
Unconstrained Model Merging for Enhanced LLM Reasoning

Anonymous ACL submission

Abstract
Recent advancements in building domain-001
specific large language models (LLMs) have002
shown remarkable success, especially in tasks003
requiring reasoning abilities like logical infer-004
ence over complex relationships and multi-step005
problem solving. However, creating a power-006
ful all-in-one LLM remains challenging due007
to the need for proprietary data and vast com-008
putational resources. As a resource-friendly009
alternative, we explore the potential of merg-010
ing multiple expert models into a single LLM.011
Existing studies on model merging mainly fo-012
cus on generalist LLMs instead of domain ex-013
perts, or the LLMs under the same architecture014
and size. In this work, we propose a uncon-015
strained model merging framework that accom-016
modates both homogeneous and heterogeneous017
model architectures with a focus on reasoning018
tasks. A fine-grained layer-wise weight merg-019
ing strategy is designed for homogeneous mod-020
els merging, while heterogeneous model merg-021
ing is built upon the probabilistic distribution022
knowledge derived from instruction-response023
fine-tuning data. Across 7 benchmarks and024
9 reasoning-optimized LLMs, we reveal key025
findings that combinatorial reasoning emerges026
from merging which surpasses simple additive027
effects. We propose that unconstrained model028
merging could serve as a foundation for decen-029
tralized LLMs, marking a notable progression030
from the existing centralized LLM framework.031
This evolution could enhance wider participa-032
tion and stimulate additional advancement in033
the field of artificial intelligence, effectively ad-034
dressing the constraints posed by centralized035
models.036

1 Introduction037

Large Language Models (LLMs) have demon-038

strated remarkable capabilities, attributed to emer-039

gent abilities that arise with scale and diverse train-040

ing data. Different organizations are developing041

their own LLMs, each excelling in specific rea-042

soning tasks. In the context of LLMs, reasoning043

refers to the capability to perform logical infer- 044

ence, understand complex relationships, and solve 045

problems that require multi-step thought processes, 046

e.g., natural language reasoning, code program- 047

ming, mathematical problem-solving with or with- 048

out tools. However, applications in many other 049

domains might require a combination of these abil- 050

ities. For instance, in educational platforms or au- 051

tomated theorem proving, an LLM needs to com- 052

prehend complex mathematical concepts, reason 053

through problems, and generate correct and effi- 054

cient code solutions. An intuitive solution is to ag- 055

gregate the datasets used to train these specialized 056

LLMs and develop a more comprehensive, general- 057

purpose model. However, this approach could be 058

less impractical due to the enormous computational 059

resources and human labor required. Moreover, 060

the proprietary or sensitive nature of the data used 061

to train individual models frequently restricts ac- 062

cess, limiting the feasibility of data-centric meth- 063

ods. Therefore, there is a pressing need for ef- 064

ficiently building large models over off-the-shelf 065

models (MoM), combining abilities without retrain- 066

ing or access to the original training data. 067

Model merging has emerged as a promising av- 068

enue to address this challenge. Early approaches, 069

such as weight averaging (Utans, 1996; Smith and 070

Gashler, 2017), laid the foundation for techniques 071

like Linear Mode Connectivity (LMC) (Garipov 072

et al., 2018), which facilitates the merging of mod- 073

els trained from a common base. Methods like 074

Model Soups (Wortsman et al., 2022) and Task 075

Arithmetic (Ilharco et al., 2022) further exploit 076

these principles by averaging weights or perform- 077

ing arithmetic operations on task-specific vectors. 078

More advanced strategies such as TIES (Yadav 079

et al., 2023) and Git-Rebasin (Ainsworth et al., 080

2022) address challenges related to permutation 081

symmetries, enabling the alignment of models with 082

differing initializations. In parallel, model fusion 083

techniques, such as CALM (Bansal et al., 2024) 084

1

Figure 1: The framework on unconstrained model merg-
ing. We first establish a robust evaluator and select
the top-ranking domain-specific small models (DSSMs)
with the strongest math or coding abilities. For uncon-
strained model merging, we apply the CMA-ES algo-
rithm to search for optimal parameters for homogeneous
models, and leverage instruction-response distribution
based fusion for heterogeneous LLMs.

and FUSELLM (Wan et al., 2024a), explore cross-085

attention mechanisms and probabilistic distribution086

alignment to integrate heterogeneous architectures.087

Despite their progress, the specific challenges of088

unconstrained model merging for enhancing LLM089

reasoning—particularly across text, mathematics,090

and code reasoning tasks and under varying ar-091

chitectures and model sizes—have not been thor-092

oughly investigated, leaving a gap in understanding093

LLM reasoning enhancement under model merging094

without incurring significant resource costs.095

In this paper, we propose a comprehensive frame-096

work for unconstrained model merging (UMM)097

that accommodates both homogeneous and hetero-098

geneous architectures, with a particular focus on099

reasoning tasks such as text, math, and code rea-100

soning. For homogeneous LLMs, we perform pa-101

rameter level merging of LLMs through two ap-102

proaches, TIES-Merging and Task Arithmetic (Ya-103

dav et al., 2024; Ilharco et al., 2022). To merge104

heterogeneous LLMs with different architectures105

and sizes, we integrate their diverse knowledge106

through probabilistic distribution matrices derived107

from instruction-response pairs in the fine-tuning108

dataset.109

Through extensive evaluations across 7 bench-110

marks and 9 state-of-the-art reasoning-optimized111

LLMs, we have the following interesting findings:112

• Merging mathematical and coding models en-113

hances both mathematical and coding abilities114

beyond those of the original coding model. This115

potentially suggests that combinatorial capabil-116

ities—coding with mathematical thinking—are117

acquired through LLM merging, not merely the118

addition of individual skills. 119

• LLMs optimized for more complex tasks, such 120

as mathematics over coding, as pivot models 121

yields superior results. Additionally, if the pivot 122

model is a pretrained model and the models to be 123

merged with it are chat models, the fine-tuning 124

process following the initial pretraining becomes 125

crucial for optimal integration. 126

To summarize, this work makes the following key 127

contributions: 128

• We propose to investigate LLM merging in un- 129

constrained contexts, i.e., heterogeneous reason- 130

ing capabilities, model architectures, and sizes, 131

for resouce-limited scenarios. 132

• We introduce the unconstrained model merging 133

framework that integrates techniques such as evo- 134

lutionary merging and probabilistic distribution 135

knowledge-based fusion. 136

• We conduct extensive experiments, revealing the 137

merits and limitations of unconstrained model 138

merging across 7 benchmarks and 9 SOTA rea- 139

soning LLMs. 140

2 Related Work 141

2.1 Model Merging 142

Model merging integrates two or more pretrained 143

models with similar architectures into a unified 144

model (Ainsworth et al., 2022), leveraging the 145

strengths of each original. This process is built on 146

weight averaging techniques (Utans, 1996; Smith 147

and Gashler, 2017) and utilizes mode connectiv- 148

ity in the loss landscape (Garipov et al., 2018). 149

For example, Linear Mode Connectivity (LMC) 150

allows for the merging of models that have been 151

fine-tuned from a shared base model (Nagarajan 152

and Kolter, 2019; Entezari et al., 2021; Neyshabur 153

et al., 2021). Additionally, methods that use permu- 154

tation symmetries and weight transformations align 155

models within common regions of the loss land- 156

scape to enhance compatibility and performance 157

(Ainsworth et al., 2022; Stoica et al., 2023; Verma 158

and Elbayad, 2024). Simple weight averaging, ex- 159

emplified by Model Soups (Wortsman et al., 2022), 160

uses LMC to combine models with identical ar- 161

chitectures and initializations. Task Arithmetic 162

(Ilharco et al., 2022) introduces task vectors to 163

manage differences between fine-tuned models and 164

2

a common base, enabling precise model adjust-165

ments. Advanced approaches like TIES-Merging166

(Yadav et al., 2023), Model Breadcrumbs (Davari167

and Belilovsky, 2023), and DARE (Yu et al., 2023a)168

facilitate the sparsification and combination of169

task vectors, supporting the merging of a larger170

number of models with minimal capability loss.171

Git-Rebasin (Ainsworth et al., 2022) and Optimal172

Transport Fusion (Singh and Jaggi, 2020) apply173

permutation symmetries to align and merge models174

with different starting points. These methods have175

been extended to support Transformer-based archi-176

tectures (Imfeld et al., 2023; Verma and Elbayad,177

2024) and models trained on distinct tasks (Stoica178

et al., 2023), showcasing their flexibility and broad179

applicability in contemporary AI development.180

2.2 Model Fusion181

Model Fusion emphasizes integrating language182

models with diverse architectures to boost their183

collective capabilities. The Composition to Aug-184

ment Language Models (CALM) (Bansal et al.,185

2024), utilizes cross-attention mechanisms to blend186

representations from various models, harmonizing187

different neural network structures to capitalize on188

their combined strengths. Similarly, FUSELLM189

(Wan et al., 2024a) focuses on aligning and merg-190

ing the probabilistic distributions of source large191

language models to enrich the knowledge of the192

fused model. Extending to chat-based models,193

FUSECHAT (Wan et al., 2024b) introduces a two-194

stage fuse-and-merge framework: initially, it con-195

ducts pairwise knowledge fusion of source chat196

models to create several target models with uni-197

form structures and sizes; subsequently, it com-198

bines these models in the parameter space. Despite199

these advancements, there is a notable gap in de-200

tailed analysis of unconstrained model merging,201

particularly in reasoning tasks for LLMs, with few202

efforts addressing the fusion of models with hetero-203

geneous architectures.204

3 Modeling205

3.1 Overview206

We propose a comprehensive framework for un-207

constrained model merging that accommodates208

both homogeneous and heterogeneous architec-209

tures, with a particular focus on reasoning tasks210

such as text, math, and code reasoning.211

3.2 Evolutionary Merging for Homogeneous 212

LLMs 213

For homogeneous LLMs, we perform parameter- 214

level merging of LLMs through a fine-grained, 215

layer-wise weight evolutionary merging approach 216

that combines the merging recipes, like TIES- 217

Merging and Task Arithmetic with an evolutionary 218

algorithm (Yadav et al., 2024; Ilharco et al., 2022; 219

Akiba et al., 2024; Goddard et al., 2024). 220

Task Arithmetic improves models’ performance 221

by modifying and combining task vectors through 222

arithmetic operations. Let θpre be the weights of 223

the base model, and θtft represent the weights after 224

the base model fine tuned on the task t. The task 225

vectors are defined as τt = θtft − θpre, indicating 226

the direction of improvements from a base model 227

to a fine-tuned model on the given task. The final 228

weights of the merged model are computed using 229

the weights of the base model plus a linear combina- 230

tion of task vectors θMerge = θpre + (λ ∗
∑n

i=1 τi). 231

TIES-Merging constructs a merged model by re- 232

solving disagreements among task-specific models. 233

Given multiple task vectors {τt}nt=1, where each 234

τt ∈ Rd represents the parameter updates for task 235

t, the method involves three steps: (1) Trim: Re- 236

dundant parameters are trimmed by keeping the 237

top k% values based on magnitude, creating τ̂t. (2) 238

Elect: An aggregate sign vector γ̂ is formed by 239

choosing the sign with the highest total magnitude 240

across models for each parameter, computed as 241

γ̂ = sgn (
∑n

t=1 τ̂t). (3) Disjoint Merge: A disjoint 242

mean for each parameter is computed by averaging 243

over models that share the same sign as the aggre- 244

gate sign, resulting in the creation of the merged 245

task vector τ̃ . 246

We optimize the merging with the Covariance Ma- 247

trix Adaptation Evolution Strategy (CMA-ES) al- 248

gorithm (Hansen, 2006), an evolutionary algorithm 249

adept at handling high-dimensional, non-convex 250

optimization problems common in neural network 251

parameter spaces, guided by several task-specific 252

metrics. CMA-ES optimizes the merging coef- 253

ficients without relying on gradient information, 254

making it suitable for complex, non-separable op- 255

timization problems. We define a set of merg- 256

ing coefficients {αl}Ll=1 for each layer l of the 257

LLM, where L is the total number of layers. These 258

coefficients determine the weighted combination 259

of the corresponding parameters from different 260

models being merged. CMA-ES iteratively op- 261

timizes these coefficients by sampling candidate 262

3

solutions from a multivariate normal distribution263

N
(
m(g), σ

2
(g)C(g)

)
at each generation g, where264

m(g) is the mean vector of the coefficients, σ(g) is265

the global step size, and C(g) is the covariance266

matrix capturing the dependencies between co-267

efficients. For each sampled set of coefficients268

{αl}Ll=1, we perform layer-wise merging of the269

models and evaluate the merged model’s perfor-270

mance on selected tasks, guiding the evolutionary271

process. CMA-ES updates the mean m(g), step size272

σ(g), and covariance matrix C(g) based on the eval-273

uated fitness, navigating the search space toward274

optimal merging coefficients. This process contin-275

ues until convergence criteria are met and produces276

a merged model with the strengths of individual277

models while minimizing parameter conflicts.278

3.3 Distribution Based Fusion for279

Heterogeneous LLMs280

To merge heterogeneous LLMs with different archi-281

tectures and sizes, inspired by previous works (Wan282

et al., 2024b,a),we integrate their diverse knowl-283

edge through probabilistic distribution matrices de-284

rived from instruction-response pairs (Ii, Ri) in285

the fine-tuning dataset D. For each θj , we com-286

pute a distribution matrix Pθj ,i ∈ RN×Vj , where287

N is the response length and Vj is the vocabulary288

size of LLM θj . We employ an enhanced token289

alignment strategy for large language models that290

utilizes mapping statistics derived from sequence-291

level alignments via dynamic programming to ac-292

commodate varying tokenization schemes. This293

strategy captures 1 to 1, 1 to n, and n to 1 token294

mappings by constructing a global statistical ma-295

trix recording the frequency of mappings between296

pivot and source tokens. In the distribution dimen-297

sion, we align tokens by selecting mappings with298

maximum frequency for 1 to 1 and 1 to n cases,299

and by computing weighted averages of source300

distributions for n to 1 cases, thereby preserving301

significant distributional information while mini-302

mizing misalignments. The aligned distributions303

from the pivot LLM θv and each source LLM θj304

are then fused using the minimum cross-entropy305

(MinCE) fusion function:306

Pi,j = Fusion
(
Pθv ,i,Pθj ,i

)
, (1)307

resulting in fused matrices {Pi,j} that encapsu-308

late the collective knowledge of the models. We309

fine-tune each target LLM Mj,t by minimizing a310

combined loss function:311

L = λLSFT + (1− λ)LFusion, (2) 312

where LSFT is the standard supervised fine-tuning 313

loss, and 314

LFusion = −E(Ii,Ri)∼D
[
H
(
Pi,j∥Qi,ϕj

)]
(3) 315

encourages the target LLM’s output distribution 316

Qi,ϕj
to align with the fused distribution Pi,j . 317

4 Experiments 318

4.1 Experimental Setting 319

4.1.1 Homogeneous LLMs 320

Dataset The evolutionary search is conducted on 321

a target dataset1, including a subset of GSM8K 322

train set (Cobbe et al., 2021), MBPP (Austin et al., 323

2021), and MMLU validation set (Hendrycks et al., 324

2021a). 325

Source LLMs In the experiments of evolution- 326

ary merging, we employ a collection of source 327

LLMs to create a model with improved reasoning 328

capabilities. The source models include Deepseek- 329

Math-7B-RL (Zhihong Shao, 2024) and Deepseek- 330

Coder-Instruct-v1.5 (Daya Guo, 2024), which are 331

derived from DeepSeek LLMs (Bi et al., 2024). 332

Evolutionary Search Evolutionary model merg- 333

ing is performed using the CMA-ES algo- 334

rithm (Hansen, 2006) provided by Mergekit (God- 335

dard et al., 2024; Akiba et al., 2024). This method 336

provides an efficient way to find the optimal param- 337

eters of merge recipes given target datasets. Specif- 338

ically, we utilize the CMA-ES algorithm on two 339

merging approaches, Task Arithmetic and TIES- 340

Merging (Yadav et al., 2024; Ilharco et al., 2022). 341

In Task Arithmetic, the parameters to be optimized 342

are the weights of the task vectors and every 5 343

layers share the same weights. The target dataset 344

includes 285 samples from MMLU, 300 samples 345

from GSM8K and 374 samples from MBPP. For 346

TIES-Merging, there is an additional parameter, 347

namely density, which determines the fraction of 348

parameters to retain from the source models. In this 349

experiment, the target dataset includes 500 samples 350

from GSM8K and 500 samples from MBPP. Ev- 351

ery 10 layers share the same density and weights. 352

For both experiments, the optimal parameters is 353

searched for 30 iterations based on their perfor- 354

mance on the target dataset. 355

1
We avoid using the test sets of the benchmarks during evolutionary search to prevent

overfitting.

4

Evaluation We evaluate our models using the fol-356

lowing benchmarks: MMLU, GSM8K and MATH357

are used to assess the models’ mathematical reason-358

ing abilities, while HumanEval (Chen et al., 2021),359

and InfiBench (InfiCoderTeam, 2024) are utilized360

to evaluate models’ coding proficiency. Addition-361

ally, we instruct the models to generate code for362

solving mathematical problems from GSM8K and363

MATH to evaluate their integrated capabilities in364

both coding and mathematics.365

4.1.2 Heterogeneous LLMs366

Dataset In the fusion experiments, we primarily uti-367

lize a subset of 60k in-domain data, with half com-368

ing from math problem-solving and the other half369

from code generation tasks. Specifically, we ran-370

domly select 15K samples from MetaMathQA (Yu371

et al., 2023b), 15K samples from MMIQC (Liu372

et al., 2024), 10K samples from OSS-Instruct 2,373

10K samples from Evol-Alpaca 3 and 10K samples374

from Python-Code 4. In addition, we incorporate375

general data following the curation methodology376

outlined in FuseChat (Wan et al., 2024b) in our ex-377

periments. Detailed information regarding dataset378

is available in Table 1.379

Source LLMs The source models are drawn380

from two domains: math and coding. For cod-381

ing domain, CodeLlama-7B-Ins, CodeLlama-70B-382

Ins (Roziere et al., 2023) and Deepseek-Coder-Ins-383

v1.5 (Daya Guo, 2024) are selected as source mod-384

els, while in the math domain, Qwen2.5-Math-7B-385

Ins (Yang et al., 2024a; Team, 2024), WizardMath-386

7B-V1.1 (Luo et al., 2023), OpenMath-Mistral387

7B (Toshniwal et al., 2024), MetaMath-7B and388

MetaMath-70B (Yu et al., 2023b) are selected.389

The sizes and structures of the source models are390

listed in Table 2.391

Training We select 9 pairs for fusion, with each392

pair consisting of one math model and one coding393

model. In each pair, one model is designated as394

the pivot model, and its conversation template is395

used to process the input data. The batch size is396

set to 32 for obtaining model representations and397

reduced to 16 for aligning the representations. Dur-398

ing fine-tuning, we use a learning rate of 5e-6 and399

apply the AdamW optimizer (Loshchilov and Hut-400

ter, 2019). To improve efficiency, we incorporate401

FlashAttention (Dao et al., 2022) for optimizing402

attention computation, reducing memory usage and403

2
https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K

3
https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1

4
https://huggingface.co/datasets/ajibawa-2023/Python-Code-23k-ShareGPT

enhancing computational speed. 404

Evaluation The same benchmarks as the aformen- 405

tioned experiment in Homogeneous LLMs (Section 406

4.1.1) are used for evaluation. 407

4.2 Results 408

4.2.1 Homogeneous LLM 409

We use seven benchmarks to assess the models’ ca- 410

pabilities in general reasoning, mathematics, cod- 411

ing, and the integration of math and coding. No- 412

tably, in the GSM8K-Coding and MATH-Coding 413

benchmarks, the models are required to write 414

Python code to solve math problems, and we as- 415

sume this can demonstrate their integrated profi- 416

ciency in both domains. Table 2 presents the bench- 417

mark results for the source LLMs and the merged 418

LLMs using different merging strategies. 419

In the Task Arithmetic merging experiment, we 420

obtain an LLM with exceptional capabilities in both 421

math and code domains, along with a notable level 422

of text reasoning ability. Its performance on the 423

GSM8K-COT, GSM8K-Coding, and MATH-COT 424

benchmarks surpasses DeepSeek-Coder-Instruct- 425

v1.5 by 29.87%, 8.34%, and 33.08%, respectively. 426

Moreover, it demonstrates a 4.27% improvement 427

over DeepSeek-Math-7B-RL on the HumanEval 428

benchmark. The model obtains only few points 429

in MATH-Coding is because it still relies on text- 430

based reasoning to solve math problems, rather 431

than generating code, though we provided prompts 432

to encourage code generation. 433

In the TIES-Merging experiment, we observe that 434

the merged model scores significantly higher than 435

DeepSeek-Coder-Instruct-v1.5 on the GSM8K- 436

COT, GSM8K-Coding, MATH-COT, and MATH- 437

Coding benchmarks, but shows a slight decrease 438

compared to DeepSeek-Math-7B-RL. However, 439

the model does not incorporate the coding capa- 440

bilities of DeepSeek-Coder-Instruct-v1.5, and the 441

score of the HumanEval benchmark is on par with 442

DeepSeek-Math-7B-RL. The observed upoptimal 443

performance in coding performance stems from 444

the merged model producing extraneous content 445

beyond the required prompt code, such as poorly 446

formatted comments and irrelevant functions, ad- 447

versely affecting the evaluation outcomes. Repre- 448

sentative examples are shown in Appendix A. 449

In the TIES-Merging method, the direction with 450

the largest magnitude is selected for each parameter 451

to determine the merged sign, and only parameters 452

matching the merged sign are averaged. Both math- 453

5

Table 1: The details of dataset selection in Fusion, includes the original sizes of varied datasets and the sample sizes
we selected.

Types General Data Math Data Code Data

Dataset Orca-Best 5 Capybara6 No-Robots7 ShareGPT-GPT48 Oasst Top19 MetaMathQA MMIQC OSS-Instruct Evol-Alpaca Python-Code
Original Size 329K 16K 9.5K 103K 12.9K 395K 2.29M 75K 111K 23K
Sample Size 10K 10K 9.3K 6.5K 4.7K 30K 30K 10K 10K 10K

Table 2: Benchmarks of source LLMs and merged LLMs with different merging strategies. Scores in parentheses are
from the original papers (Yang et al., 2024b; Yu et al., 2023b; Toshniwal et al., 2024; Daya Guo, 2024; Zhihong Shao,
2024; Luo et al., 2023; Roziere et al., 2023). GSM8k-coding and MATH-coding are evaluated using the evaluation
framework provided by Deepseek-Coder (Daya Guo, 2024). The other scores shown in the table without parentheses
are evaluated via OpenCompass (Contributors, 2023). GSM8K-COT and MATH-COT refer to scores derived using
Chain-of-Thought reasoning in the GSM8k and MATH datasets, while GSM8K-Coding and MATH-Coding results
are obtained by executing the model’s generated code in a Python interpreter. InfiBench (InfiCoderTeam, 2024) is a
code benchmark for evaluating question-answering (QA) abilities10. Models that exceed the performance of one of
their corresponding source models by five or more percents are indicated with (↑↑). Those that outperform by one
to less than 5% are denoted with (↑). Those that underperform both source models by more than 1% are marked
with (↓). Differences between merged or fused models and any one of the source models that are within 1% are
indicated with (-).

Model MMLU GSM8K-COT GSM8K-Coding MATH-COT MATH-Coding HumanEval InfiBench

Source Model Base Model/#Size Source LLMs

Qwen2.5-Math-7B-Ins Qwen2/7B 56.31 88.70 (95.2) 87.9 75.26 (83.6) 32.46 48.17 17.36
MetaMath-7B Llama 2/7B 25.28 64.90 (66.5) 9.25 17.24 (19.8) 3.00 0.0 15.00
MetaMath-70B Llama 2/70B 29.49 80.29 (82.3) 73.24 17.68 (26.6) 2.04 6.71 25.82
OpenMath-Mistral-7B Mistral/7B 28.23 44.73 77.33 (80.2) 12.38 27.68 (44.5) 0.0 17.69
WizardMath-7B-V1.1 Mistral/7B 27.66 66.03 74.45 18.08 12.38 15.85 38.47
DeepSeek-Math-RL Deepseek-LLM/7B 25.05 88.17 (88.2) 83.24 48.46 (51.7) 41.68 45.73 32.16

CodeLlama-7B-Ins Llama 2/7B 39.18 26.54 38.74 4.1 12.62 37.2 (34.8) 34.83 (35.15)
CodeLlama-70B-Ins Llama 2/70B 37.32 44.43 70.43 4.6 - 65.24 (67.8) 38.62 (42.82)
DeepSeek-Coder-Ins-v1.5 Deepseek-LLM/7B 49.78 (49.5) 56.33 73.31 (72.6) 12.28 29.12 (34.1) 68.90 (64.1) 56.67

Source Model Source Model Evolution: Homogeneous LLMs

DeepSeek-Math-RL DeepSeek-Coder-Ins-v1.5 (TIES-Layer-10) 24.59- 82.26↑↑ 76.95↑ 34.72↑↑ 36.88↑↑ 45.12- 28.67↓
DeepSeek-Math-RL DeepSeek-Coder-Ins-v1.5 (TASK-Layer-5) 25.15- 86.20↑↑ 81.65 ↑↑ 45.36 ↑↑ 6.54↓ 50.00 ↑ 31.64-

Pivot Model Source Model Fusion: Heterogeneous LLMs

OpenMath-Mistral 7B CodeLlama-70B-Ins 53.32↑↑ 71.49↑↑ 80.13↑↑ 20.22↑↑ 24.02 47.56↑↑ 42.21↑↑
WizardMath-7B-V1.1 CodeLlama-70B-Ins 46.74↑↑ 76.65↑↑ 74.90 ↑ 24.04↑↑ 15.46 53.66↑↑ 40.29↑
Qwen2.5-Math-7B-Ins CodeLlama-70B-Ins 55.86↑↑ 83.62↑↑ 71.19- 56.42↑↑ 26.80 50.00↑ 17.73-
CodeLlama-7B-Ins MetaMath-70B 40.11↑↑ 29.26↑ 43.59↑ 6.06↑ 12.52↑↑ 45.12↑↑ 31.11↑↑
CodeLlama-7B-Ins OpenMath-Mistral 7B 36.98↑↑ 29.34↑ 42.38↑ 6.26↑ 13.68↑ 45.73↑↑ 29.87↑↑
CodeLlama-7B-Ins Qwen2.5-Math-7B-Ins 38.28- 29.64↑ 42.07↑ 6.5↑ 16.06↑ 46.34↑↑ 32.36↑↑
MetaMath-7B CodeLlama-70B-Ins 33.44↑↑ 61.11↑↑ 31.16↑↑ 15.86↑↑ 4.08↑ 15.24↑↑ 24.05 ↑↑
OpenMath-Mistral 7B Deepseek-Coder-Ins-v1.5 53.38↑↑ 72.33↑↑ 80.36↑↑ 20.66↑↑ 21.98↓ 48.17↑↑ 40.96↑↑
CodeLlama-7B-Ins WizardMath-7B-V1.1 37.98↑↑ 28.28↑ 42.91↑ 6.32↑ 13.86↑ 41.46↑↑ 31.51↓

ematical and coding capabilities involve reasoning454

skills and share some overlap. However, during455

the TIES-Merging process, the two models may ex-456

hibit divergent merged signs for certain parameters,457

requiring a selection between them. This choice458

could degrade the performance in one domains,459

which may explain why the merged model under-460

performs compared to DeepSeek-Coder-Instruct-461

v1.5 and DeepSeek-Math-7B-RL in their respective462

domains. Table 3 further supports this, showing463

that the density of the two source models in each464

layer is very high. This suggests that the majority465

of the source models’ weights are retained, likely466

leading to interference from sign conflicts .467

In addition, the dataset used to search optimal468

merging parameters with the CMA-ES algorithm469

could also impact the performance of the merged470

model. There is a gap between the target dataset,471

HumanEval and InfiBench in terms of the topic 472

content and the format. Due to the absence of a 473

training set in the HumanEval dataset, we use the 474

MBPP dataset as an alternative for adapting coding 475

abilities of the merged model. Furthermore, the tar- 476

get dataset lacks diverse coding-related questions 477

compared with InfiBench. This could explain why 478

the performance on Humaneval and InfiBench still 479

falls short of the source models. Employing more 480

diverse data in the target dataset could potentially 481

improve the model’s overall capabilities. Our Task 482

Arithmetic experiment has an additional MMLU 483

dataset in the target dataset compared to the TIES- 484

Merging experiment, but the MMLU score has 485

hardly improved. We infer that this is because 486

we only sampled 285 samples from MMLU, which 487

may be insufficient. MMLU contains a wide range 488

of knowledge, and more samples are needed to 489

6

ensure that these knowledge are covered.

Table 3: Parameters in the TIES-Merging. Every 10 lay-
ers share the same density and weights. In the bracket,
the first value is density, representing the fraction of
weights of source models that are remained, and the
second value is weights of source models contributing
to the merged model.The sum of the weights are not 1,
but they are normalized when merging.

Model #Layer 0-10 #Layer 10-20 #Layer 20-30

DeepSeek-Coder-Ins-v1.5 [0.90, 0.45] [0.73, 0.083] [1.0, 0.52]
DeepSeek-Math-7B-RL [1.0, 0.58] [1.0, 0.78] [1.0, 0.78]

490

4.2.2 Heterogeneous LLMs491

We evaluate the abilities by benchmarks: MMLU,492

GSM8K, MATH, HumanEval and InfiBench, and493

the evaluation results of the source models and the494

fused models are in Table 2. It is obvious that the495

overall performances of most fusion models are496

better than the pivot models which can be demon-497

strated by the higher scores of the benchmarks as498

shown in Figure 6, 7 and 8. We observed that in499

the vast majority of experiments, the fusion model’s500

scores on MMLU are close to or slightly exceed501

those of pivot models, indicating that the fusion502

model retained the general reasoning capabilities503

of the pivot model, particularly when the training504

dataset encompasses general data. For example, the505

fusion model of CodeLlama-7B-Ins + MetaMath-506

70B achieved a score of 40.11 on MMLU, which is507

slightly higher the pivot model’s score of 39.18 and508

significantly outperforming than MetaMath-70B509

model’s score of 29.49.510

When setting CodeLlama-7B-Ins as the pivot511

model and merging it with math models, the resul-512

tant fusion models, maintaining the same structure513

as the pivot, achieve higher scores across all math514

domain benchmarks. Additionally, these fusion515

models outperform the pivot model CodeLlama-516

7B-Ins in various types and levels of math prob-517

lems, as detailed in Figures 2 and 3. The consis-518

tently better performance in solving math problems519

demonstrates that the math problem-solving ability520

of the source models is fused to the fusion models521

successfully. When the pivot model is from math522

domain, it can have superior capability in coding523

5
https://huggingface.co/datasets/shahules786/orca-best

6
https://huggingface.co/datasets/LDJnr/Capybara

7
https://huggingface.co/datasets/HuggingFaceH4/no_robots

8
https://huggingface.co/datasets/shibing624/sharegpt_gpt4

9
https://huggingface.co/datasets/OpenAssistant/oasst_top1_2023-08-25

10
InfiBench’s evaluation criteria include keyword matching, meaning that models with

weak coding capabilities can still score points if their generated code contains some of the
keywords found in the ground-truth labels.

after fused with a coding model. Taking OpenMath- 524

Mistral 7B for example, it gets a score 0 in the 525

HumanEval benchmark which suggests a limited 526

performance in coding domain. However, its obvi- 527

ous higher score 47.56 in HumanEval after fused 528

with CodeLlma-70B-Ins suggests that the model 529

gains coding ability, and it can directly demonstrate 530

the effect of model fusion. The improvement in the 531

coding domain and the maintenance in the original 532

domain is absolutely a great success of knowledge 533

fusion because it shows model effectively com- 534

bines the coding ability and math ability. When 535

employing MetaMath-7B as the pivot model and 536

integrating CodeLlama-70B, the HumanEval score 537

of the resulting fusion model reached 15.24. This 538

represents a significant enhancement compared to 539

the pivot model MetaMath-7B alone, yet it is still 540

markedly below the source model’s 7B version, 541

which scored 37.2. This discrepancy is attributed 542

to the extensive fine-tuning of MetaMath-7B on the 543

MetaMathQA dataset, which has notably weakened 544

its coding capabilities, thus hindering the effective 545

transfer of these capabilities through the fusion 546

process. 547

We have observed that using LLMs optimized for 548

more complex tasks, such as mathematics over cod- 549

ing, as pivot models yields superior results. For 550

example, the scores of the fusion model OpenMath- 551

Mistral 7B + Deepseek-Coder-Ins-v1.5 are far bet- 552

ter than those of the pivot model OpenMath-Mistral 553

7B, while the score difference between the fusion 554

model CodeLlama-7B-Ins + Qwen2.5-Math-7B- 555

Ins and its pivot model CodeLlama-7B-Ins is not 556

that large. We assume this is because the math ca- 557

pability is more difficult than the coding capability 558

to transfer from the source models to the fusion 559

models, which may be an important guidance for 560

fusion. 561

The fusion model Qwen2.5-Math-7B-Ins + 562

CodeLlama-70B-Ins does not outperform the pivot 563

model Qwen2.5-Math-7B-Ins, potentially due to 564

the conversation template’s lack of universality. Fu- 565

ture work will focus on designing a more univer- 566

sally applicable conversation template to enhance 567

fusion effectiveness. Similarly, when OpenMath- 568

Mistral 7B is the pivot model, the performance 569

differences between the fusion models OpenMath- 570

Mistral 7B + CodeLlama-70B-Ins and OpenMath- 571

Mistral 7B + Deepseeker-Coder-Ins-v1.5 are mini- 572

mal. This trend is also observed when CodeLlama- 573

7B-Ins is the pivot model, suggesting that fine- 574

tuning significantly influences model performance, 575

7

often overshadowing the benefits of fusion with576

different source models. Balancing fine-tuning loss577

and fusion loss will be a key area of our research578

going forward.579

(a) the accuracy in math types of codellama and wizardmath

(b) the accuracy in math levels of openmath and deepseek

Figure 2: The accuracy of the source models and fusion
models in solving problems of different math levels.

(a) The accuracy in math types of codellama and wizardmath

(b) The accuracy in math types of openmath and deepseek

Figure 3: The accuracy of the source models and fusion
models in solving problems of different math types.

5 Conclusion and Future Work580

In this work, we propose to explore unconstrained581

model merging particularly for LLM reasoning en-582

hancement. Our approach leverages evolutionary 583

merging for homogeneous models and probabilis- 584

tic distribution knowledge-based fusion for hetero- 585

geneous models. Through comprehensive experi- 586

mentation, we demonstrated unconstrained model 587

merging’s ability to not only improve individual 588

reasoning capabilities from the source models but 589

also enable novel combinatorial reasoning capabil- 590

ities, such as applying mathematical thinking to 591

improve coding, yielding performance gains across 592

all source models. This research represents one of 593

the initial explorations in the "Model over Model" 594

(MoM) paradigm, where minimal constraints are 595

imposed on constructing new, integrated models 596

without incurring prohibitive training costs. We 597

believe the insights from this work could serve 598

as a foundation for future innovations in this area. 599

Moving forward, several promising research di- 600

rections emerge, including a deeper investigation 601

into unconstrained model merging’s effects on fine- 602

grained reasoning behaviors, such as COT and 603

instruction-following behaviors. Furthermore, we 604

aim to explore unconstrained model merging’s ap- 605

plicability to broader LLM capabilities, such as 606

planning and decision-making. We posit that un- 607

constrained model merging will lay the ground- 608

work for decentralized LLMs, marking a substan- 609

tial progression from the existing centralized LLM 610

paradigm. This evolution is anticipated to enhance 611

participation and spur further advancements in arti- 612

ficial intelligence, overcoming the restrictions as- 613

sociated with centralized models. 614

6 Limitations 615

Due to the constraints of computational resources 616

and time, our experiments were primarily con- 617

ducted within standard benchmarks. Although 618

the results are promising, the full extent of the 619

method’s generalizability and robustness in real- 620

world scenarios remains to be further explored. Im- 621

portantly, our research adheres to ethical standards 622

and does not present any societal or security con- 623

cerns, as it focuses solely on the technical dimen- 624

sions of a conventional information extraction task 625

without involving any sensitive data or applications. 626

This limitation opens up avenues for future studies 627

to validate and extend the method’s applicability 628

under diverse and more complex conditions. 629

8

References630

Samuel K Ainsworth, Jonathan Hayase, and Siddhartha631
Srinivasa. 2022. Git re-basin: Merging models632
modulo permutation symmetries. arXiv preprint633
arXiv:2209.04836.634

Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and635
David Ha. 2024. Evolutionary optimization of model636
merging recipes. arXiv preprint arXiv:2403.13187.637

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten638
Bosma, Henryk Michalewski, David Dohan, Ellen639
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.640
Program synthesis with large language models. arXiv641
preprint arXiv:2108.07732.642

Rachit Bansal, Bidisha Samanta, Siddharth Dalmia,643
Nitish Gupta, Shikhar Vashishth, Sriram Ganap-644
athy, Abhishek Bapna, Prateek Jain, and Partha645
Talukdar. 2024. Llm augmented llms: Expanding646
capabilities through composition. arXiv preprint647
arXiv:2401.02412.648

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen,649
Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong,650
Qiushi Du, Zhe Fu, et al. 2024. Deepseek llm: Scal-651
ing open-source language models with longtermism.652
arXiv preprint arXiv:2401.02954.653

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming654
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-655
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,656
Greg Brockman, Alex Ray, Raul Puri, Gretchen657
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-658
try, Pamela Mishkin, Brooke Chan, Scott Gray,659
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz660
Kaiser, Mohammad Bavarian, Clemens Winter,661
Philippe Tillet, Felipe Petroski Such, Dave Cum-662
mings, Matthias Plappert, Fotios Chantzis, Eliza-663
beth Barnes, Ariel Herbert-Voss, William Hebgen664
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie665
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,666
William Saunders, Christopher Hesse, Andrew N.667
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan668
Morikawa, Alec Radford, Matthew Knight, Miles669
Brundage, Mira Murati, Katie Mayer, Peter Welinder,670
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya671
Sutskever, and Wojciech Zaremba. 2021. Evaluat-672
ing large language models trained on code. Preprint,673
arXiv:2107.03374.674

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,675
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias676
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro677
Nakano, Christopher Hesse, and John Schulman.678
2021. Training verifiers to solve math word prob-679
lems. arXiv preprint arXiv:2110.14168.680

OpenCompass Contributors. 2023. Opencompass:681
A universal evaluation platform for foundation682
models. https://github.com/open-compass/683
opencompass.684

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,685
and Christopher Ré. 2022. Flashattention: Fast and686

memory-efficient exact attention with io-awareness. 687
Preprint, arXiv:2205.14135. 688

MohammadReza Davari and Eugene Belilovsky. 2023. 689
Model breadcrumbs: Scaling multi-task model 690
merging with sparse masks. arXiv preprint 691
arXiv:2312.06795. 692

Dejian Yang Zhenda Xie Kai Dong Wentao Zhang 693
Guanting Chen Xiao Bi Y. Wu Y.K. Li Fuli Luo 694
Yingfei Xiong Wenfeng Liang Daya Guo, Qihao Zhu. 695
2024. Deepseek-coder: When the large language 696
model meets programming – the rise of code intelli- 697
gence. 698

Rahim Entezari, Hanie Sedghi, Olga Saukh, and 699
Behnam Neyshabur. 2021. The role of permutation 700
invariance in linear mode connectivity of neural net- 701
works. arXiv preprint arXiv:2110.06296. 702

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, 703
Dmitry P Vetrov, and Andrew G Wilson. 2018. Loss 704
surfaces, mode connectivity, and fast ensembling of 705
dnns. Advances in neural information processing 706
systems, 31. 707

Charles Goddard, Shamane Siriwardhana, Malikeh 708
Ehghaghi, Luke Meyers, Vlad Karpukhin, Brian 709
Benedict, Mark McQuade, and Jacob Solawetz. 2024. 710
Arcee’s mergekit: A toolkit for merging large lan- 711
guage models. arXiv preprint arXiv:2403.13257. 712

Nikolaus Hansen. 2006. The cma evolution strategy: a 713
comparing review. Towards a new evolutionary com- 714
putation: Advances in the estimation of distribution 715
algorithms, pages 75–102. 716

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, 717
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 718
2021a. Measuring massive multitask language under- 719
standing. Preprint, arXiv:2009.03300. 720

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 721
Arora, Steven Basart, Eric Tang, Dawn Song, and 722
Jacob Steinhardt. 2021b. Measuring mathematical 723
problem solving with the math dataset. NeurIPS. 724

Zijin Hong, Zheng Yuan, Qinggang Zhang, Hao Chen, 725
Junnan Dong, Feiran Huang, and Xiao Huang. 2024. 726
Next-generation database interfaces: A survey of llm- 727
based text-to-sql. arXiv preprint arXiv:2406.08426. 728

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts- 729
man, Suchin Gururangan, Ludwig Schmidt, Han- 730
naneh Hajishirzi, and Ali Farhadi. 2022. Edit- 731
ing models with task arithmetic. arXiv preprint 732
arXiv:2212.04089. 733

Moritz Imfeld, Jacopo Graldi, Marco Giordano, Thomas 734
Hofmann, Sotiris Anagnostidis, and Sidak Pal Singh. 735
2023. Transformer fusion with optimal transport. 736
arXiv preprint arXiv:2310.05719. 737

InfiCoderTeam. 2024. Infibench: Evaluating the 738
question-answering capabilities of code llms. https: 739
//infi-coder.github.io/infibench/. 740

9

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://infi-coder.github.io/infibench/
https://infi-coder.github.io/infibench/
https://infi-coder.github.io/infibench/

Haoxiong Liu, Yifan Zhang, Yifan Luo, and Andrew741
Chi-Chih Yao. 2024. Augmenting math word prob-742
lems via iterative question composing. Preprint,743
arXiv:2401.09003.744

Ilya Loshchilov and Frank Hutter. 2019. De-745
coupled weight decay regularization. Preprint,746
arXiv:1711.05101.747

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-748
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei749
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-750
ardmath: Empowering mathematical reasoning for751
large language models via reinforced evol-instruct.752
arXiv preprint arXiv:2308.09583.753

Vaishnavh Nagarajan and J Zico Kolter. 2019. Uniform754
convergence may be unable to explain generalization755
in deep learning. Advances in Neural Information756
Processing Systems, 32.757

Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang.758
2021. What is being transferred in transfer learning?759
arXiv preprint arXiv:2008.11687.760

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten761
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,762
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.763
Code llama: Open foundation models for code. arXiv764
preprint arXiv:2308.12950.765

Sidak Pal Singh and Martin Jaggi. 2020. Model fu-766
sion via optimal transport. In Advances in Neural767
Information Processing Systems, volume 33, pages768
22045–22055.769

Joshua Smith and Michael Gashler. 2017. An investi-770
gation of how neural networks learn from the expe-771
riences of peers through periodic weight averaging.772
In 2017 16th IEEE International Conference on Ma-773
chine Learning and Applications (ICMLA), pages774
731–736. IEEE.775

George Stoica, Daniel Bolya, Jakob Bjorner, Taylor776
Hearn, and Judy Hoffman. 2023. Zipit! merging777
models from different tasks without training. arXiv778
preprint arXiv:2305.03053.779

Qwen Team. 2024. Qwen2.5: A party of foundation780
models.781

Shubham Toshniwal, Ivan Moshkov, Sean Narenthi-782
ran, Daria Gitman, Fei Jia, and Igor Gitman. 2024.783
Openmathinstruct-1: A 1.8 million math instruc-784
tion tuning dataset. arXiv preprint arXiv: Arxiv-785
2402.10176.786

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-787
bert, Amjad Almahairi, Yasmine Babaei, Nikolay788
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti789
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton790
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,791
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,792
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-793
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan794
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,795

Isabel Kloumann, Artem Korenev, Punit Singh Koura, 796
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di- 797
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar- 798
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly- 799
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen- 800
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten, 801
Ruan Silva, Eric Michael Smith, Ranjan Subrama- 802
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay- 803
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu, 804
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, 805
Melanie Kambadur, Sharan Narang, Aurelien Ro- 806
driguez, Robert Stojnic, Sergey Edunov, and Thomas 807
Scialom. 2023. Llama 2: Open foundation and fine- 808
tuned chat models. Preprint, arXiv:2307.09288. 809

Joachim Utans. 1996. Weight averaging for neural 810
networks and local resampling schemes. In Proc. 811
AAAI-96 Workshop on Integrating Multiple Learned 812
Models, pages 133–138. AAAI Press, Citeseer. 813

Neha Verma and Maha Elbayad. 2024. Merging text 814
transformer models from different initializations. 815
arXiv preprint arXiv:2403.00986. 816

Fanqi Wan, Xinting Huang, Deng Cai, Xiaojun Quan, 817
Wei Bi, and Shuming Shi. 2024a. Knowledge fu- 818
sion of large language models. arXiv preprint 819
arXiv:2401.10491. 820

Fanqi Wan, Ziyi Yang, Longguang Zhong, Xiaojun 821
Quan, Xinting Huang, and Wei Bi. 2024b. Fusechat: 822
Knowledge fusion of chat models. arXiv preprint 823
arXiv:2402.16107. 824

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, 825
Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Mor- 826
cos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, 827
and Simon Kornblith. 2022. Model soups: averag- 828
ing weights of multiple fine-tuned models improves 829
accuracy without increasing inference time. In In- 830
ternational Conference on Machine Learning, pages 831
23965–23998. PMLR. 832

Prateek Yadav, Derek Tam, Leshem Choshen, Colin 833
Raffel, and Mohit Bansal. 2023. Resolving in- 834
terference when merging models. arXiv preprint 835
arXiv:2306.01708. 836

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A 837
Raffel, and Mohit Bansal. 2024. Ties-merging: Re- 838
solving interference when merging models. Ad- 839
vances in Neural Information Processing Systems, 840
36. 841

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, 842
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan 843
Li, Dayiheng Liu, Fei Huang, et al. 2024a. Qwen2 844
technical report. arXiv preprint arXiv:2407.10671. 845

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, 846
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong 847
Tu, Jingren Zhou, Junyang Lin, et al. 2024b. Qwen2. 848
5-math technical report: Toward mathematical ex- 849
pert model via self-improvement. arXiv preprint 850
arXiv:2409.12122. 851

10

https://arxiv.org/abs/2401.09003
https://arxiv.org/abs/2401.09003
https://arxiv.org/abs/2401.09003
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin852
Li. 2023a. Language models are super mario: Ab-853
sorbing abilities from homologous models as a free854
lunch. arXiv preprint arXiv:2311.03099.855

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,856
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-857
guo Li, Adrian Weller, and Weiyang Liu. 2023b.858
Metamath: Bootstrap your own mathematical ques-859
tions for large language models. arXiv preprint860
arXiv:2309.12284.861

Qihao Zhu Runxin Xu Junxiao Song Mingchuan Zhang862
Y.K. Li Y. Wu Daya Guo Zhihong Shao, Peiyi Wang.863
2024. Deepseekmath: Pushing the limits of mathe-864
matical reasoning in open language models.865

11

https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300

A Case Study866

Figure 4: The performance of the fusion model on the
MATH across different types and difficulty levels.

Figure 5: The Performance of COT reasoning on MATH
topics and difficulty levels.

Figure 6: Comparison of scores between fusion mod-
els and source models in GSM8K-COT and GSM8K-
Coding.

Figure 7: Comparison of scores between fusion models
and source models in MATH-COT and MATH-Coding.

12

Table 4: Evolution: True/False distribution of models’ answers. The table reveals that when both source models
answer a question correctly, the merged model is also likely to provide an accurate solution. For questions where
one source model answers correctly and the other does not, the merged model has a higher probability of producing
a correct answer in math tasks; however, this pattern does not hold for HumanEval. On the other hand, if both
source models fail to answer a question correctly, their merged version is also unlikely to produce the correct answer,
though a few exceptions exist.

DeepSeek-Coder-Ins-v1.5 DeepSeek-Math-RL Merged Model GSM8K-COT GSM8K-Coding MATH-COT MATH-Coding HumanEval

True True True 692 812 335 1001 50
True True False 30 83 189 174 18
True False True 5 26 24 91 18
True False False 16 46 66 190 30
False True True 363 144 1071 549 3
False True False 78 59 828 360 4
False False True 25 33 306 203 3
False False False 110 116 2181 2432 38

Total 1319 1319 5000 5000 164

Table 5: Case study: Fusion results (CodeLlama-7B-Ins + MetaMath-70B) in GSM8K-COT In question 3, the
CodeLlama-7B-Ins model failed to correctly understand the problem and produced an incorrect answer, while
MetaMath-70B model answered it correctly. The fusion model successfully learned from MetaMath-70B model and
also provided the correct answer. In question 1192, both source models answered incorrectly, yet the fusion model
was able to produce the correct solution.

Model GSM8k-COT GSM8K-COT

Question Answer Question Answer

CodeLlama-7B-Ins [Wrong, Wrong] ID 3: James decides to run 3 sprints 3
times a week. He runs 60 meters each
sprint. How many total meters does he
run a week?

James runs 3 sprints per week, and each sprint is
60 meters long. So, he runs a total of 3 x 60 = 180
meters per week. The answer is 180 meters.

ID 1192: Jen works for 7.5 hours a day
6 days a week. Her hourly rate is $1.5.
Jen also receives an additional $10 if
she has complete attendance. Suppose
Jen did not incur any absences for April,
and there are exactly 4 weeks in April,
how much will she receive?

Jen works for 7.5 hours a day, 6 days a week, for a
total of 7.5 hours per week. She works for 4 weeks in
April, which is 4 x 7.5 = 30 hours in April. Her total
hours worked in April is 30 hours. Her total earnings
in April is 30 hours x $1.50/hour = $45.00. Since she
has complete attendance in April, she will receive
an additional $10, so her total earnings in April is
$45.00 + $10 = $55.00. The answer is $55.00 .

MetaMath-70B [Correct, Wrong] James runs 3 sprints 3 times a week, so he runs 3*3=9
sprints a week. Each sprint is 60 meters, so he runs
9*60=540 meters a week. The answer is 540 .

Jen works for 7.5 hours a day 6 days a week, so she
works a total of 7.5*6=45 hours in a week. Her hourly
rate is $1.5, so she earns 45*$1.5=$67.5 in a week.
Jen also receives an additional $10 if she has com-
plete attendance, so she will receive an additional $10
for each week she has complete attendance. Since
there are exactly 4 weeks in April, Jen will receive
an additional $10*4=$40 for complete attendance.
In total, Jen will receive $67.5+$40=$107.5 for the
month of April. The answer is 107.5

Fusion Model [Correct, Correct] James runs 3 sprints 3 times a week, so he runs a total
of 3*3=9 sprints per week. Each sprint is 60 meters
long, so James runs a total of 9*60=540 meters per
week. The answer is 540 .

Jen works for 7.5 hours a day, so she works for 7.5*6
= 45 hours in a week. There are 4 weeks in April,
so Jen works for 45*4 = 180 hours in April. Jen’s
hourly rate is $1.5, so she earns $1.5/hour. Jen works
for 180 hours in April, so she earns $1.5/hour*180
= $270 in April. Jen also receives an additional $10
if she has complete attendance, so she earns $270 +
$10 = $280 in April. The answer is $280 .

Figure 8: Comparison of scores between fusion models
and source models in HumanEval.

Figure 9: Comparison of scores between fusion models
and source models in InfiBench.

13

Table 6: Case study: Evolution results in GSM8K-COT and Math-COT. The merged model can reserve mathematical
reasoning abilities after merging and correct wrong thoughts in the coder model. For instance, in question 24
(GSM8K), the coder model fails to address the problem, providing reasoning steps that are entirely irrelevant.
However, after merging, the model successfully solves the problem by applying the correct equations. The similar
finding also holds for question 44 (GSM8K), where the coder model makes a mistake in calculating costs for two
pounds of beeswas, but the merged model correct this issue. This phenomenon becomes more obvious in MATH
benchmark, since MATH task can more easily reveals models’ math capability. In the case of question 2, the coder
model clearly lacks an understanding of the concept of the perfect cube, wherease the merged model inherited
from the math model can point out that the exponents of all prime factors in the prime factorization of ax must be
multiples of 3, which is a critical point for solving this problem. The same happens to question 45. Though the coder
model knows a number is divisible by if and only if the sum of its digits is divisible by 3, but it calculates wrongly
the sum of 23, 35, 37 and 79. Compared with the answer from the math model, which is relatively redundant, the
merge model seems to combine advantages of the source models, and output a precise and accurate solution.

Model GSM8k-COT Math-COT

Question Answer Question Answer

DeepSeek-Coder-Ins-v1.5 [Wrong] ID 24: Kyle bought last year’s
best-selling book for $19.50. This is
with a 25% discount from the original
price. What was the original price of
the book?

To find the original price of the book, we need to
calculate the price before the discount. This can be
done by dividing the discounted price by the discount
rate. The discount rate is 25% or 0.25 in decimal
form. So, the original price is the discounted price
divided by the discount rate. The original price of the
book is $19.50 / 0.25 = $78. So, the original price of
the book was $78 .

ID 2: If x = 720 and ax is a
perfect cube where a is a
positive integer, what is the
smallest possible value of 3

√
ax?

The smallest possible value of 3
√
ax is the smallest

possible value of a, which is 1. This is because any
positive integer multiplied by 720 will be a perfect
cube, and the cube root of 1 is 1. So, the smallest
possible value of 3

√
ax is 1 . Final Answer: The

final answer is 1. I hope it is correct.

DeepSeek-Math-RL [Correct] If the discounted price is $19.50 and this is 75% of
the original price (100% - 25% discount), we can set
up the equation: 0.75 * original price = $19.50 To
find the original price, we can divide both sides of
the equation by 0.75: original price = $19.50 / 0.75
= $26 So the original price of the book was $26. The
answer is 26

First, we need to factorize 720. The prime factoriza-
tion of 720 is 24 · 32 · 5. To make ax a perfect cube,
we need to multiply 720 by a number that makes all
the exponents in the prime factorization a multiple
of 3. The smallest such number is 2 · 3 · 5 = 30. So,
let a = 30. Then, ax = 30 · 720 = 21600. The
cube root of 21600 is 3

√
21600 =

3
√
24 · 33 · 53 = 60.

Therefore, the smallest possible value of 3
√
ax is 60.

The answer is: 60

Merged Model [Correct] Let’s say the original price of the book is x. The book
has a 25% discount, which means Kyle paid 75% of
the original price. So, 0.75x = $19.50. To find the
original price, we need to solve for x. To do this, we
divide both sides of the equation by 0.75: x = $19.50
/ 0.75 = $26. So, the original price of the book was
$26. The answer is $26 .

First, we need to find the prime factorization of 720.
The prime factorization of 720 is 24 · 32 · 51. Now, in
order for ax to be a perfect cube, the exponents of all
prime factors in the prime factorization of ax must
be multiples of 3. Therefore, we need to multiply
the prime factorization of 720 by another factor of
22 · 52 to make the exponents of all prime factors
multiples of 3. This gives us 24 · 32 · 51 · 22 · 52 =
26 · 32 · 53. Now, we can find ax by multiplying
the prime factorization together: ax = 26 · 32 · 53.
Finally, we can find 3

√
ax by taking the cube root

of ax: 3
√
ax =

3
√
26 · 32 · 53 = 22 · 3 · 5 = 60.

Therefore, the smallest possible value of 3
√
ax is 60.

The answer is 60 .

DeepSeek-Coder-Ins-v1.5 [Wrong] ID 44: Charlie wants to sell beeswax
candles. For every pound of beeswax,
he can make 10 tapered candles. One
pound of beeswax and the wicks cost
$10.00 in supplies. If he sells each
candle for $2.00 each, what is his net
profit if he makes and sells 20 candles?

Charlie can make 10 tapered candles from one pound
of beeswax. If he makes 20 candles, he needs 20/10
= 2 pounds of beeswax. The cost of the beeswax
and wicks for 2 pounds is $10.00. Charlie sells each
candle for $2.00. So, the total revenue from selling
20 candles is 20 * $2.00 = $40.00. His net profit is
the total revenue minus the cost of the beeswax and
wicks. So, his net profit is $40.00 - $10.00 = $30.00.
The answer is $30.00 .

ID 45: Alice is given the
numbers 2, 3, 5, 7, and 9. She
must choose a pair of these
digits, with the digits being
different, to form a two-digit
number. How many of the
numbers she can construct will
be divisible by 3?

A number is divisible by 3 if the sum of its dig-
its is divisible by 3. The numbers Alice can
construct are 23, 25, 27, 29, 35, 37, 39, 57, 59, 79.
The sum of the digits of these numbers are
5, 7, 10, 11, 8, 10, 12, 12, 14, 16. Only the numbers
23, 35, 37, 57, 79 have a sum divisible by 3, so Alice
can form 5 numbers divisible by 3. Final Answer:
The final answer is 5. I hope it is correct.

DeepSeek-Math-RL [Correct] Charlie can make 10 candles from one pound of
beeswax. If he makes 20 candles, he will need 20/10
= 2 pounds of beeswax. The cost of the beeswax and
wicks is $10.00 per pound, and he needs 2 pounds, so
the total cost is 2 * $10 = $20. If he sells each candle
for $2.00, and he sells 20 candles, his total revenue
is 20 * $2 = $40. To find his net profit, we subtract
the cost from the revenue: $40 - $20 = $20. His net
profit is $20. The answer is 20 .

A number is divisible by 3 if and only if the sum
of its digits is divisible by 3. The sum of the digits
2, 3, 5, 7, and 9 is 26, which is not divisible by 3.
However, if we choose a pair of digits from these
five, the sum of the digits of the resulting two-digit
number will be the sum of the chosen digits. To find
the number of two-digit numbers that are divisible
by 3, we need to count the number of pairs of digits
whose sum is divisible by 3. The pairs of digits with
sum divisible by 3 are: (2, 9), (3, 6), (4, 5), (5, 4),
(6, 3), and (9, 2). There are 6 pairs of digits whose
sum is divisible by 3. Therefore, Alice can construct
6 of the numbers she can construct will be divisible
by 3. The answer is: 6

Merged Model [Correct] Charlie can make 10 candles from one pound of
beeswax. If he makes 20 candles, he will need 20/10
= 2 pounds of beeswax. The cost of the beeswax and
wicks is $10.00 for each pound, so for 2 pounds, it
will cost him $10 * 2 = $20.00. He sells each candle
for $2.00, so for 20 candles, he will make $2 * 20 =
$40.00. To find his net profit, we need to subtract the
cost of supplies from the total sales. So his net profit
is 40−20 = $20.00 .

A number is divisible by 3 if and only if the sum
of its digits is divisible by 3. So we need to find
all pairs of digits whose sum is divisible by 3. The
pairs whose sum is divisible by 3 are: (2, 7), (3, 6),
(5, 8), (7, 2), (6, 3), (8, 5). So there are 6 pairs that
can form a number divisible by 3. Therefore, Alice
can construct 6 numbers that are divisible by 3. The
answer is 6 . The answer is 6 .

14

Table 7: Case study: Fusion results in GSM8K-COT

Model GSM8k-COT GSM8K-COT

Question Answer Question Answer

OpenMath-Mistral 7B [Wrong, Wrong] Darrell and Allen’s ages are in the ratio
of 7:11. If their total age now is 162, cal-
culate Allen’s age 10 years from now.

Let’s first calculate the age of Allen using Python.
<llm-code>

d_a_ratio = 7/11
d_age = 162 * d_a_ratio / (d_a_ratio + 1)
d_age

</llm-code>
<llm-code-output> 77.5 </llm-code-output>
If Allen will be 10 years older in 10 years, his age
will be 77.5 + 10 = 87.5 So Allen will be 88 years
old in 10 years.

Jill gets paid $20 per hour to teach and
$30 to be a cheerleading coach. If she
works 50 weeks a year, 35 hours a week
as a teacher and 15 hours a week as a
coach, what’s her annual salary?

Jill works 50 weeks a year, 35 hours a week as a
teacher, and 15 hours a week as a coach.
She also gets paid $20 per hour to teach and $30 to
be a cheerleading coach.
We need to multiply each amount by the number of
hours worked to get the annual salary.
Let’s use Python to calculate the total salary:
<llm-code>
weeks_per_year = 50
hours_per_week_as_teacher = 35
hours_per_week_as_coach = 15
hours_per_year_as_teacher = weeks_per_year *

hours_per_week_as_teacher
hours_per_year_as_coach = weeks_per_year *

hours_per_week_as_coach

hourly_pay_as_teacher = 20
hourly_pay_as_coach = 30

annual_salary_as_teacher =
hours_per_year_as_teacher *
hourly_pay_as_teacher

annual_salary_as_coach = hours_per_year_as_coach *
hourly_pay_as_coach

annual_salary = annual_salary_as_teacher +
annual_salary_as_coach

annual_salary

</llm-code>
<llm-code-output> 14600 </llm-code-output> There-
fore, Jill’s annual salary is 14600 .

Deepseek-Coder-Ins-v1.5 [Wrong, Correct] First, we need to find out how old Darrell and Allen
are now. We can do this by setting up the proportion
7/11 = Darrell’s age/162. Solving for Darrell’s age
gives us Darrell’s age = 162 * 7/11 = 102.
So, Allen’s age is 162 - 102 = 60.
10 years from now, Allen will be 60 + 10 = 70 years
old.
The answer is 70 .

Jill’s weekly earnings as a teacher is $20 per hour
times the number of hours she works, which is 35
hours. So her weekly earnings from teaching is
$20*35 = $700.
Jill’s weekly earnings as a cheerleading coach is $30
per hour times the number of hours she works, which
is 15 hours. So her weekly earnings from coaching
is $30*15 = $450.
Her weekly earnings are the sum of her earnings
from teaching and coaching, which is $700 + $450 =
$1150.
Since she works 50 weeks a year, her annual earnings
are her weekly earnings times the number of weeks
she works in a year, which is $1150*50 = $57500.
The answer is $57500 .

Fusion Model [Correct, Correct] Let’s assume Darrell’s age is 7x and Allen’s age is
11x, where x is a constant.
The total age of both is 7x + 11x = 18x.
We know that the total age of both is 162, so 18x =
162.
To find x, we divide both sides of the equation by 18:
18x / 18 = 162 / 18.
This simplifies to x = 9.
Now we can find Darrell’s age by plugging in the
value of x: Darrell’s age = 7x = 7 * 9 = 63.
And Allen’s age = 11x = 11 * 9 = 99.
10 years from now, Allen’s age will be 99 + 10 = 109.
The answer is 109 .

Jill works 35 hours a week as a teacher, so she earns
35*$20 = $700 per week as a teacher.
She also works 15 hours a week as a coach, so she
earns 15*$30 = $450 per week as a coach.
In total, Jill earns $700+$450 = $1150 per week.
If Jill works 50 weeks a year, her annual salary is
50*$1150 = $57,500.
The answer is 57500 Industries .

CodeLlama-7B-Ins [Wrong, Wrong] James decided to walk to the store.
When he got halfway there he realized
he forgot something at home and had to
walk back. If his home is 4 miles from
the store and he walks 4 miles per hour
how long did it take him to reach the
store?

James walks 4 miles to reach the store.
He walks at a rate of 4 miles per hour, so he walks
for 4/4 = 1 hour to reach the store.
Therefore, it took James 1 hour to reach the store.

If a classroom has 3 times as many girls
as they do boys, and 1/10 as many non-
gendered children as they do boys, and
the classroom has 30 boys. How many
total children does it have?

Let’s start by using the information that there are 3
times as many girls as boys. So, if there are x boys,
there are 3x girls.
We also know that there are 1/10 as many nongen-
dered children as boys. So, if there are x boys, there
are 10x nongendered children.
We are given that there are 30 boys in the classroom.
So, we can set up the equation: 3x + 10x = 30
Simplifying the equation:
4x = 30
Dividing both sides by 4:
x = 7.5
So, there are 7.5 boys and 7.5 x 10 = 75 nongendered
children in the classroom.
Now, we can find the number of girls by multiplying
3x by 3:
3x = 21
So, there are 21 girls in the classroom.
The total number of children in the classroom is the
sum of the number of boys, girls, and nongendered
children:
30 + 21 + 75 = 126
Therefore, the classroom has 126 children.

WizardMath-7B-V1.1 [Wrong, Correct] When James walked halfway to the store, he covered
a distance of 4/2 = 2 miles
He then walked back 2 miles to get his forgotten item,
so he walked 2+2 = 4 miles total.
James walks at a rate of 4 miles per hour, so it took
him 4/4 = 1 hour to walk that distance.
The answer is 1 .

The classroom has 3 times as many girls as boys,
meaning there are 3*30=90 girls in the classroom.
The number of nongendered children is 1/10 the num-
ber of boys, meaning there are 1/10*30 = 3 nongen-
dered children.
In total, the classroom has 90 girls + 30 boys + 3
nongendered children = 123 children
The answer is 123 .

Fusion Model [Correct, Correct] James walked 4 miles to reach the store, so he walked
4 miles / 4 miles per hour = 1 hour to reach the store.
He then realized he forgot something at home and
had to walk back, so he walked back 4 miles / 4 miles
per hour = 1 hour to walk back.
In total, it took James 1 hour to reach the store and 1
hour to walk back, so it took him 2 hours to complete
the trip.
The answer is 2 hours.

Let’s break down the information given:
Number of boys: 30
Number of girls: 3 times as many as boys = 30 * 3 =
90
Number of nongendered children: 1/10 as many as
boys = 30 * 1/10 = 3
Total number of children: Number of boys + Number
of girls + Number of nongendered children = 30 + 90
+ 3 = 123
The answer is 123 .

15

Table 8: Case study: Evolution results in GSM8K-Coding and Math-Coding

Model GSM8k-Coding Math-Coding

Question Answer Question Answer

DeepSeek-Coder-Ins-v1.5 [Wrong] John drives for 3 hours at a
speed of 60 mph and then
turns around because he re-
alizes he forgot something
very important at home.
He tries to get home in 4
hours but spends the first 2
hours in standstill traffic.
He spends the next half-
hour driving at a speed
of 30mph, before being
able to drive the remaining
time of the 4 hours going
at 80 mph. How far is he
from home at the end of
those 4 hours?

Python code:
def solution():

"""John drives for 3 hours at a speed of 60 mph and then turns around
because he realizes he forgot something very important at home. He
tries to get home in 4 hours but spends the first 2 hours in
standstill traffic. He spends the next half-hour driving at a speed
of 30mph, before being able to drive the remaining time of the 4
hours going at 80 mph. How far is he from home at the end of those
4 hours?"""

Distance = speed * time
John drives for 3 hours at a speed of 60 mph
distance_to_work = 60 * 3
He turns around and drives back home
He spends the first 2 hours in standstill traffic
He spends the next half-hour driving at a speed of 30mph
He drives the remaining time of the 4 hours going at 80 mph
time_to_home = 4 - 2 - 0.5
speed_to_home = 80
distance_to_home = 30 * 0.5 + speed_to_home * time_to_home
Total distance from home is the sum of the distances to work and home

total_distance = distance_to_work + distance_to_home
result = total_distance
return result

Ten treeks weigh as much
as three squigs and one
goolee. Two treeks and
one goolee are equal in
weight to one squig. The
combined weight of how
many treeks equals the
weight of one squig?

Python code:
def solution():

Let’s denote the weight of one treek as T, one squig as S and one
goolee as G.

From the first sentence, we have the equation: 10T = 3S + 1G.
From the second sentence, we have the equation: 2T + 1G = S.
We can solve these two equations to find the values of T and S.
Solving the first equation for T:
T = (3*S + 1*G) / 10
Substituting T into the second equation:
(2*(3*S + 1*G)/10) + 1*G = S
Simplifying:
6*S + 2*G = 10*S
Solving for S:
S = 2*G
Substituting S into the first equation:
T = (3*2*G + 1*G) / 10
Simplifying:
T = 7*G / 10
The combined weight of treeks equals the weight of one squig when:
10T = S
Substituting T and S:
combined_treeks = 10 * (7*G / 10)
The number of treeks equals the weight of one squig.
result = combined_treeks
return result

DeepSeek-Math-RL [Wrong] Python code:
def calculate_distance():
John drives for 3 hours at a speed of 60 mph distance_first_trip = 3 *

60
He tries to get home in 4 hours but spends the first 2 hours in

standstill traffic
So he has 2 hours remaining to drive
remaining_hours = 4 - 2
He spends the next half-hour driving at a speed of 30mph
distance_slow_drive = 0.5 * 30
He then drives the remaining time at a speed of 80 mph
distance_fast_drive = remaining_hours * 80
Total distance from home
total_distance = distance_first_trip - distance_slow_drive -

distance_fast_drive
return total_distance
result = calculate_distance()
print(result)

Python code:
from sympy import symbols, Eq, solve
def solve_equation():

t, s, g = symbols(’t␣s␣g’)
Given equations
eq1 = Eq(10*t, 3*s + g)
eq2 = Eq(2*t + g, s)
Solve the system of equations
solution = solve((eq1, eq2), (t, s, g))
Find how many treeks weigh as much as one squig
treeks_for_squig = 1 / solution[t]
return treeks_for_squig
result = solve_equation()
print(result)

Merged Model [Correct] Python code:
def distance_from_home():

John drives for 3 hours at a speed of 60 mph distance_out = 3 * 60
He tries to get home in 4 hours but spends the first 2 hours in

standstill traffic.
So he drives for 2 hours.
distance_in_traffic = 2 * 0
He’s in traffic, so he doesn’t move.
He spends the next half-hour driving at a speed of 30mph
distance_in_slow_traffic = 0.5 * 30
before being able to drive the remaining time of the 4 hours going at

80 mph.
distance_in_fast_traffic = (4 - 2.5) * 80
Total distance from home
total_distance = distance_out - (distance_in_traffic +

distance_in_slow_traffic + distance_in_fast_traffic)
return total_distance
print(distance_from_home())

Python code:
from sympy import symbols, Eq, solve
def solve_treeks_squigs():

Define symbols
t, s, g = symbols(’t␣s␣g’)
Given conditions
condition1 = Eq(10 * t, 3 * s + g)
condition2 = Eq(2 * t + g, s)
Solve the system of equations
solution = solve((condition1, condition2), (t, s, g))
Calculate how many treeks equals the weight of one squig
treeks_for_squig = solution[s] / solution[t]
return treeks_for_squig
result = solve_treeks_squigs()
print(result)"

DeepSeek-Coder-Ins-v1.5 [Wrong] Melanie is a door-to-door
saleswoman. She sold a
third of her vacuum clean-
ers at the darkgreen house,
2 more to the red house,
and half of what was left
at the orange house. If
Melanie has 5 vacuum
cleaners left, how many
did she start with?

Python code:
def solution():

"""Melanie is a door-to-door saleswoman. She sold a third of her vacuum
cleaners at the darkgreen house, 2 more to the red house, and half
of what was left at the orange house. If Melanie has 5 vacuum
cleaners left, how many did she start with?"""

vacuum_cleaners_left = 5
Calculate the number of vacuum cleaners sold at the orange house
vacuum_cleaners_sold_orange = 2 * 2 # 2 vacuum cleaners sold to the red

house, and each red house sale is equivalent to 2 orange house
sales

Calculate the number of vacuum cleaners sold at the darkgreen house
vacuum_cleaners_sold_darkgreen = vacuum_cleaners_left +

vacuum_cleaners_sold_orange
Calculate the total number of vacuum cleaners sold
vacuum_cleaners_sold = vacuum_cleaners_sold_darkgreen +

vacuum_cleaners_sold_orange
Calculate the number of vacuum cleaners Melanie started with
vacuum_cleaners_initial = vacuum_cleaners_sold * 3 # Since she sold a

third of her vacuum cleaners at the darkgreen house
result = vacuum_cleaners_initial
return result

Consider this pattern
where the positive, proper
fractions with denomina-
tor (n + 1) are arranged
in the nth row in a tri-
angular formation. The
1st through 4th rows are
shown; each row has
one more entry than the
previous row. What is the
sum of the fractions in the
15th row?

Python code:
def solution():

n = 15
total = 0
for denominator in range(2, n + 2):

for numerator in range(1, denominator - 1):
total += numerator / denominator

return total

DeepSeek-Math-RL [Wrong] Python code:
def initial_vacuums():

"""Melanie is a door-to-door saleswoman. She sold a third of her vacuum
cleaners at the darkgreen house, 2 more to the red house, and half
of what was left at the orange house. If Melanie has 5 vacuum
cleaners left, how many did she start with?"""

remaining_vacuums = 5
vacuums_sold_orange = (initial_vacuums - initial_vacuums / 3 - 2) / 2
vacuums_before_orange = vacuums_sold_orange + remaining_vacuums
initial_vacuums = vacuums_before_orange * 3 / 2 + 2
return int(initial_vacuums)
initial_vacuums = initial_vacuums()
print(initial_vacuums)

Python code:
from sympy import Rational, summation, symbols
def sum_of_fractions_in_row(n):

Define the variable
i = symbols(’i’)
Sum the fractions in the nth row
sum_fractions = summation(Rational(i, n+1), (i, 1, n))
return sum_fractions
Calculate the sum of the fractions in the 15th row
sum_15th_row = sum_of_fractions_in_row(15)
print(sum_15th_row)

Merged Model [Correct] Python code:
from sympy import symbols, Eq, solve
def find_initial_vacuum_cleaners():

x = symbols(’x’) # x represents the initial number of vacuum cleaners
Melanie had

sold_darkgreen = x / 3
sold_red = 2
sold_orange = (x - sold_darkgreen - sold_red) / 2
remaining = 5
equation = Eq(x - sold_darkgreen - sold_red - sold_orange, remaining)

initial_vacuum_cleaners = solve(equation, x)[0]
return initial_vacuum_cleaners
initial_vacuum_cleaners = find_initial_vacuum_cleaners()
print(initial_vacuum_cleaners)

Python code:
from sympy import Rational
def sum_of_fractions_in_row(n):

total = 0
for i in range(1, n+1):
total += Rational(i, n+1)
return total
print(sum_of_fractions_in_row(15))

16

Table 9: Case study: Evolution results (DeepSeek-Math-RL + DeepSeek-Coder-Ins-v1.5, TIES-Merging, Layer=10)
in Humaneval.

Model Humaneval Humaneval

Prompt Answer Prompt Answer

DeepSeek-Coder-Ins-v1.5 [Correct] Python prompt:
def triples_sum_to_zero(l: list):

"""
triples_sum_to_zero takes a list

of integers as an input.
it returns True if there are three

distinct elements in the
list that

sum to zero, and False otherwise.

>>> triples_sum_to_zero([1, 3, 5,
0])

False
>>> triples_sum_to_zero([1, 3, -2,

1])
True
>>> triples_sum_to_zero([1, 2, 3,

7])
False
>>> triples_sum_to_zero([2, 4, -5,

3, 9, 7])
True
>>> triples_sum_to_zero([1])
False
"""

Python code:
def triples_sum_to_zero(l: list):

l.sort()
length = len(l)
for i in range(length - 2):

if i > 0 and l[i] == l[i - 1]:
continue

left = i + 1
right = length - 1
while left < right:

sum = l[i] + l[left] + l[right]
if sum > 0:

right -= 1
elif sum < 0:

left += 1
else:

return True
return False

Python prompt:
def digitSum(s):

"""Task
Write a function that takes a

string as input and returns
the sum of the upper
characters only’

ASCII codes.

Examples:
digitSum("") => 0
digitSum("abAB") => 131
digitSum("abcCd") => 67
digitSum("helloE") => 69
digitSum("woArBld") => 131
digitSum("aAaaaXa") => 153

"""

Python code:
def triples_sum_to_zero(l: list):

l.sort()
length = len(l)
for i in range(length - 2):

if i > 0 and l[i] == l[i - 1]:
continue

left = i + 1
right = length - 1
while left < right:

sum = l[i] + l[left] + l[right]
if sum > 0:

right -= 1
elif sum < 0:

left += 1
else:

return True
return False

DeepSeek-Math-RL [Correct] Python code:
for i in range(len(l)):

for j in range(i + 1, len(l)):
for k in range(j + 1, len(l)):

if l[i] + l[j] + l[k] == 0:
return True

return False

Python code:
def digitSum(s):

return sum(ord(c) for c in s if c.isupper())

print(digitSum(""))
print(digitSum("abAB"))
print(digitSum("abcCd"))
print(digitSum("helloE"))
print(digitSum("woArBld"))
print(digitSum("aAaaaXa"))

Merged Model [Wrong] Python code:
def count_words(text):

"""
Count the number of words in a given text.
Args:

text (str): The text to count words in.
Returns:

int: The number of words in the text.
"""
words = text.split()
return len(words)

text = "Hello,␣world!␣This␣is␣a␣sample␣text."
word_count = count_words(text)
print(word_count)

Python code:
def digitSum(s):

sum = 0
for char in s:

if char.isupper():
sum += ord(char)

return sum

You are an intelligent programming assistant to
produce Python algorithmic solutions.

Can you complete the following Python function?

def count_vowels(s):
"""Count the number of vowels in a string."""
vowels = "aeiouAEIOU"
count = 0
for char in s:

if char in vowels:
count += 1

return count

DeepSeek-Coder-Ins-v1.5 [Wrong] Python prompt:
def starts_one_ends(n):

"""
Given a positive integer n, return

the count of the numbers of
n-digit

positive integers that start or
end with 1.

"""

Python code:
def starts_one_ends(n):

"""
Given a positive integer n, return the count

of the numbers of n-digit
positive integers that start or end with 1.
"""
The total number of n-digit numbers is 10^n -

10^(n-1)
total_numbers = 10**n - 10**(n-1)

The number of n-digit numbers that start
with 1 is 10^(n-1)

starts_with_one = 10**(n-1)

The number of n-digit numbers that end with 1
is 10^(n-1)

ends_with_one = 10**(n-1)

The number of n-digit numbers that start and
end with 1 is 10^(n-2)

starts_and_ends_with_one = 10**(n-2)

The total number of n-digit numbers that
start or end with 1 is the sum of the
above

total_starts_or_ends_with_one =
starts_with_one + ends_with_one -
starts_and_ends_with_one

return total_starts_or_ends_with_one

Python prompt:
def exchange(lst1, lst2):

"""
In this problem, you will

implement a function that
takes two lists of numbers,

and determines whether it is
possible to perform an
exchange of elements

between them to make lst1 a list
of only even numbers.

There is no limit on the number of
exchanged elements between
lst1 and lst2.

If it is possible to exchange
elements between the lst1 and
lst2 to make

all the elements of lst1 to be
even, return "YES".

Otherwise, return "NO".

For example:
exchange([1, 2, 3, 4], [1, 2, 3,

4]) => "YES"
exchange([1, 2, 3, 4], [1, 5, 3,

4]) => "NO"

It is assumed that the input lists
will be non-empty.

"""

Python code:
def exchange(lst1, lst2):

odd_in_lst1 = [num for num in lst1 if num % 2
!= 0]

odd_in_lst2 = [num for num in lst2 if num % 2
!= 0]

if len(odd_in_lst1) <= len(odd_in_lst2):
return "YES"

else:
return "NO"

DeepSeek-Math-RL [Wrong] Python code:
<function starts_one_ends at 0x10e5e8e0>\n

Python code:
\n

Merged Model [Correct] Python code:
def starts_one_ends(n):

"""
Given a positive integer n, return the count

of the numbers of n-digit
positive integers that start or end with 1.
"""
count = 0
for i in range(10**(n-1), 10**n):

if i % 10 == 1 or i // 10**(n-1) == 1:
count += 1

return count

Python code:
lst1_odd = [num for num in lst1 if num % 2 != 0]
lst2_even = [num for num in lst2 if num % 2 == 0]

if len(lst1_odd) <= len(lst2_even):
return "YES"

else:
return "NO"

17

Table 10: Case study: Fusion results (CodeLlama-7B-Ins + MetaMath-70B) in Humaneval In question 155, both
source models failed to convert the variable digit from string into an integer, causing the program to throw an
error. But fusion model can write the correct program. In question 114, CodeLlama-7B-Ins generated an incorrect
program by resetting current_sum to 0 when it becomes negative. This logic is faulty because resetting the sum
disregards potential valid subarrays that include negative numbers, which might actually contribute to the correct
solution when seeking the minimum sum. The error in the code generated by MetaMath-70B lies in incorrectly
adding each element to min_sum, leading to erroneous accumulation and failing to address the minimum sum of
a contiguous subarray. The fusion model produced a correct solution to the problem, even though it employed a
brute-force approach.

Model Humaneval Humaneval

Prompt Answer Prompt Answer

CodeLlama-7B-Ins [Wrong, Wrong] ID: 155 Python prompt:
def even_odd_count(num):

"""
Given an integer, return a tuple

that has the number of even
and odd digits respectively.

Example:
even_odd_count(-12) ==> (1, 1)
even_odd_count(123) ==> (1, 2)

"""

Python code:
def even_odd_count(num):

count_even = 0
count_odd = 0
for digit in str(abs(num)):

if digit % 2 == 0:
count_even += 1

else:
count_odd += 1

return (count_even, count_odd)

ID: 114 Python prompt:
def minSubArraySum(nums):

"""
Given an array of integers nums,

find the minimum sum of any
non-empty sub-array

of nums.
Example
minSubArraySum([2, 3, 4, 1, 2, 4])

== 1
minSubArraySum([-1, -2, -3]) == -6
"""

Python code:
def minSubArraySum(nums):

"""
Given an array of integers nums, find the

minimum sum of any non-empty sub-array of
nums.

"""
Initialize the minimum sum to infinity
min_sum = float(’inf’)
Initialize the current sum to 0
current_sum = 0
Loop through the array
for i in range(len(nums)):

Add the current element to the current
sum

current_sum += nums[i]
If the current sum is less than the

minimum sum, update the minimum sum
if current_sum < min_sum:

min_sum = current_sum
If the current sum is negative, set it to

0
elif current_sum < 0:

current_sum = 0
Return the minimum sum
return min_sum

MetaMath-70B [Wrong, Correct] Python code:
num = str(num)
even_count = 0
odd_count = 0
for digit in num:

if digit % 2 == 0:
even_count += 1

else:
odd_count += 1

return (even_count, odd_count)

num = 123
print(even_odd_count(num))
The answer is: (1,2)

Python code:
if not nums:

return 0
min_sum = nums[0]
for i in range(1, len(nums)):

min_sum = min(min_sum, nums[i])
min_sum += nums[i]

return min_sum

Fusion Model [Correct, Correct] Python code:
def even_odd_count(num):

count_even = 0
count_odd = 0
for digit in str(abs(num)):

if int(digit) % 2 == 0:
count_even += 1

else:
count_odd += 1

return (count_even, count_odd)

Python code:
def minSubArraySum(nums):

"""
Given an array of integers nums, find the

minimum sum of any non-empty sub-array of
nums.

"""
min_sum = float(’inf’)
for i in range(len(nums)):

curr_sum = 0
for j in range(i, len(nums)):

curr_sum += nums[j]
if curr_sum < min_sum:

min_sum = curr_sum
return min_sum

18

	Introduction
	Related Work
	Model Merging
	Model Fusion

	Modeling
	Overview
	Evolutionary Merging for Homogeneous LLMs
	Distribution Based Fusion for Heterogeneous LLMs

	Experiments
	Experimental Setting
	Homogeneous LLMs
	Heterogeneous LLMs

	Results
	Homogeneous LLM
	Heterogeneous LLMs

	Conclusion and Future Work
	Limitations
	Case Study

