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Abstract—Approximate message passing (AMP) is an algorith-
mic framework for solving linear inverse problems from noisy
measurements, with exciting applications such as reconstructing
images, audio, hyper spectral images, and various other signals,
including those acquired in compressive signal acquisiton sys-
tems. The growing prevalence of big data systems has increased
interest in large-scale problems, which may involve huge mea-
surement matrices that are unsuitable for conventional computing
systems. To address the challenge of large-scale processing, multi-
processor (MP) versions of AMP have been developed. We
provide an overview of two such MP-AMP variants. In row-MP-
AMP, each computing node stores a subset of the rows of the
matrix and processes corresponding measurements. In column-
MP-AMP, each node stores a subset of columns, and is solely
responsible for reconstructing a portion of the signal. We will
discuss pros and cons of both approaches, summarize recent
research results for each, and explain when each one may be
a viable approach. Aspects that are highlighted include some
recent results on state evolution for both MP-AMP algorithms,
and the use of data compression to reduce communication in the
MP network.

Index Terms—Approximate message passing, compressed sens-
ing, distributed linear systems, inverse problems, lossy compres-
sion, optimization.

I. INTRODUCTION

Many scientific and engineering problems can be modeled
as solving a regularized linear inverse problem of the form

y = Ax+w, (1)

where the goal is to estimate the unknown x ∈ RN given
the matrix A ∈ RM×N and statistical information about the
signal x and the noise w ∈ RM . These problems have received
significant attention in the compressed sensing literature [1, 2]
with applications to image reconstruction [3], communication
systems [4], and machine learning problems [5].

In recent years, many applications have seen explosive
growth in the sizes of data sets. Some linear inverse problems,
for example in hyper spectral image reconstruction [3, 6, 7],
are so large that the M ×N matrix elements cannot be stored
on conventional computing systems. To solve these large-
scale problems, it is possible to partition the matrix A among
multiple computing nodes in multi-processor (MP) systems.

The matrix A can be partitioned in a column-wise or row-
wise fashion, and the corresponding sub-matrices are stored
at different processors. The partitioning style depends on
data availability, computational considerations, and privacy
concerns. Both types of partitioning result in reduced storage
requirements per node and faster computation [8–16].

Row-wise partitioning: When the matrix is partitioned into
rows, there are P distributed nodes (processor nodes) and a
fusion center. Each distributed node stores M

P rows of the ma-
trix A, and acquires the corresponding linear measurements of
the underlying signal x. Without loss of generality, we model
the measurement system in distributed node p ∈ {1, ..., P} as

yi = aix+ wi, i ∈
{
M(p− 1)

P
+ 1, ...,

Mp

P

}
, (2)

where ai is the i-th row of A, and yi and wi are the i-th
entries of y and w, respectively. Once every yi is collected,
we run distributed algorithms among the fusion center and P
distributed nodes to reconstruct the signal x. Prior studies on
solving row-wise partitioned linear inverse problems include
extending existing algorithms such as least absolute shrinkage
and selection operator (LASSO) [5] and iterative hard thresh-
olding (IHT) to a distributed setting [8, 12].

Column-wise partitioning: Columns of the matrix A may
correspond to features in feature selection problems [5]. In
some applications, for example in healthcare when rows of
the matrix correspond to patients, privacy concerns or other
constraints prevent us from storing entire rows (corresponding
to all the data about a patient) in individual processors,
and column-wise partitioning becomes preferable. The (non-
overlapping) column-wise partitioned linear inverse problem
can be modeled as follows,

y =

P∑
p=1

Apxp +w, (3)

where Ap ∈ RM×Np is the sub-matrix that is stored in
processor p, and

∑P
p=1Np = N .

Many studies on solving the column-wise partitioned linear
inverse problem (3) have been in the context of distributed
feature selection. For example, Zhou et al. [17] modeled
feature selection as a parallel group testing problem. Wang et
al. [18] proposed to de-correlate the data matrix before parti-
tioning, so that each processor can work independently using
the de-correlated matrix without communication with other
processors. Peng et al. [19] studied problem (3) in the context
of optimization, where they proposed a greedy coordinate-
block descent algorithm and a parallel implementation of the
fast iterative shrinkage-thresholding algorithm (FISTA) [20].

This paper relies on approximate message passing
(AMP) [21–24], an iterative framework that solves linear
inverse problems. We overview the recent progress in under-
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standing the distributed AMP algorithm applied to either row-
wise or column-wise partitioned linear inverse problems.

The rest of the paper is organized as follows. After review-
ing the AMP literature in Section II, Section III discusses the
row-partitioned version, and the column-partitioned version
appears in Section IV. We conclude the paper in Section V.

II. APPROXIMATE MESSAGE PASSING

To solve large-scale MP linear inverse problems partitioned
either row-wise or column-wise, we use approximate mes-
sage passing (AMP) [21–24], an iterative framework that
solves linear inverse problems by successively decoupling [25–
27] matrix channel problems into scalar channel denoising
problems with additive white Gaussian noise (AWGN). AMP
has received considerable attention because of its fast con-
vergence, computational efficiency, and state evolution (SE)
formalism [21, 23, 28], which offers a precise characterization
of the AWGN denoising problem in each iteration. In the
Bayesian setting, AMP often achieves the minimum mean
squared error (MMSE) [24, 29] in the limit of large linear
systems. Various extensions to AMP have been considered
since AMP was initially introduced. Below, we summarize
recent developments in AMP theory and application.

Generalizations of AMP: Recently, a number of authors
have studied the incorporation of various non-separable de-
noisers within AMP [3, 30–34], generalization of the measure-
ment matrix prior [35–39], and relaxation of assumptions on
the probabilistic observation model [33, 38, 40]. AMP-based
methods have also been applied to solve the bilinear inference
problem [41–43], with matrix factorization applications.

Applications: The AMP framework and its many extensions
have found applications in capacity-achieving sparse superpo-
sition codes [34], compressive imaging [30, 31, 44], hyperspec-
tral image reconstruction [3] and hyperspectral unmixing [45],
universal compressed sensing reconstruction [32], MIMO de-
tection [4], and matrix factorization applications [41–43].

Multi-processor AMP: Recently, Zhu et al. [14, 15] studied
the application of lossy compression in row-wise partitioned
MP-AMP, such that the cost of running the reconstruction
algorithm is minimized. Ma et al. [16] proposed a distributed
version of AMP to solve column-wise partitioned linear in-
verse problems, with a rigorous study of state evolution.

Centralized AMP: Our model for the linear system (1)
includes an independent and identically distributed (i.i.d.)
Gaussian measurement matrix A, i.e., Ai,j ∼ N (0, 1

M ).1 The
signal entries follow an i.i.d. distribution. The noise entries
obey wi ∼ N (0, σ2

W ), where σ2
W is the noise variance.

Starting from x0 = 0 and z0 = 0, the AMP framework [21]
proceeds iteratively according to

xt+1 = ηt(A
T zt + xt), (4)

zt = y −Axt +
1

κ
zt−1〈dηt−1(AT zt−1 + xt−1)〉, (5)

1When the matrix A is not i.i.d. Gaussian, the use of damping or other
variants of AMP algorithms such as Swept AMP [35] and VAMP [39] is
necessary in order for the algorithm to converge. This paper only considers
an i.i.d. Gaussian matrix A in order to present some theoretical results; the
theoretic understanding of using AMP in general matrices is less mature.

where ηt(·) is a denoising function, dηt(·) = dηt(·)
d{·} is

shorthand for the derivative of ηt(·), and 〈u〉 = 1
N

∑N
i=1 ui

for some vector u ∈ RN . The subscript t represents the
iteration index, T denotes transpose, and κ = M

N is the
measurement rate. Owing to the decoupling effect [25–27],
in each AMP iteration [22, 23], the vector ft = AT zt + xt in
(4) is statistically equivalent to the input signal x corrupted
by AWGN et generated by a source E ∼ N (0, σ2

t ),

ft = x+ et. (6)

In large systems (N → ∞, MN → κ), a useful property of
AMP [22, 23] is that the noise variance σ2

t of the equivalent
scalar channel (6) evolves following SE:

σ2
t+1 = σ2

W +
1

κ
MSE(ηt, σ2

t ), (7)

where the mean squared error (MSE) is MSE(ηt, σ2
t ) =

EX,E
[
(ηt (X + E)−X)

2
]
, EX,W (·) is expectation with re-

spect to X and E, and X ∼ fX is the source that generates
x. Formal statements for SE appear in prior work [22, 23, 28].

The SE in (7) can also be expressed in the following
recursion,

τ2t = σ2
W + σ2

t ,

σ2
t+1 = κ−1E

[
(ηt(X + τtZ)−X)

2
]
, (8)

where Z is a standard normal random variable (RV) that is
independent of X , and σ2

0 = κ−1E[X2].
This paper considers the Bayesian setting, which assumes

knowledge of the true prior for the signal x. Therefore, the
MMSE-achieving denoiser is conditional expectation, ηt(·) =
E[x|ft], which is easily obtained. Other denoisers such as soft
thresholding [21–23] yield MSE’s that are greater than that of
the Bayesian denoiser. When the true prior for x is unavailable,
parameter estimation techniques can be used [32, 46, 47].

III. ROW-WISE MP-AMP
A. Lossless R-MP-AMP

Han et al. [48] proposed AMP for row-wise partitioned
MP linear inverse problems (R-MP-AMP) for a network with
P processor nodes and a fusion center. Each processor node
stores rows of the matrix A as in (2), carries out the decoupling
step of AMP, and generates part of the pseudo data fpt . The
fusion center merges the pseudo data sent by all processor
nodes, ft =

∑P
p=1 f

p
t , denoises ft, and sends back the denoised

ft to each processor node. The detailed steps are summarized
in Algorithm 1. Mathematically, Algorithm 1 is equivalent to
the centralized AMP in (4)-(5). Therefore, the SE in (7) tracks
the evolution of Algorithm 1. Note that ap denotes the row
partition of the matrix A at processor p.

B. Lossy R-MP-AMP
In lossless R-MP-AMP (Algorithm 1), the processor nodes

and fusion center send real-valued vectors of length N to each
other, i.e., fpt and xt+1, at floating point precision. However,
in some applications it is costly to send uncompressed real
numbers at full precision. To reduce the communication load
of inter-node messages, we use lossy compression [49, 50].
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Algorithm 1 R-MP-AMP (lossless)

Inputs to Processor p: y, ap, t̂
Initialization: x0 = 0, zp0 = 0,∀p

for t = 1 : t̂ do
At Processor p:
zpt = yp − apxt +

1
κz

p
t−1gt−1, fpt = 1

P xt + (ap)T zpt
At fusion center:
ft =

∑P
p=1 f

p
t , gt = 〈dηt(ft)〉, xt+1 = ηt(ft)

Output from fusion center: xt̂

Applying lossy compression to the messages sent from each
processor node to the fusion center, we obtain the lossy R-MP-
AMP [13, 15] steps as described in Algorithm 2, where Q(·)
denotes quantization.

Algorithm 2 R-MP-AMP (lossy)

Inputs to Processor p: y, ap, t̂
Initialization: x0 = 0, zp0 = 0,∀p

for t = 1 : t̂ do
At Processor p:
zpt = yp − apxt +

1
κz

p
t−1gt−1, fpt = 1

P xt + (ap)T zpt
At fusion center:
fQ,t =

∑P
p=1Q(fpt ), gt = 〈dηt(fQ,t)〉,

xt+1 = ηt(fQ,t)

Output from fusion center: xt̂

The reader might notice that the fusion center also needs
to transmit the denoised signal vector xt and a scalar gt−1
to the distributed nodes. The transmission of the scalar gt−1
is negligible relative to the transmission of xt, and the fusion
center may broadcast xt so that naive compression of xt, such
as compression with a fixed quantizer, is sufficient. Hence, we
will not discuss possible lossy compression of the messages
transmitted by the fusion center.

Assume that we quantize fpt ,∀p, and use C bits on average
to encode the quantized vector Q(fpt ) ∈ XN ⊂ RN , where X
is a set of representation levels. The per-symbol coding rate
is R = C

N . We incur an expected distortion

Dp
t = E

[
1

N

N∑
i=1

(Q(fpt,i)− f
p
t,i)

2

]
at iteration t in each processor node,2 where Q(fpt,i) and fpt,i
are the i-th entries of the vectors Q(fpt ) and fpt , respectively,
and expectation is over fpt . When the size of the problem
grows, i.e., N →∞, the rate-distortion (RD) function, denoted
by R(D), offers the information theoretic limit on the coding
rate R for communicating a long sequence up to distortion
D [49–51]. A pivotal conclusion from RD theory is that coding
rates can be greatly reduced even if D is small. The function
R(D) can be computed in various ways [52–54] and can be

2Because we assume that A and z are both i.i.d., the expected distortions
are the same over all P nodes, and can be denoted by Dt for simplicity. Note
also that Dt = E[(Q(fpt,i)− f

p
t,i)

2] due to x being i.i.d.

achieved by an RD-optimal quantization scheme in the limit of
large N . Other quantization schemes will require larger coding
rates to achieve the same expected distortion D.

Assume that appropriate vector quantization (VQ)
schemes [51, 55, 56] that achieve R(D) are applied within
each MP-AMP iteration. The signal at the fusion center
before denoising can then be modeled as

fQ,t =

P∑
p=1

Q(fpt ) = x+ et + nt, (9)

where et is the equivalent scalar channel noise (6) and nt is the
overall quantization error. For large block sizes, we expect the
VQ quantization error nt to resemble additive white Gaussian
noise with variance PDt that is independent of x+et at high
rates, or at all rates using dithering [57].

State evolution for lossy R-MP-AMP: Han et al. suggest
that SE for lossy R-MP-AMP [13] follows

σ2
t+1 = σ2

W +
1

κ
MSE(ηt, σ2

t + PDt), (10)

where σ2
t can be estimated by σ̂2

t = 1
M ‖zt‖

2
2 with ‖ · ‖p

denoting the `p norm [22, 23], and σ2
t+1 is the variance of

et+1. The rigorous justification of (10) by extending the
framework put forth by Bayati and Montanari [23] and Rush
and Venkataramanan [58] is left for future work. Instead, we
argue that lossy SE (10) asymptotically tracks the evolution of
σ2
t in lossy MP-AMP in the limit of low normalized distortion
PDt

σ2
t
→ 0. Our argument is comprised of three parts: (i)

et and nt (9) are approximately independent in the limit of
PDt

σ2
t
→ 0, (ii) et + nt is approximately independent of x in

the limit of PDt

σ2
t
→ 0, and (iii) lossy SE (10) holds if (i) and

(ii) hold. The first part (et and nt are independent) ensures
that we can track the variance of et + nt with σ2

t + PDt.
The second part (et + nt is independent of x) ensures that
lossy MP-AMP follows lossy SE (10) as it falls under the
general framework discussed in Bayati and Montanari [23]
and Rush and Venkataramanan [58]. Hence, the third part of
our argument holds. The numerical justification of these three
parts appears in Zhu et al. [15, 59].

Optimal coding rates: Denote the coding rate used to
transmit Q(fpt ) at iteration t by Rt. The sequence of Rt, t =
1, ..., t̂, where t̂ is the total number of MP-AMP iterations,
is called the coding rate sequence, and is denoted by the
vector R = [R1, ..., Rt̂]. Given the coding rate sequence R,
the distortion Dt can be evaluated with R(D), and the scalar
channel noise variance σ2

t can be evaluated with (10). Hence,
the MSE for R can be predicted. The coding rate sequence
R can be optimized using dynamic programming (DP) [15,
60]. That said, our recent theoretical analysis of lossy R-MP-
AMP has revealed that the coding rate is linear in the limit of
EMSE→ 0, where EMSE denotes excess MSE (EMSE=MSE-
MMSE). This result is summarized in the following theorem.

Theorem 1 (Linearity of the coding rate sequence [15]):
Supposing that lossy SE (10) holds, we have

lim
t→∞

D∗t+1

D∗t
= θ,
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where θ = N
M MSE′(σ2

∞) and D∗t denotes the optimal dis-
tortion at iteration t. Further, define the additive growth rate
at iteration t as Rt+1 − Rt. The additive growth rate for the
optimal coding rate sequence R∗ satisfies

lim
t→∞

(
R∗t+1 −R∗t

)
=

1

2
log2

(
1

θ

)
.

Comparison of DP results to Theorem 1: We run DP
(discussed in Zhu et al. [15]) to find an optimal coding rate
sequence R∗ to reconstruct a Bernoulli-Gaussian (BG) signal,
whose entries follow

xj ∼ ρN (0, 1) + (1− ρ)δ(xj), (11)

where δ(·) is the Dirac delta function and ρ is called the
sparsity rate of the signal. The detailed setting is: sparsity
rate ρ = 0.2, P = 100 nodes, measurement rate κ = 1, noise
variance σ2

W = 0.01, and normalized cost ratio of computation
to communication b = 0.782 (a formal definition of b appears
in [15]). The goal is to achieve a desired EMSE of 0.005 dB,
i.e., 10 log10

(
1 + EMSE

MMSE

)
= 0.005. We use uniform ECSQ [49,

51] with optimal block entropy coding [51] at each processor
node and the corresponding relation between the rate Rt and
distortion Dt of ECSQ in the DP scheme. We know that
ECSQ achieves a coding rate within an additive constant of the
RD function R(D) at high rates [51]. Therefore, the additive
growth rate of the optimal coding rate sequence obtained for
ECSQ will be the same as the additive growth rate if the RD
relation is modeled by R(D) [49–51].

The resulting optimal coding rate sequence is plotted in
Fig. 1. The additive growth rate of the last six iterations is
1
6 (R

∗
12 − R∗6) = 0.742, while the asymptotic additive growth

rate according to Theorem 1 is 1
2 log2

(
1
θ

)
≈ 0.751. Note

that the discrepancy of 0.009 between the additive growth
rate from the simulation and the asymptotic additive growth
rate is within the numerical precision of our DP scheme.
In conclusion, our numerical result matches the theoretical
prediction of Theorem 1.

Algorithm 3 C-MP-AMP (lossless)

Inputs to Processor p: y, Ap, {t̂s}s=0,...,ŝ (maximum number
of inner iterations at each outer iteration)
Initialization: xp

0,t̂0
= 0, zp

0,t̂0−1
= 0, rp

0,t̂0
= 0, ∀p

for s = 1 : ŝ do (loop over outer iterations)
At fusion center: gs =

∑P
u=1 r

u
s−1,t̂s−1

At Processor p:
xps,0 = xp

s−1,t̂s−1
, rps,0 = rp

s−1,t̂s−1

for t = 0 : t̂s − 1 do (loop over inner iterations)
zps,t = y − gs −

(
rps,t − rps,0

)
xps,t+1 = ηs,t(x

p
s,t + (Ap)T zps,t)

rps,t+1 = Apxps,t+1−
zp
s,t

M

∑Np

i=1 η
′
s,t([x

p
s,t+(Ap)T zps,t]i)

Output from processor p: xp
ŝ,t̂ŝ

IV. COLUMN-WISE MP-AMP
In our proposed column-wise multiprocessor AMP (C-MP-

AMP) algorithm [16], the fusion center collects vectors that

represent the estimates of the portion of the measurement
vector y contributed by the data from individual processors.
The sum of these vectors is computed in the fusion center
and transmitted to all processors. Each processor performs
standard AMP iterations with a new equivalent measurement
vector, which is computed using the vector received from the
fusion center. The pseudocode for C-MP-AMP is presented in
Algorithm 3.

State evolution: Similar to AMP, the dynamics of the C-
MP-AMP algorithm can be characterized by an SE formula.
Let (σp

0,t̂
)2 = κ−1p E[X2], where κp = M/Np, ∀p = 1, ..., P .

For outer iterations 1 ≤ s ≤ ŝ and inner iterations 0 ≤ t ≤ t̂s,
we define the sequences {(σps,t)2} and {(τps,t)2} as

(σps,0)
2 = (σp

s−1,t̂)
2, (12)

(τps,t)
2 = σ2

W +

P∑
u=1

(σus,0)
2 +

(
(σps,t)

2 − (σps,0)
2
)
, (13)

(σps,t+1)
2 = κ−1p E

[(
ηs,t(X + τps,tZ)−X

)2]
, (14)

where Z is standard normal and independent of X . With these
definitions, we have the following theorem for C-MP-AMP.

Theorem 2 ([16]): Under the assumptions listed in [58,
Section 1.1], for p = 1, ..., P , let M/Np → κp ∈ (0,∞)

be a constant. Define N =
∑P
p=1Np. Then for any PL(2)

function3 φ : R2 → R, we have

lim
N→∞

1

Np

Np∑
i=1

φ([xps,t+1]i, x
p
i )

a.s.
= E

[
φ(ηs,t(X + τps,tZ), X)

]
,∀p,

where xps,t+1 is generated by the C-MP-AMP algorithm, τps,t
is defined in (12–14), xpi is the ith element in xp, xp is the
true signal in the pth processor, X ∼ pX , and Z is a standard
normal RV that is independent of X .

Remark 1: C-MP-AMP converges to a fixed point that is no
worse than that of AMP. This statement can be demonstrated as
follows. When C-MP-AMP converges, the quantities in (12–
14) do not keep changing, hence we can drop all the iteration
indices for fixed point analysis. Notice that the last term on
the right hand side (RHS) of (13) vanishes, which leaves the
RHS independent of p. Denote (τps,t)

2 by τ2 for all s, t, p, and
plug (14) into (13), then

τ2 = σ2
W +

P∑
p=1

κ−1p E
[
(η(X + τZ)−X)

2
]

(a)
= σ2

W + κ−1E
[
(η(X + τZ)−X)

2
]
,

which is identical to the fixed point equation obtained from
(8), where (a) holds because

∑P
p=1 κ

−1
p =

∑P
p=1

Np

M = N
M .

Because AMP always converges to the worst fixed point of
(8) [24], the average asymptotic performance of C-MP-AMP
is at least as good as AMP.

Remark 2: The asymptotic dynamics of C-MP-AMP can be
identical to AMP with a specific communication schedule. This

3A function f : Rm → R is pseudo-Lipschitz of order-2, denoted PL(2), if
there exists a constant L > 0 such that for all x, y ∈ Rm, |φ(x)− φ(y)| ≤
L(1 + ‖x‖+ ‖y‖)‖x− y‖, where ‖·‖ denotes the Euclidean norm.
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Fig. 3. Verification that C-MP-AMP achieves the
MMSE at various measurement rates κ = M/N
and SNR levels. (P=3, N=30000.)

can be achieved by letting t̂s = 1,∀s. In this case, the quantity
(τps,t) is involved only for t = 0. Because the last term in (13)
is 0 when t = 0, the computation of (τps,0)

2 is independent
of p. Therefore, τps,0 are again equal for all p. Dropping the
processor index for (τps,t)

2, the recursion in (12–14) can be
simplified as

(τs,0)
2 = σ2

W +

P∑
p=1

κ−1p E
[
(ηs,0(X + τs,0Z)−X)

2
]

= σ2
W + κ−1E

[
(ηs−1,0(X + τs−1,0Z)−X)

2
]
,

where the iteration evolves over s, which is identical to (8)
evolving over t.

Numerical results for SE: We provide numerical results
for C-MP-AMP for the Gaussian matrix setting, where SE
is justified rigorously. We simulate i.i.d. Bernoulli-Gaussian
signals (11) with ρ = 0.1. The measurement noise vec-
tor w has i.i.d. Gaussian N (0, σ2

W ) entries, where σ2
W

depends on the signal to noise ratio (SNR) as SNR :=
10 log10

(
(NE[X2])/(Mσ2

W )
)
. The estimation function ηs,t

is defined as ηs,t(u) = E[X|X + τps,tZ = u], where Z is a
standard normal RV independent of X , and τps,t is estimated
by ‖zps,t‖/

√
M , which is implied by SE. All numerical results

are averaged over 50 trials.
Let us show that the MSE of C-MP-AMP is accurately

predicted by SE when the matrix A has i.i.d. Gaussian entries
with Ai,j ∼ N (0, 1/M). It can be seen from Fig. 2 that the
MSE achieved by C-MP-AMP from simulations (red crosses)
matches the MSE predicted by SE (black curves) at every outer
iteration s and inner iteration t for various choices of numbers
of inner iterations (the number of red crosses within a grid).

As discussed in Remark 1, the average estimation error of
C-MP-AMP is no worse than that of AMP, which implies that
C-MP-AMP can achieve the MMSE of large random linear
systems [26] when AMP achieves it.4 This is verified in Fig. 3.

V. DISCUSSION

This overview paper discussed multi-processor (MP) ap-
proximate message passing (AMP) for solving linear inverse

4AMP can achieve the MMSE in the limit of large linear systems when
the model parameters (κ, SNR, and sparsity of x) are within a region [24].

problems, where the focus was on two variants for partitioning
the measurement matrix. In row-MP-AMP, each processor
uses entire rows of the measurement matrix, and decouples
statistical information from those rows to scalar channels. The
multiple scalar channels, each corresponding to one processor,
are merged at a fusion center. We showed how lossy com-
pression can reduce communication requirements in this row-
wise variant. In column-MP-AMP, each node is responsible for
some entries of the signal. While we have yet to consider lossy
compression in column-MP-AMP, it offers privacy advantages,
because entire rows need not be stored. Ongoing work can
consider lossy compression of inter-processor messages in
column-MP-AMP, as well as rigorous state evolution analyses.

ACKNOWLEDGMENTS

The authors were supported by the National Science Foun-
dation (NSF) under grant ECCS-1611112. Subsets of this
overview paper appeared in our earlier works, including in
Han et al. [13], Zhu et al. [14, 15], and Ma et al. [16]. Finally,
we thank Yanting Ma for numerous helpful discussions.

REFERENCES

[1] D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[2] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information,”
IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[3] J. Tan, Y. Ma, H. Rueda, D. Baron, and G. Arce, “Compressive
hyperspectral imaging via approximate message passing,” IEEE J. Sel.
Topics Signal Process., vol. 10, no. 2, pp. 389–401, Mar. 2016.

[4] C. Jeon, R. Ghods, A. Maleki, and C. Studer, “Optimality of large
MIMO detection via approximate message passing,” in Proc. IEEE Int.
Symp. Inf. Theory, Hong Kong, Hong Kong, June 2015, pp. 1227–1231.

[5] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical
Learning, Springer, Aug. 2001.

[6] H. Arguello and G. Arce, “Code aperture optimization for spectrally
agile compressive imaging,” J. Opt. Soc. Am., vol. 28, no. 11, pp. 2400–
2413, Nov. 2011.

[7] H. Arguello, H. Rueda, Y. Wu, D. W. Prather, and G. R. Arce, “Higher-
order computational model for coded aperture spectral imaging,” Appl.
Optics, vol. 52, no. 10, pp. D12–D21, Mar. 2013.

[8] J. Mota, J. Xavier, and P. Aguiar, “Distributed basis pursuit,” IEEE
Trans. Signal Process., vol. 60, no. 4, pp. 1942–1956, Apr. 2012.

[9] S. Patterson, Y. C. Eldar, and I. Keidar, “Distributed compressed sensing
for static and time-varying networks,” IEEE Trans. Signal Process., vol.
62, no. 19, pp. 4931–4946, Oct. 2014.

Authorized licensed use limited to: Johns Hopkins University. Downloaded on May 14,2023 at 02:13:45 UTC from IEEE Xplore.  Restrictions apply. 



[10] P. Han, R. Niu, M. Ren, and Y. C. Eldar, “Distributed approximate
message passing for sparse signal recovery,” in Proc. IEEE Global Conf.
Signal Inf. Process. (GlobalSIP), Atlanta, GA, Dec. 2014, pp. 497–501.

[11] C. Ravazzi, S. M. Fosson, and E. Magli, “Distributed iterative thresh-
olding for `0/`1 -regularized linear inverse problems,” IEEE Trans. Inf.
Theory, vol. 61, no. 4, pp. 2081–2100, Apr. 2015.

[12] P. Han, R. Niu, and Y. C. Eldar, “Communication-efficient distributed
IHT,” in Proc. Signal Process. with Adaptive Sparse Structured Repre-
sentations Workshop (SPARS), Cambridge, United Kingdom, July 2015.

[13] P. Han, J. Zhu, R. Niu, and D. Baron, “Multi-processor approximate
message passing using lossy compression,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process. (ICASSP), Shanghai, China, Mar. 2016,
pp. 6240–6244.

[14] J. Zhu, A. Beirami, and D. Baron, “Performance trade-offs in multi-
processor approximate message passing,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Barcelona, Spain, July 2016, pp. 680–684.

[15] J. Zhu, D. Baron, and A. Beirami, “Optimal trade-offs in multi-processor
approximate message passing,” Arxiv preprint arXiv:1601.03790, Nov.
2016.

[16] Y. Ma, Y. M. Lu, and D. Baron, “Multiprocessor approximate message
passing with column-wise partitioning,” in Proc. IEEE Int. Conf.
Acoustics, Speech, Signal Process. (ICASSP), New Orleans, LA, Mar.
2017, Accepted for publication.

[17] Y. Zhou, U. Porwal, C. Zhang, H. Ngo, L. Nguyen, C. Ré, and
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[24] F. Krzakala, M. Mézard, F. Sausset, Y. Sun, and L. Zdeborová,
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“Phase transitions and sample complexity in Bayes-optimal matrix
factorization,” IEEE Trans. Signal Process., vol. 62, no. 7, pp. 4228–
4265, July 2017.

[44] S. Som and P. Schniter, “Compressive imaging using approximate
message passing and a Markov-tree prior,” IEEE Trans. Signal Process.,
vol. 60, no. 7, pp. 3439–3448, July 2012.

[45] J. Vila, P. Schniter, and J. Meola, “Hyperspectral unmixing via
turbo bilinear generalized approximate message passing,” IEEE Trans.
Comput. Imag., vol. 1, no. 3, pp. 143–158, Sept. 2015.

[46] J. Vila and P. Schniter, “Expectation-maximization Gaussian-mixture
approximate message passing,” IEEE Trans. Signal Process., vol. 61,
no. 19, pp. 4658–4672, Oct. 2013.

[47] U. Kamilov, S. Rangan, A. K. Fletcher, and M. Unser, “Approximate
message passing with consistent parameter estimation and applications
to sparse learning,” IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2969–
2985, May 2014.

[48] P. Han, R. Niu, and Y. C. Eldar, “Modified distributed iterative hard
thresholding,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.
(ICASSP), Brisbane, Australia, Apr. 2015, pp. 3766–3770.

[49] T. M. Cover and J. A. Thomas, Elements of Information Theory, New
York, NY, USA: Wiley-Interscience, 2006.

[50] T. Berger, Rate Distortion Theory: Mathematical Basis for Data
Compression, Prentice-Hall Englewood Cliffs, NJ, 1971.

[51] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression,
Kluwer, 1993.

[52] S. Arimoto, “An algorithm for computing the capacity of an arbitrary
discrete memoryless channel,” IEEE Trans. Inf. Theory, vol. 18, no. 1,
pp. 14–20, Jan. 1972.

[53] R. E. Blahut, “Computation of channel capacity and rate-distortion
functions,” IEEE Trans. Inf. Theory, vol. 18, no. 4, pp. 460–473, July
1972.

[54] K. Rose, “A mapping approach to rate-distortion computation and
analysis,” IEEE Trans. Inf. Theory, vol. 40, no. 6, pp. 1939–1952, Nov.
1994.

[55] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer
design,” IEEE Trans. Commun., vol. 28, no. 1, pp. 84–95, Jan. 1980.

[56] R. M. Gray, “Vector quantization,” IEEE ASSP Mag., vol. 1, no. 2, pp.
4–29, Apr. 1984.

[57] R. Zamir and M. Feder, “On lattice quantization noise,” IEEE Trans.
Inf. Theory, vol. 42, no. 4, pp. 1152–1159, July 1996.

[58] C. Rush and R. Venkataramanan, “Finite-sample analysis of approximate
message passing,” Arxiv preprint arXiv:1606.01800, June 2016.

[59] J. Zhu, Statistical Physics and Information Theory Perspectives on
Linear Inverse Problems, Ph.D. thesis, North Carolina State University,
Raleigh, NC, Jan. 2017.

[60] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, The MIT Press, Cambridge, MA, third edition, 2009.

Authorized licensed use limited to: Johns Hopkins University. Downloaded on May 14,2023 at 02:13:45 UTC from IEEE Xplore.  Restrictions apply. 


