. (2022) also studied gradient estimation by comparisons

and combined that with inexact NGD, but their complexity Õ(d/ϵ1.5) is suboptimal compared to
ours.

In nonconvex optimization, we develop two algorithms that find an ϵ-FOSP and an ϵ-SOSP, respec-
tively, in Section 4.1 and Section 4.2. Our algorithm for finding an ϵ-FOSP is a specialization of the
NGD algorithm, where the normalized gradient is given by Comparison-GDE. Our algorithm for
finding an ϵ-SOSP uses a similar approach as corresponding first-order methods by Allen-Zhu & Li
(2018); Xu et al. (2018) and proceeds in rounds, where we alternately apply NGD and negative cur-
vature descent to ensure that the function value will have a large decrease if more than 1/9 of the
iterations in this round are not ϵ-SOSP. The normalized gradient descent part is essentially the same
as our algorithm for ϵ-FOSP in Section 4.1. The negative curvature descent part with comparison
information, however, is much more technically involved. In particular, previous first-order methods
(Allen-Zhu & Li, 2018; Xu et al., 2018; Zhang & Li, 2021) all contains a subroutine that can find a
negative curvature direction near a saddle point x with λmin(∇2f(x) ≤ −√ρϵ). One crucial step

in this subroutine is to approximate the Hessian-vector product ∇2f(x) · y for some unit vector
y ∈ Rn by taking the difference between ∇f(x + ry) and ∇f(x), where r is a very small pa-
rameter. However, this is infeasible in the comparison model which only allows us to estimate the
gradient direction without providing information about its norm. Instead, we find the directions of
∇f(x), ∇f(x+ ry), and ∇f(x− ry) by Comparison-GDE, and we determine the direction of
∇f(x + ry) − f(y) using the fact that its intersection with ∇f(x) and ∇f(x + ry) as well as its
intersection with ∇f(x) and ∇f(x− ry) give two segments of same length (see Figure 1).

Open questions. Our work leaves several natural directions for future investigation:

• Can we give comparison-based optimization algorithms based on accelerated gradient descent
(AGD) methods? This is challenging because AGD requires carefully chosen step sizes, but
with comparisons we can only learn gradient directions but not the norm of gradients. This
is also the main reason why the 1/ϵ dependence in our Theorem 2 and Theorem 5 are worse
than Nesterov & Spokoiny (2017) and Zhang & Gu (2023) with evaluations in their respective
settings.

3
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Figure 1: The intuition of Algorithm 10 for computing Hessian-vector products using gradient directions.

x

∇f(x+ry)
∥∇f(x+ry)∥

∇f(x−ry)
∥∇f(x−ry)∥

∇f(x)
∥∇f(x)∥

direction of ∇2f(x) · y

• Can we improve our result for finding second-order stationary points in nonconvex optimiza-
tion? Compared to gradient-based methods that choose the step size in negative curvature find-
ing (Allen-Zhu & Li, 2018; Xu et al., 2018), our comparison-based perturbed normalized gradient
descent (Algorithm 5) can only utilize gradient directions but have no information about gradient

norms, resulting in a fixed and conservative step size and in total Õ(
√
n/ϵ) iterations.

• Can we apply our algorithms to machine learning? Tang et al. (2023) made attempts on preference-
based RL, and it is worth further exploring whether we can prove more theoretical results
for preference-based RL and other machine learning settings. It would be also of general in-
terest to see if our results can provide theoretical justification for quantization in neural net-
works (Gholami et al., 2022).

Notations. We use bold letters, e.g., x, y, to denote vectors and capital letters, e.g., A, B, to
denote matrices. We use ∥ · ∥ to denote the Euclidean norm (ℓ2-norm) and denote Sn−1 to be the
n-dimensional sphere with radius 1, i.e., Sn−1 := {x ∈ Rn : ∥x∥ = 1}. We denote BR(x) := {y ∈
Rn : ∥y − x∥ ≤ R} and [T ] := {0, 1, . . . , T}. For a convex set K ⊆ Rn, its diameter is defined as
D := supx,y∈K ∥x− y∥ and its projection operator ΠK is defined as

ΠK(x) := argminy∈K∥x− y∥, ∀x ∈ R
n.

2 ESTIMATION OF GRADIENT DIRECTION BY COMPARISONS

First, we show that given a point x ∈ Rn and a direction v ∈ Rn, we can use one comparison query
to understand whether the inner product ⟨∇f(x),v⟩ is roughly positive or negative. Intuitively, this
inner product determines whether x+ v is following or against the direction of ∇f(x), also known
as directional preference (DP) in Karabag et al. (2021).

Lemma 1. Given a point x ∈ Rn, a unit vector v ∈ B1(0), and precision ∆ > 0 for directional
preference. Then Algorithm 1 is correct:

• If OComp
f (x+ 2∆

L v,x) = 1, then ⟨∇f(x),v⟩ ≥ −∆.

• If OComp
f (x+ 2∆

L v,x) = −1, then ⟨∇f(x),v⟩ ≤ ∆.

Algorithm 1: DP(x,v,∆)

Input: Comparison oracle OComp
f of f : Rn → R, x ∈ Rn, unit vector v ∈ B1(0), ∆ > 0

1 if OComp
f (x+ 2∆

L v,x) = 1 then

2 return “⟨∇f(x),v⟩ ≥ −∆"

3 else (in this case OComp
f (x+ 2∆

L v,x) = −1)
4 return “⟨∇f(x),v⟩ ≤ ∆"

4
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Proof. Since f is an L-smooth differentiable function,

|f(y)− f(x)− ⟨∇f(x),y − x⟩| ≤
1

2
L∥y − x∥2

for any x,y ∈ Rn. Take y = x+ 2∆
L v, this gives

∣

∣

∣

∣

f(y)− f(x)−
2∆

L
⟨∇f(x),v⟩

∣

∣

∣

∣

≤
1

2
L

(

2∆

L

)2

=
2∆2

L
.

Therefore, if OComp
f (y,x) = 1, i.e., f(y) ≥ f(x),

2∆

L
⟨∇f(x),v⟩≥

2∆

L
⟨∇f(x),v⟩+ f(x)− f(y)≥−

2∆2

L

and hence ⟨∇f(x),v⟩ ≥ −∆. On the other hand, if OComp
f (y,x) = −1, i.e., f(y) ≤ f(x),

2∆

L
⟨∇f(x),v⟩ ≤ f(y)− f(x) +

2∆2

L
≤

2∆2

L

and hence ⟨∇f(x),v⟩ ≤ ∆.

Now, we prove that we can use Õ(n) comparison queries to approximate the direction of the gradient
at a point, which is one of our main technical contributions.

Theorem 1. For an L-smooth function f : Rn → R and a point x ∈ Rn, Algorithm 2 outputs
an estimate g̃(x) of the direction of ∇f(x) using O(n log(n/δ)) queries to the comparison oracle

OComp
f of f (Eq. (1)) that satisfies

∥

∥

∥

∥

g̃(x)−
∇f(x)
∥∇f(x)∥

∥

∥

∥

∥

≤ δ

if we are given a parameter γ > 0 such that ∥∇f(x)∥ ≥ γ.

Proof. The correctness of (2) and (3) follows directly from the arguments in Line 2 and Line 3,
respectively. For Line 6, since αi ≤ 1 for any i ∈ [n], the binary search can be regarded as having

bins with interval lengths
√

1 + α2
i∆ ≤

√
2∆, and when the binary search ends Eq. (4) is satisfied.

Furthermore, Eq. (4) can be written as
∣

∣

∣

∣

αi −
gi
gi∗

∣

∣

∣

∣

≤
√
2∆

gi∗
≤

2∆
√
n

γ
.

This is because ∥∇f(x)∥ = ∥(g1, . . . , gn)⊤∥ ≥ γ implies maxi∈[n] gi ≥ γ/
√
n, and together with

(3) we have gi∗ ≥ γ/
√
n−
√
2∆ ≥ γ/

√
2n because ∆ ≤ γ/4

√
n.

We now estimate
∥

∥

∥
g̃(x)− ∇f(x)

∥∇f(x)∥

∥

∥

∥
. Note

∇f(x)
∥∇f(x)∥ = ∇f(x)/gi∗

∥∇f(x)/gi∗∥
and g̃(x) = α/∥α∥. Moreover

∥

∥

∥

∥

α−
∇f(x)
gi∗

∥

∥

∥

∥

≤
n
∑

i=1

∣

∣

∣

∣

αi −
gi
gi∗

∣

∣

∣

∣

≤
2∆
√
n(n− 1)

γ
.

By Lemma 5 for bounding distance between normalized vectors) and the fact that ∥α∥ ≥ 1,

∥

∥

∥

∥

g̃(x)−
∇f(x)
∥∇f(x)∥

∥

∥

∥

∥

=

∥

∥

∥

∥

α

∥α∥
−
∇f(x)/gi∗
∥∇f(x)/gi∗∥

∥

∥

∥

∥

≤
4∆n3/2

γ
≤ δ.

Thus the correctness has been established. For the query complexity, Line 2 takes n queries, Line 3

takes n − 1 queries, and Line 6 throughout the for loop takes (n − 1)⌈log2(γ/
√
2∆) + 1⌉ =

O(n log(n/δ)) queries to the comparison oracle, given that each αi is within the range of [0, 1]
and we approximate it to accuracy

√
2∆/gi∗ ≥

√
2∆/γ. This finishes the proof.

5
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Algorithm 2: Comparison-based Gradient Direction Estimation (Comparison-GDE(x, δ, γ))

Input: Comparison oracle OComp
f of f : Rn → R, precision δ, lower bound γ on ∥∇f(x)∥

1 Set ∆← δγ/4n3/2. Denote ∇f(x) = (g1, . . . , gn)⊤

2 Call Algorithm 1 with inputs (x, e1,∆), . . . , (x, en,∆) where ei is the ith standard basis with

ith coordinate being 1 and others being 0. This determines whether gi ≥ −∆ or gi ≤ ∆ for
each i ∈ [n]. WLOG

gi ≥ −∆ ∀i ∈ [n] (2)

(otherwise take a minus sign for the ith coordinate)
3 We next find the approximate largest one among g1, . . . , gn. Call Algorithm 1 with input

(x, 1√
2
(e1 − e2),∆). This determines whether g1 ≥ g2 −

√
2∆ or g2 ≥ g1 −

√
2∆. If the

former, call Algorithm 1 with input (x, 1√
2
(e1 − e3),∆). If the later, call Algorithm 1 with

input (x, 1√
2
(e2 − e3),∆). Iterate this until en, we find the i∗ ∈ [n] such that

gi∗ ≥ max
i∈[n]

gi −
√
2∆ (3)

4 for i = 1 to i = n (except i = i∗) do
5 Initialize αi ← 1/2
6 Apply binary search to αi in ⌈log2(γ/∆) + 1⌉ iterations by calling Algorithm 1 with input

(x, 1√
1+α2

i

(αiei∗ − ei),∆). For the first iteration with αi = 1/2, if αigi∗ − gi ≥ −
√
2∆

we then take αi = 3/4; if αigi∗ − gi ≤
√
2∆ we then take αi = 1/4. Later iterations are

similar. Upon finishing the binary search, αi satisfies

gi −
√
2∆ ≤ αigi∗ ≤ gi +

√
2∆ (4)

7 return g̃(x) = α

∥α∥ where α = (α1, . . . ,αn)⊤, αi (i ̸= i∗) is the output of the for loop,

αi∗ = 1

3 CONVEX OPTIMIZATION BY COMPARISONS

In this section, we study convex optimization with function value comparisons:

Problem 1 (Comparison-based convex optimization). In the comparison-based convex optimization

(CCO) problem we are given query access to a comparison oracle OComp
f (1) for an L-smooth

convex function f : Rn → R whose minimum is achieved at x∗ with ∥x∗∥ ≤ R. The goal is to
output a point x̃ such that ∥x̃∥ ≤ R and f(x̃)− f(x∗) ≤ ϵ, i.e., x̃ is an ϵ-optimal point.

We provide two algorithms that solve Problem 1. In Section 3.1, we use normalized gradient descent
to achieve linear dependence in n (up to a log factor) in terms of comparison queries. In Section 3.2,
we use cutting plane method to achieve log(1/ϵ) dependence in terms of comparison queries.

3.1 COMPARISON-BASED ADAPTIVE NORMALIZED GRADIENT DESCENT

In this subsection, we present our first algorithm for Problem 1, Algorithm 3, which applies
Comparison-GDE (Algorithm 2) with estimated gradient direction at each iteration to the adap-
tive normalized gradient descent (AdaNGD), originally introduced by Levy (2017).

Theorem 2. Algorithm 3 solves Problem 1 using O(nLR2/ϵ log
(

nLR2/ϵ
)

) queries.

The following result bounds the rate at which Algorithm 3 decreases the function value of f .

Lemma 2. In the setting of Problem 1, Algorithm 3 satisfies

min
t∈[T ]

f(xt)− f∗ ≤ 2L(2R
√
2T + 2T δR)2/T 2,
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Algorithm 3: Comparison-based Approximate Adaptive Normalized Gradient Descent
(Comparison-AdaNGD)

Input: Function f : Rn → R, precision ϵ, radius R

1 T ← 64LR2

ϵ , δ ← 1
4R

√

ϵ
2L , γ ← ϵ

2R , x0 ← 0

2 for t = 0, . . . , T − 1 do
3 ĝt ←Comparison-GDE(xt, δ, γ)

4 ηt ← R
√

2/t
5 xt+1 = ΠBR(0)(xt − ηtĝt)

6 tout ← argmint∈[T ]f(xt)
7 return xtout

if at each step we have
∥

∥

∥

∥

g̃t −
∇ft(xt)

∥∇ft(xt)∥

∥

∥

∥

∥

≤ δ ≤ 1.

The proof of Lemma 2 is deferred to Appendix B. We now prove Theorem 2 using Lemma 2.

Proof of Theorem 2. We show that Algorithm 3 solves Problem 1 by contradiction. Assume that the
output of Algorithm 3 is not an ϵ-optimal point of f , or equivalently, f(xt)−f∗ ≥ ϵ for any t ∈ [T ].
This leads to

∥∇f(xt)∥ ≥
f(xt)− f∗

∥xt − x∗∥
≥

ϵ

2R
, ∀t ∈ [T ]

given that f is convex. Hence, Theorem 1 promises that
∥

∥

∥

∥

ĝt −
∇f(xt)

∥∇f(xt)∥

∥

∥

∥

∥

≤ δ ≤ 1.

With these approximate gradient directions, by Lemma 2 we can derive that

min
t∈[T ]

f(xt)− f∗ ≤ 2L(2R
√
2T + 2T δR)2/T 2 ≤ ϵ,

contradiction. This proves the correctness of Algorithm 3. The query complexity of Algorithm 3
only comes from the gradient direction estimation step in Line 3, which equals

T ·O(n log(n/δ)) = O

(

nLR2

ϵ
log

(

nLR2

ϵ

))

.

3.2 COMPARISON-BASED CUTTING PLANE METHOD

In this subsection, we provide a comparison-based cutting plane method that solves Problem 1. We
begin by introducing the basic notation and concepts of cutting plane methods, which are algorithms
that solves the feasibility problem defined as follows.

Problem 2 (Feasibility Problem, Jiang et al. (2020); Sidford & Zhang (2023)). We are given query
access to a separation oracle for a set K ⊂ Rn such that on query x ∈ Rn the oracle outputs a
vector c and either c = 0, in which case x ∈ K, or c ̸= 0, in which case H := {z : c⊤z ≤ c⊤x} ⊃
K. The goal is to query a point x ∈ K.

Jiang et al. (2020) developed a cutting plane method that solves Problem 2 using O(n log(nR/r))
queries to a separation oracle where R and r are parameters related to the convex set K.

Lemma 3 (Theorem 1.1, Jiang et al. (2020)). There is a cutting plane method which solves
Problem 2 using at most C · n log(nR/r) queries for some constant C, given that the set K is
contained in the ball of radius R centered at the origin and it contains a ball of radius r.

7
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Nemirovski (1994); Lee et al. (2015) showed that, running cutting plane method on a Lipschitz
convex function f with the separation oracle being the gradient of f would yield a sequence of
points where at least one of them is ϵ-optimal. Furthermore, Sidford & Zhang (2023) showed that
even if we cannot access the exact gradient value of f , it suffices to use an approximate gradient
estimate with absolute error at most O(ϵ/R).

In this work, we show that this result can be extended to the case where we have an estimate of the
gradient direction instead of the gradient itself. Specifically, we prove the following result.

Theorem 3. There exists an algorithm based on cutting plane method that solves Problem 1 using
O(n2 log(nLR2/ϵ)) queries.

Note that Theorem 3 improves the prior state-of-the-art from Õ(n4) by Karabag et al. (2021) to

Õ(n2).

Proof of Theorem 3. The proof follows a similar intuition as the proof of Proposition 1 in
Sidford & Zhang (2023). Define Kϵ/2 to be the set of ϵ/2-optimal points of f , and Kϵ to be the
set of ϵ-optimal points of f . Given that f is L-smooth, Kϵ/2 must contain a ball of radius at least

rK =
√

ϵ/L since for any x with ∥x− x∗∥ ≤ rK we have

f(x)− f(x∗) ≤ L∥x− x∗∥2/2 ≤ ϵ/2.

We apply the cutting plane method, as described in Lemma 3, to query a point in Kϵ/2, which
is a subset of the ball B2R(0). To achieve this, at each query x of the cutting plane method,
we use Comparison-GDE(x, δ, γ), our comparison-based gradient direction estimation algorithm
(Algorithm 2), as the separation oracle for the cutting plane method, where we set

δ =
1

16R

√

ϵ

L
, γ =

√
2Lϵ.

We show that any query outside of Kϵ to Comparison-GDE(x, δ, γ) will be a valid separation
oracle for Kϵ/2. In particular, if we ever queried Comparison-GDE(x, δ, γ) at any x ∈ B2R(0) \
Kϵ with output being ĝ, for any y ∈ Kϵ/2 we have

⟨ĝ,y − x⟩ ≤
〈

∇f(x)
∥∇f(x)∥

,y − x

〉

+

∥

∥

∥

∥

ĝ −
∇f(x)
∥∇f(x)∥

∥

∥

∥

∥

· ∥y − x∥

≤
f(y)− f(x)

∥∇f(x)∥
+

∥

∥

∥

∥

ĝ −
∇f(x)
∥∇f(x)∥

∥

∥

∥

∥

· ∥y − x∥ ≤ −
ϵ

2
+

ϵ

10R
· 4R < 0,

where

∥∇f(x)∥ ≥ (f(x)− f∗)/∥x− x∗∥ ≥ (f(x)− f∗)/(2R)

given that f is convex. Combined with Theorem 1, it guarantees that
∥

∥

∥

∥

ĝ −
∇f(x)
∥∇f(x)∥

∥

∥

∥

∥

≤ δ =
1

16R

√

ϵ

L
.

Hence,

⟨ĝ,y − x⟩ ≤
f(y)− f(x)

∥∇f(x)∥
+

∥

∥

∥

∥

ĝ −
∇f(x)
∥∇f(x)∥

∥

∥

∥

∥

· ∥y − x∥ ≤ −
1

2

√

ϵ

2L
+

1

16R

√

ϵ

L
· 4R < 0,

indicating that ĝ is a valid separation oracle for the set Kϵ/2. Consequently, by Lemma 3, after
Cn log(nR/rK) iterations, at least one of the queries must lie within Kϵ, and we can choose the
query with minimum function value to output, which can be done by making Cn log(nR/rK) com-
parisons.

Note that in each iteration O(n log(n/δ)) queries to OComp
f (1) are needed. Hence, the overall query

complexity equals

Cn log(nR/rK) ·O(n log(n/δ)) + Cn log(nR/rK) = O
(

n2 log
(

nLR2/ϵ
))

.
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Algorithm 4: Comparison-based Approximate Normalized Gradient Descent (Comparison-
NGD)

Input: Function f : Rn → R, ∆, precision ϵ
1 T ← 18L∆

ϵ2 , x0 ← 0

2 for t = 0, . . . , T − 1 do
3 ĝt ←Comparison-GDE(xt, 1/6, ϵ/12)
4 xt = xt−1 − ϵĝt/(3L)

5 Uniformly randomly select xout from {x0, . . . ,xT }
6 return xout

4 NONCONVEX OPTIMIZATION BY COMPARISONS

In this section, we study nonconvex optimization with function value comparisons. We first de-
velop an algorithm that finds an ϵ-FOSP of a smooth nonconvex function in Section 4.1. Then in
Section 4.2, we further develop an algorithm that finds an ϵ-SOSP of a nonconvex function that is
smooth and Hessian-Lipschitz.

4.1 FIRST-ORDER STATIONARY POINT COMPUTATION BY COMPARISONS

In this subsection, we focus on the problem of finding an ϵ-FOSP of a smooth nonconvex function
by making function value comparisons.

Problem 3 (Comparison-based first-order stationary point computation). In the Comparison-based
first-order stationary point computation (Comparison-FOSP) problem we are given query access

to a comparison oracle OComp
f (1) for an L-smooth (possibly) nonconvex function f : Rn → R

satisfying f(0)− infx f(x) ≤ ∆. The goal is to output an ϵ-FOSP of f .

We develop a comparison-based normalized gradient descent algorithm that solves Problem 3.

Theorem 4. With success probability at least 2/3, Algorithm 4 solves Problem 3 using
O(L∆n log n/ϵ2) queries.

The proof of Theorem 4 is deferred to Appendix C.1.

4.2 ESCAPING SADDLE POINTS OF NONCONVEX FUNCTIONS BY COMPARISONS

In this subsection, we focus on the problem of escaping from saddle points, i.e., finding an ϵ-SOSP of
a nonconvex function that is smooth and Hessian-Lipschitz, by making function value comparisons.

Problem 4 (Comparison-based escaping from saddle point). In the Comparison-based escaping
from saddle point (Comparison-SOSP) problem we are given query access to a comparison oracle

OComp
f (1) for a (possibly) nonconvex function f : Rn → R satisfying f(0) − infx f(x) ≤ ∆ that

is L-smooth and ρ-Hessian Lipschitz. The goal is to output an ϵ-SOSP of f .

Our algorithm for Problem 4 given in Algorithm 5 is a combination of comparison-based normalized
gradient descent and comparison-based negative curvature descent (Comparison-NCD). Specif-
ically, Comparison-NCD is built upon our comparison-based negative curvature finding algo-
rithms, Comparison-NCF1 (Algorithm 8) and Comparison-NCF2 (Algorithm 9) that work
when the gradient is small or large respectively, and can decrease the function value efficiently when
applied at a point with a large negative curvature.

Lemma 4. In the setting of Problem 4, for any z satisfying λmin(∇2f(x)) ≤ −√ρϵ, Algorithm 6
outputs a point zout ∈ Rn satisfying

f(zout)− f(z) ≤ −
1

48

√

ϵ3

ρ

with success probability at least 1− ζ using O
(

L2n3/2

ζρϵ log2 nL
ζ
√
ρϵ

)

queries.
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Algorithm 5: Comparison-based Perturbed Normalized Gradient Descent (Comparison-PNGD)

Input: Function f : Rn → R, ∆, precision ϵ
1 S ← 350∆

√ ρ
ϵ3 , δ ← 1

6 , x1,0 ← 0

2 T ← 384L2
√
n

δρϵ log 36nL√
ρϵ , p← 100

T
logS

3 for s = 1, . . . ,S do
4 for t = 0, . . . ,T − 1 do
5 ĝt ←Comparison-GDE(xs,t, δ, γ)
6 ys,t ← xs,t − ϵĝt/(3L)
7 Choose xs,t+1 to be the point between {xs,t,ys,t} with smaller function value

8 x′
s,t+1 ←

{

0, w.p. 1− p
Comparison-NCD(xs,t+1, ϵ, δ), w.p. p

9 Choose xs+1,0 among {xs,0, . . . ,xs,T ,x′
s,0, . . . ,x

′
s,T } with the smallest function value.

10 x′
s+1,0 ←

{

0, w.p. 1− p
Comparison-NCD(xs+1,0, ϵ, δ), w.p. p

11 Uniformly randomly select sout ∈ {1, . . . ,S} and tout ∈ [T ]
12 return xsout,tout

Algorithm 6: Comparison-based Negative Curvature Descent (Comparison-NCD)

Input: Function f : Rn → R, precision ϵ, input point z, error probability δ
1 v1 ←Comparison-NCF1(z, ϵ, δ)
2 v2 ←Comparison-NCF2(z, ϵ, δ)

3 z1,+ = z+ 1
2

√

ϵ
ρv1, z1,− = z− 1

2

√

ϵ
ρv1, z2,+ = z+ 1

2

√

ϵ
ρv2, z2,− = z− 1

2

√

ϵ
ρv2

4 return zout ∈ {z1,+, z1,−, z2,+, z2,−} with the smallest function value.

The proof of Lemma 4 is deferred to Appendix C.3. Next, we present the main result of this subsec-
tion, which describes the complexity of solving Problem 4 using Algorithm 5.

Theorem 5. With success probability at least 2/3, Algorithm 5 solves Problem 4 using an expected

O
(

∆L2n3/2

ρ1/2ϵ5/2
log3 nL√

ρϵ

)

queries.

The proof of Theorem 5 is deferred to Appendix C.4.
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