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Abstract
Causal discovery and causal reasoning are classically treated as separate and con-1

secutive tasks: one first infers the causal graph, and then uses it to estimate causal2

effects of interventions. However, such a two-stage approach is uneconomical, espe-3

cially in terms of actively collected interventional data, since the causal query of in-4

terest may not require a fully-specified causal model. From a Bayesian perspective,5

it is also unnatural, since a causal query (e.g., the causal graph or some causal effect)6

can be viewed as a latent quantity subject to posterior inference—quantities that are7

not of direct interest ought to be marginalized out in this process, thus contributing8

to our overall uncertainty. In this work, we propose Active Bayesian Causal Infer-9

ence (ABCI), a principled fully-Bayesian active learning framework for integrated10

causal discovery and reasoning, which jointly infers a posterior over causal models11

and queries of interest. In our approach to ABCI, we focus on the class of causally-12

sufficient nonlinear additive Gaussian noise models, which we model using Gaus-13

sian processes. To capture the space of causal graphs, we use a continuous latent14

graph representation, allowing our approach to scale to practically relevant problem15

sizes. We sequentially design experiments that are maximally informative about16

our target causal query, collect the corresponding interventional data, update our17

beliefs, and repeat. Through simulations, we demonstrate that our approach is more18

data-efficient than existing methods that only focus on learning the full causal graph.19

This allows us to accurately learn downstream causal queries from fewer samples,20

while providing well-calibrated uncertainty estimates of the quantities of interest.21

1 Introduction22

Causal reasoning, that is, answering causal queries such as the effect of a particular intervention, is23

a fundamental scientific quest [3, 24, 27, 34]. A rigorous treatment of this quest requires a reference24

causal model, typically consisting at least of (i) a causal diagram, or directed acyclic graph (DAG),25

capturing the qualitative causal structure between a system’s variables [38]; and (ii) a joint distribution26

which is Markovian w.r.t. this causal graph [52]. Other frameworks additionally model (iii) the func-27

tional dependence of each variable on its causal parents in the graph [39, 58]. If the graph is not known28

from domain expertise, causal discovery aims to infer it from data [33, 52]. However, given only obser-29

vational (passively collected) data, causal discovery is fundamentally limited to recovering the Markov30

equivalence class (MEC) of DAGs implying the same conditional independences as the data [52].31

Additional structural assumptions (e.g., linearity) can render the graph identifiable [25, 42, 49, 59] but32

are often hard to falsify, thus leading to risk of misspecification. These shortcomings motivate learning33

from experimental (interventional) data which suffices to uniquely recover the true graph [10, 11, 19].34

Here, we are particularly interested in the active learning setting in which we can sequentially design35

and perform interventions that are most informative for the target causal query [1, 17, 19, 20, 35, 55].36

Classically, causal discovery and reasoning are treated as separate, consecutive tasks that are studied37

by different communities. Prior work on experimental design has thus focused either purely on causal38

reasoning—how to best design experimental studies if the causal graph is known—or purely on causal39

discovery, whenever the graph is unknown. In contrast, we consider the arguably more common40

setting in which we are interested in performing causal reasoning but do not have access to a reference41

causal model a priori. In this case, causal discovery can be seen as a means to an end, rather than as42

the main objective. Nonetheless, existing experimental design approaches generally focus on learning43
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Figure 1: Overview of the Active Bayesian Causal Inference (ABCI) framework. At each time step t, we
use Bayesian experimental design based on our current beliefs to choose a maximally informative intervention at

to perform. We then collect a finite data sample from the interventional distribution induced by the environment,
which we assume to be described by an unknown structural causal model (SCM) M? over a set of observable
variables X . Given (interventional) data x1:t collected from the true SCM M?, together with a prior distribution
over the model class of consideration, we infer the posterior over a target causal query Y = q(M) that can be
expressed as a function of the causal model: for example, we may be interested in the graph (causal discovery),
the presence of certain edges (partial causal discovery), the full SCM (causal model learning), a collection
of interventional distributions or treatment effects (causal reasoning), or any combination thereof.

the graph, which is subsequently fixed for the causal reasoning phase. This can be disadvantageous44

for two reasons: first, wasting samples on learning the full causal graph is suboptimal when we45

are only interested in specific aspects of the causal model; and second, causal discovery from finite46

(especially small amounts of) data entails significant epistemic model uncertainty—e.g., from low47

statistical test power or multiple highly-scoring DAGs— which should be taken into account [2, 13].48

In the present work, we propose Active Bayesian Causal Inference (ABCI), a principled, fully-49

Bayesian framework for integrated causal discovery and reasoning with experimental design. The50

basic approach is to put a Bayesian prior over the causal model class of choice, and to cast the51

learning problem as Bayesian inference over the model posterior. Moreover, we introduce the target52

causal query which is a function of the causal model that returns the (set of) causal quantities we are53

interested in. The model posterior together with the query function induce a query posterior which54

represents the result of our Bayesian learning procedure; it can be used, e.g., to derive a MAP solution55

or suitable expectation, or for down-stream decision tasks. The query posterior is incorporated in56

an active learning loop: we follow the Bayesian optimal experimental design approach [6, 28] and57

sequentially choose admissible interventions on the true causal model which are most informative58

about our target query w.r.t. our current beliefs. We then update our beliefs given the observed data by59

computing the posterior over causal models and queries, and use them to design the next experiment.60

Since the general ABCI framework is computationally highly challenging, we implement it for the61

class of causally-sufficient nonlinear additive Gaussian noise models [25] which we model using62

Gaussian processes (GPs) [14, 57]. While this class is somewhat restrictive from a causal perspective,63

it is a flexible non-linear causal model which automates causal discovery in a wide range of scientific64

and engineering disciplines, as long as causal sufficiency can be reasonably assumed. To parameterize65

the combinatorial space of causal graphs, we use a recently proposed framework for differentiable66

Bayesian structure learning (DiBS) [30] that employs a continuous latent probabilistic graph67

representation to allow for tractable posterior inference. To approximately maximise information68

gain, we rely on Bayesian optimisation [31, 32, 51]. We highlight the following contributions:69

• We propose ABCI as a flexible Bayesian active learning framework for efficiently inferring70

arbitrary sets of causal queries, subsuming causal discovery and reasoning as special cases (§ 3).71

• We give a fully Bayesian treatment for the flexible class of nonlinear additive Gaussian noise72

models by leveraging GPs, continuous graph parametrisations, and Bayesian optimisation (§ 4).73

• We demonstrate that our approach scales to relevant problem sizes and compares favourably to74

baselines in terms of efficiently learning the graph, full SCM, or interventional distributions (§ 5).75

2 Related Work76

Causal discovery and reasoning have been widely studied in machine learning and statistics [23, 42].77

Given an already collected set of observations, there is a large body of literature on learning causal78

structure, both in the form of a point estimate [18, 41, 49, 52] and a Bayesian posterior [2, 8, 13,79

21, 30]. Given a known causal graph, previous work studies how to estimate treatment effects80

or counterfactuals [39, 47, 48]. When interventional data is yet to be collected, existing work81

primarily focuses on the specific task of structure learning—without its downstream use. The concept82
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of (Bayesian) active causal discovery was first considered in discrete models with closed-form83

marginal likelihoods [35, 55] and later extended to nonlinear causal mechanisms [54, 56], multi-84

target interventions [53], and general models by using hypothesis testing [15]. Graph theoretic works85

give insights on the interventions required for full identifiability [10, 11, 19, 26].86

Beyond learning the complete causal graph, few prior works have studied active causal inference.87

Concurrent work of Tigas et al. [54] considers experimental design for learning a full SCM88

parametrised by neural networks; there are significant differences to our approach: in particular, our89

framework (§ 3) is not limited to the information gain over the full model and provides a fully Bayesian90

treatment of the functions (§ 4). Agrawal et al. [1] consider actively learning a function of the causal91

graph under budget constraints, though not of the causal mechanisms and only for linear Gaussian92

models. Conversely, Rubenstein et al. [46] actively learn the causal mechanisms after the causal graph93

has been inferred. Thus, while prior work considers causal discovery and reasoning as a separate94

tasks, ABCI forms an integrated Bayesian approach for learning causal queries through interventions,95

reducing to previously studied settings in special cases. We further discuss related work in Appx. A.96

3 Active Bayesian Causal Inference (ABCI) Framework97

In this section, we first introduce the ABCI framework in generality, focusing on the main ideas98

and high-level ingredients, which are also illutrated in Fig. 1. In § 4 we then describe our particular99

implementation for the class of causally sufficient non-linear additive Gaussian noise models.100

Notation. We use upper-case X and lower-case x to denote random variables and their realizations,101

respectively. Sets and vectors are written in bold face, X and x. With a slight abuse of notation, we102

use p(·) to denote different distributions, or densities, which are distinguished by their arguments.103

Causal Model. To treat causality in a rigorous way, we first need to postulate a mathematically104

well-defined causal model. Historically hard questions about causality can then be reduced to105

epistemic questions, that is, what and how much is known about the causal model. A prominent106

type of causal model is the structural causal model (SCM) [39]. From a Bayesian perspective, an107

SCM can be viewed as a hierarchical data-generating process involving latent random variables.108

Definition 1 (SCM). An SCM M over a set of endogenous (observed) variables X = {X1, . . . , Xd}109

and exogenous (latent) variables U = {U1, . . . , Ud} consists of structural equations, or mechanisms,110

Xi := fi(Pai, Ui), for i 2 {1, . . . , d}, (3.1)

which assign the value of each Xi as a deterministic function fi of its direct causes, or causal parents,111

Pai ✓X \ {Xi} and Ui; and a joint distribution p(U) over the exogenous variables.112

Associated with each SCM is a directed causal graph G with vertices X and edges Xj ! Xi iff.113

Xj 2 Pai, which we assume to be acyclic (i.e., it is a DAG). Any acyclic SCM then induces a114

unique observational distribution p(X | M) over the endogenous variables X , which is obtained115

as the pushforward measure of p(U) through the causal mechanisms in Eq. (3.1).116

Interventions. A crucial aspect of causal models such as SCMs is that they also model the effect of117

interventions—external manipulations to one or more of the causal mechanisms in Eq. (3.1)—which,118

in general, are denoted using Pearl’s do-operator [39] as do({Xi = f̃i(Pai, Ui)}i2I) with I ✓ [d]119

and suitably chosen f̃i(·). An intervention leads to a new SCM, the so-called interventional SCM,120

in which the relevant structural equations in Eq. (3.1) have been replaced by the new, manipulated121

ones. The interventional SCM thus induces a new distribution over the observed variables, the122

so-called interventional distribution which is denoted by p
do(a)(X | M) with a denoting the (set of)123

intervention(s) {Xi = f̃i(Pai, Ui)}i2I . Causal effects—expressions like E[Xj |do(Xi = 3)]—can124

then be derived from the corresponding interventional distribution via standard probabilistic inference.125

Being Bayesian with Respect to Causal Models. The main epistemic challenge for causal reasoning126

stems from the fact that the true causal model M? is not (or not completely) known. The canonical127

response to such epistemic challenges is a Bayesian approach: put a prior p(M) on causal models,128

collect data D from the true model M?, and compute the posterior via Bayes rule:129

p(M | D) =
p(D | M) p(M)

p(D)
=

p(D | M) p(M)R
p(D | M) p(M) dM

. (3.2)

A full Bayesian treatment over M is computationally delicate, to say the least. First, we require a130

way to parametrise the class of models M we consider. Second, we need to be able to perform joint131
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posterior inference over this model class. In this paper, we present (one of) the first full Bayesian132

approaches which considers a flexible model class with nonlinear relationships (§ 4).133

Bayesian Causal Inference. In the causal inference literature, the tasks of causal discovery (or,134

more generally, causal model learning) and causal reasoning are typically considered as separate135

problems. The former aims to learn (parts) of the causal model M? (typically the causal graph G
?)136

while the latter, assuming that the relevant parts of M? are already known, aims to identify and137

estimate some query of interest, typically using only observational data. This separation essentially138

suggests a two-stage approach: causal discovery followed by causal reasoning. From a Bayesian139

perspective, however, this distinction is unnatural and there is no real conceptual difference between140

the two. Rather, we might define a causal query function q, which specifies a target causal query141

Y = q(M) as a function of the causal model M. This view thus subsumes and generalises causal142

discovery and reasoning. Concretely, possible causal queries are143

Causal Discovery: Y = qCD(M) = G, that is, learning the full causal graph G;144

Partial Causal Discovery: Y = qPCD(M) = �(G), that is, learning some feature � of the graph,145

such as the presence of a particular (set of) edge(s).146

Causal Model Learning: Y = qCML(M) = M, that is, learning the full SCM M;147

Causal Reasoning: Y = qCR(M) = {pdo(XI(j))(Xj | M)}j2J , that is, learning a set of148

interventional distributions induced by M.1149

Once we have fixed the causal query, Bayesian inference naturally extends to the query posterior:150

p(Y | D) =
Z
p(Y | M) p(M | D) dM = EM|D[ p(Y | M)] , (3.3)

where p(Y | M) is deterministically given by q(M), i.e., a point mass. Evidently, computing Eq. (3.3)151

constitutes a hard computational problem in general, as we need to marginalise over all causal152

models. In § 4 we introduce a practical implementation for a restricted causal model class.153

Identifiability of causal models and queries. A crucial concept is that of identifiability of a model154

class, which refers to the ability to uniquely recover the true model in the limit of infinitely many155

observations from it [16].2 In the context of our setting, if the class of causal models M is identifiable,156

the model posterior p(M | D) in Eq. (3.2) and hence also the query posterior p(Y | D) in Eq. (3.3)157

will collapse and converge to a point mass on their respective true values M? and q(M?), given158

infinite data and provided the true model has non-zero mass under our prior, p(M?) > 0. Given159

only observational data, causal models are notoriously unidentifiable in general: without further160

assumptions on p(U) and the structural form of Eq. (3.1), neither the graph nor the mechanisms can161

be recovered. In this case, p(M | D) may only converge to an equivalence class of models that cannot162

be further distinguished. Note, however, that even in this case, p(Y | D) may still sometimes collapse,163

for example, if the Markov equivalence class (MEC) of graphs is identifiable (under causal sufficiency)164

and our query concerns the presence of a particular edge which is shared by all graphs in the MEC.165

Active Learning with Sequential Interventions. Rather than collecting a large, observational166

dataset, we leverage observations from a small number of sequentially-performed experiments. The167

motivation for this is two-fold: first, experimental data can help resolve some of the non-identifiability168

issues discussed above; second, even if the model is identifiable (as for our approach in § 4), interven-169

tional data can still help learn our target causal query more quickly from finite data. Hence, at each170

time step t, we assume that we can perform an experiment in the form of an intervention at. The out-171

come of this experiment is a batch xt of Nt i.i.d. observations from the true interventional distribution:172

xt = {xt,n}Nt
n=1, xt,n i.i.d.⇠ p

do(at)(X | M?) (3.4)

Note that restricting to at = ?—that is, sampling from the observational distribution—amounts173

to learning from observational data as a special case. Crucially, however, we design the experiment174

1Here the set J can be uncountable, subsuming interventional distributions for a continuous set of interven-
tions, possibly on different variables. Thus, in this case the return value of q is a set of density functions. In
practice, these are implicitly represented in the learned Bayesian models, see § 5.

2It is worth pointing out that the term “identifiability” is sometimes used differently in the causal inference
literature: within causal discovery, it typically refers to structure identifiability, that is, recovering only the causal
graph; in the context of causal reasoning, on the other hand, it typically refers to whether an interventional (or
counterfactual) query can be expressed in terms of known quantities, usually involving only the observational
distribution. Here, we will use the term in its (original) statistical sense to refer to identifiability of models.
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at so that it is maximally informative about our target causal query Y . In our Bayesian setting, this175

is naturally formulated by maximising the information gain between Y and the outcome Xt [6, 28]:176

maxat I(Y ;Xt |x1:t�1) (3.5)

where Xt follows the predictive interventional distribution of the Bayesian causal model ensemble177

at time t� 1 under intervention at, which is given by178

Xt ⇠ p
do(at)(X |x1:t�1) /

Z
p

do(at)(X | M) p(M |x1:t�1) dM. (3.6)

By maximizing Eq. (3.5) we collect experimental data in a goal-oriented manner to learn our causal179

query Y as efficiently and quickly as possible.180

4 Tractable ABCI for Nonlinear Additive Noise Models181

Having discussed the general framework and conceptual ideas, we now present our concrete approach182

to ABCI. This requires specifying: (i) the class of causal models we consider in Eq. (3.1), including183

their parametrisation; (ii) the types of interventions at we consider at each step and the corresponding184

interventional likelihood in Eq. (3.4); (iii) our prior distribution p(M) over models; (iv) how to do185

posterior inference, that is, how to compute the model posterior in Eq. (3.2); and finally (v) how186

to maximise the information gain in Eq. (3.5) for experimental design.187

Model Class and Parametrisation. In our approach to ABCI, we consider SCMs of the form188

Xi := fi(Pai) + Ui, with Ui ⇠ N (0,�2
i ), for i 2 {1, . . . , d}, (4.1)

where the fi are smooth, nonlinear functions and where the Ui are assumed to be mutually189

independent, corresponding to the assumption of causal sufficiency (no hidden confounding). That190

is, we consider the special case of causally sufficient, non-linear, Gaussian additive noise models.191

Any model M of this form can be described by a triple M = (G,f ,�2), where G is a causal192

DAG, f = (f1, . . . , fd) is a vector of functions defined over the parent sets implied by G, and193

�2 = (�2
1 , . . . ,�

2
d) contains the Gaussian noise variances. Provided that the fi are nonlinear and194

not constant in any of their arguments, the model is identifiable almost surely [25, 43].195

Interventional Likelihood. We support the realistic setting where only a subset W ✓ X of all196

variables are actionable, i.e., only W can be the target of an intervention.3 For simplicity, we197

consider hard interventions of the form do(at) = do(XI = xI) which fix a subset XI ✓W to a198

constant xI . Due to causal sufficiency, the interventional likelihood under such hard interventions at199

factorises over the causal graph G and is given by the g-formula [44] or truncated factorisation [52]:200

p
do(at)(X |G,f ,�2) = I{XI = xI}

Q
j 62I p(Xj | fj(PaGj ),�

2
j ). (4.2)

The last term in Eq. (4.2) is given by N (fj(PaGj ),�
2
j ) due to the Gaussian noise assumption.201

Let x1:t be the entire dataset, collected up to time t. The likelihood of x1:t is then given by202

p(x1:t |G,f ,�2) =
Qt
⌧=1 p

do(a⌧ )(x⌧ |G,f ,�2) =
Qt
⌧=1

QNt

n=1 p
do(a⌧ )(x⌧,n |G,f ,�2). (4.3)

Structured Model Prior. To specify our model prior, we need to distinguish between root nodes Xi,203

for which Pai = ? and thus fi = const, and non-root nodes Xj . For a given G, denote by204

R(G) = {i 2 [d] : PaGi = ?} the index set of root nodes, and by NR(G) = [d] \R(G) that of non-205

root nodes. We then place the following structured prior over the class of models M = (G,f ,�2):206

p(M) = p(G) p(f ,�2 |G) = p(G)
Q

i2R(G) p(fi,�
2
i |G)

Q
j2NR(G) p(fj |G) p(�2

j |G) . (4.4)

Here, p(G) is a prior over graphs, and p(f ,�2 |G) is a prior over the functions and noise variances207

in G. We factorise our prior conditional on G as in Eq. (4.4) not only to allow for a separate208

treatment of root nodes and non-root nodes but also to share priors across similar graphs: whenever209

PaG1
i = PaG2

i , we set p(fi,�2
i |G1) = p(fi,�2

i |G2), and similarly for p(fj |G) and p(�2
j |G). As210

a consequence, the posteriors are also shared, which substantially reduces the computational burden.211

We also assume that fj ?? fj0 |G and �2
j ?? �

2
j0 |G for all j 6= j

0 2 NR(G), which is motivated212

by the principle of independent causal mechanisms [42]. Our specific choices for p(G), p(fi,�2
i |G),213

p(fj |G), and p(�2
j |G) are guided by computational challenges and described in more detail below.214

3In principle, the set of actionable variables might even change over time, in which case they are denoted Wt.
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Model Posterior. Given collected data x1:t, we can update our beliefs and quantify our uncertainty215

in M? by inferring a Bayesian posterior p(M |x1:t) over SCMs M = (G,f ,�2) as follows:4216

p(M |x1:t) = p(G |x1:t)
Q

i2R(G) p(fi,�
2
i |x1:t

, G)
Q

j2NR(G) p(fj ,�
2
j |x1:t

, G) . (4.5)

For root nodes i 2 R(G), posterior inference is straight-forward: we have fi = const, so fi can be217

viewed as the mean of Ui, cf. Eq. (4.1). We thus place a conjugate Normal-Gamma(µi,�i,↵
R
i ,�

R
i )218

prior on p(fi,�2
i |G), so that we can analytically compute the root node posterior p(fi,�2

i |x1:t
, G)219

in Eq. (4.5) in closed form [36]. We collect all the Normal-Gamma hyperparameters in (µ,�,↵R
,�R).220

The posteriors over graphs and non-root nodes j 2 NR(G) are given as221

p(G |x1:t) =
p(x1:t |G) p(G)

p(x1:t)
, p(fj ,�

2
j |x1:t

, G) =
p(x1:t |G, fj ,�

2
j ) p(fj ,�

2
j |G)

p(x1:t |G)
. (4.6)

Computing these posteriors is more involved and discussed below.222

4.1 Addressing Challenges for Posterior Inference with GPs and DiBS223

The particular challenges in Eq. (4.6) are the terms p(x1:t |G) and p(x1:t). In the following, we224

will address these by means of appropriate prior choices and approximations.225

Challenge 1: Marginalising out Functions. The term p(x1:t |G) in Eq. (4.6) reads226

p(x1:t |G) =
Z
p(x1:t |G, fj ,�

2
j ) p(fj |G) p(�2

j |G) dfj d�
2
j (4.7)

G Z

fi �2
i

x⌧,n

(µ,�,↵R,�R)

do(a⌧ )

fj �2
jj

(↵GP,�GP)

NR(G)

N⌧

R(G)

t

Figure 2: Graphical model representation of
our GP-DiBS-ABCI approach.

and requires evaluating integrals over the function domain.227

We use Gaussian processes (GPs) [57] as an elegant228

way to solve this problem, as GPs can flexibly model229

nonlinear functions while offering convenient analytical230

properties. Specifically, we place a GP(0, kGj (·, ·)) prior231

on p(fj |G), where k
G
j (·, ·) is a covariance function over232

PaGj with length scales j , which we collect in . In233

line with the GP-literature, we refer to (j ,�
2
j ) as the234

GP-hyperparameters. We place Gamma(↵�j ,��j ) and235

Gamma(↵j ,�j ) priors on p(�2
i |G) and p(i |G) and236

collect their parameters in (↵GP
,�GP), see Fig. 2. For our237

model class, GPs then provide closed-form expressions238

for the “GP-marginal likelihood” p(x1:t |G,�
2
j ,j), as239

well as for the “GP posteriors” p(fj |x1:t
, G,�

2
j ,j), and240

the “predictive posteriors over observations” p(X |x1:t
, G,�2

,) [57], see Appx. B for details.241

Challenge 2: Marginalising out GP-Hyperparameters. While GPs allow for exact posterior infer-242

ence conditional on a fixed value of (�2
j ,j), evaluating expressions such as p(fj |x1:t

, G) requires243

marginalising out these GP-hyperparameters from the GP-posterior (see above). Unfortunately, this244

cannot, in general, be done exactly in connection with GPs as there is no closed-form expression for245

p(�2
j ,j |x1:t

, G). We therefore approximate such expectations with a maximum a posteriori (MAP)246

point estimate (�̂2
j , ̂j), obtained by performing gradient ascent on the unnormalized log posterior,247

r log p(�2
j ,j |x1:t

, G) = r log p(x1:t |G,�
2
j ,j) +r log p(�2

j ,j |G) (4.8)

according to a predefined update schedule, cf. Alg. 1. That is, we use approximations of the form:248

p(fj |x1:t
, G) =

Z
p(fj |x1:t

, G,�
2
j ,j)p(�

2
j ,j |x1:t

, G) d�2
j dj ⇡ p(fj |x1:t

, G, �̂
2
j , ̂j)

Challenge 3: Marginalising out Graphs. Further, the “evidence” p(x1:t) is given by249

p(x1:t) =
P

G p(x1:t |G) p(G) (4.9)

4To avoid further complicating the notation, we write all posteriors and likelihoods in terms of the full
data x1:t. However, only observations of Xi and Xj |PaG

j matter for i 2 R(G) and j 2 NR(G).
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Algorithm 1: GP-DiBS-ABCI for nonlinear additive Gaussian noise models
Input: no. of experiments T , batch sizes {Nt}Tt=1, no. of latent particles M , no. of MC graphs

K, particle resampling schedule {rt}Tt=1, hyperparameter update schedule {st}Tt=1
Output: Posterior over target causal query p(Y |x1:T )
for t 1 to T do

at  argmaxa=(I,xI) U(a,x1:t�1) Bdesign experiment: Eq. (4.11)
xt  {x(t,n) ⇠ p

do(at)(X | M?)}Nt
n=1 Bperform experiment

if rt then
zt  resample_particles (zt) Bsee App.D

end
G {{G(k,m) ⇠ p(G | zm)}Kk=1}Mm=1 Bsample graphs
, ���2  estimate_hyperparameters(x1:st ,G) Bsee Eq. (4.8)
zt+1  SVGD(zt

,x1:t) Bupdate latent particles
end

and involves a summation over all possible DAGs G. This becomes intractable even for d � 4250

variables as the number of DAGs grows super-exponentially in the number of variables [45]. To251

address this challenge, we employ the recently proposed DiBS framework [30]. By introducing252

a continuous prior p(Z) that models G via p(G |Z) and simultaneously enforces acyclicity of G,253

Lorch et al. [30] show that we can efficiently infer the discrete posterior p(G |x1:t) via p(Z |x1:t) as254

255

EG |x1:t [�(G)] = EZ |x1:t

hEG |Z [ p(x
1:t |G)�(G)]

EG |Z [ p(x1:t |G)]

i
(4.10)

where � is some function of the graph. Since p(Z |x1:t) is a continuous density with tractable256

gradient estimators, we can resort to efficient variational inference methods such as Stein Variational257

Gradient Descent (SVGD) for approximate inference [29], see Appx. D for additional details.258

4.2 Approximate Bayesian Experimental Design with Bayesian Optimisation259

As motivated in § 3, we aim to perform experiments at that are maximally informative about our260

target query Y = q(M) by maximising the information gain from Eq. (3.5) given our current data261

D := x1:t�1. In Appx. C we show that this is equivalent to maximising the following utility function:262

U(a) =H(Xt | D) + EM|D
⇥
EXt,Y |M

⇥
logEM0 | D

⇥
p(Xt | M0) p(Y | M0)

⇤⇤⇤
,

where H(Xt | D) = EM|D
⇥
EXt |M

⇥
logEM0 | D

⇥
p(Xt | M0)

⇤⇤⇤ (4.11)

denotes the differential entropy of the experiment outcome, which depends on a and is distributed263

as in Eq. (3.6). This surrogate objective can be estimated using a nested Monte Carlo estimator, as264

long as we can sample from and compute p(Y | M), see Appx. D for further details. For example,265

for qCR(M) = p
do(Xi= )(Xj | M) with  ⇠ p( ) a distribution over intervention values, we get:266

UCR(a) = H(Xt | D) + EXt | D E Edo(Xi= )
Xj

h
logEM0 | D

h
p(Xt | M0) pdo(Xi= )(Xj | M0)

ii
.

Importantly, for specific instances of the query function q(·) discussed in § 3, we can derive simpler267

utilities than Eq. (4.11). For example, for qCD(M) = G and qCML(M) = M we arrive at268

UCD(a) = EG | D
⇥
EXt |G,D

⇥
log p(Xt | D, G)� logEG0 | D

⇥
p(Xt | D, G

0)
⇤⇤⇤

, (4.12)

UCML(a) = EM|D
⇥
EXt |M

⇥
log p(Xt | M)� logEG0 | D

⇥
p(Xt | D, G

0)
⇤⇤⇤

, (4.13)

where the entropy EXt |M [log p(Xt | M)] can again be efficiently computed given our modelling269

choices. For the sake of brevity, we defer derivations and estimation details to Appxs. C and D.270

Finding the optimal experiment a⇤t = (I⇤
,x⇤

I) requires jointly optimising the utility function cor-271

responding to our query with respect to (i) the set of intervention targets I , and (ii) the corresponding272

intervention values xI . This lends itself naturally to a nested, bi-level optimization scheme [56]:273

I⇤ 2 argmaxI U(I,x⇤
I) , where 8I : x⇤

I 2 argmaxxI U(I,xI) , (4.14)
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Figure 3: Causal Discovery and SCM Learning. Comparison of experimental design strategies for causal
discovery (UCD) and causal model learning (UCML) with random and observational baselines on simulated ground
truth models with 8 nodes. Lines and shaded areas show means ±1 std. dev. across 30 runs (5 randomly sampled
ground-truth SCMs with 6 restarts per SCM). (a) ESHD. Both our objectives significantly outperform the
observational and random baselines. (b) Graph-KLD. UCD, which optimises for this objective performs best
as expected, but UCML and the strong random baseline (RAND) perform competitively at learning the graph.
(c) Average I-KLD. Both our strategies significantly outperform the baselines; UCML, which aims to learn the
full SCM, does slightly better than UCD in terms of this proxy for causal model learning, as expected.

that is, we first estimate the optimal intervention values for all candidate intervention targets I,274

and then select the intervention target that yields the highest utility. The intervention target I275

might contain multiple variables, which, however, yields a combinatorial problem. Thus, for276

simplicity, we consider only single-node interventions, i.e., |I| = 1. To find x⇤
I , we employ Bayesian277

optimisation [31, 32, 51] to efficiently estimate an optimal intervention value x⇤
I , see Appx. D.278

5 Experiments279

Setup. We evaluate ABCI by inferring the query posterior on synthetic ground truth SCMs using280

several different experiment selection strategies. Specifically, we design experiments w.r.t. UCD281

(causal discovery), UCML (causal model learning), and UCR (causal reasoning), see § 4.2. We compare282

against baselines which (i) only sample from the observational distribution (OBS) or (ii) pick an283

intervention target j uniformly at random from [d] [ {?} and set Xj = 0 (RAND FIXED, a weak284

random baseline used in prior work) or draw Xj ⇠ U(�7, 7) (RAND) if Xj 6= ?. All methods285

follow our Bayesian GP-DiBS-ABCI approach from § 4. We sample ground truth SCMs over random286

scale-free graphs [4] of size d = 8, with mechanisms and noise variances drawn from our model287

prior Eq. (4.4). We initialise all methods with 5 observational samples, and then perform experiments288

with a batch size of 3. For specific prior choices and simulation details, see Appx. D.289

Metrics. As ABCI infers a posterior over the target query Y , a natural evaluation choice is the290

Kullback-Leibler divergence (KLD) between the true query distribution and the inferred query pos-291

terior, KL(p(Y | M?)|| p(Y |x1:t)). We report Graph KLD, a sample-based approximation of the292

KLD for posteriors over graphs (qCD), and Query KLD, a KLD estimate for target interventional293

distributions (qCR). As a proxy for the KLD of the SCM posterior (qCML),5 we report the average294

KLD across all single node interventional distributions {pdo(Xi= )(X)}di=1, with  ⇠ U(�7, 7)295

(Average I-KLD). We also report the expected structural hamming distance [9], ESHD =296

EG |x1:t [SHD(G,G
?)], a commonly used causal discovery metric; see Appx. D for further details.297

Causal Discovery and SCM Learning (Fig. 3). In our first experiment, we find that: (i) all our ABCI-298

based methods are able to meaningfully learn from small amounts of data, thus validating our Bayesian299

approach; further (ii) performing targeted interventions using experimental design indeed yields300

improved performance over uninformed experimentation (OBS, RAND FIXED, RAND). Notably, the301

stronger random baseline (RAND), which also randomises over intervention values, performs (surpris-302

ingly) well throughout—at least for the considered setting. As expected per the theoretical grounding303

of our information gain utilities, UCD identifies the true graph the fastest (as measured by Graph304

KLD), whereas UCML appears to most efficiently learn the full model, including the functions and305

noise variances, as measured by the Average I-KLD proxy, see the caption of Fig. 3 for further details.306

Learning Interventional Distributions (Fig. 4). In our second experiment, we investigate ABCI’s307

causal reasoning capabilities by randomly sampling ground truth SCMs (as described above) over the308

fixed graph shown in Fig. 4 (right)—which is not known to the methods—and treat the (uncountable)309

5The SCM KLD is either zero, if the SCM posterior collapses onto the true SCM, or infinite, otherwise.
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Figure 4: Learning Interventional Distributions. (left) Comparison of different methods w.r.t. learning a set of
interventional distributions pdo(X3= )(X5 |M) with  ⇠ U [4, 7] on simulated ground truth models with fixed
causal graph (right). Lines and shaded areas show mean ±1 std. dev. across 25 runs (5 randomly sampled ground
truth SCMs with 5 restarts each). (a) All nodes actionable. Our objectives significantly outperform the baselines;
UCML and UCR perform similarly. In conjunction with results from Fig. 3, this suggests that UCML yields a solid
base model for performing downstream causal inference tasks. (b) X3 not actionable. In this setting, where
we cannot directly intervene on the treatment variable of interest, UCR clearly outperforms all other methods for
� 5 experiments, suggesting that, in such a scenario, query-targeted experimental design is particularly helpful.

set of interventional distributions pdo(X3= )(X5 | M) with  ⇠ U [4, 7] as the target query. We find310

that our informed experiment selection strategies significantly outperform the baselines at causal311

reasoning, as measured by the Query KLD. In accord with the results from Fig. 3 and considering312

that, once we know the true SCM, we can compute any causal quantity of interest, UCML thus seems313

to provide a reasonable experimental strategy in case the causal query of interest is not known a314

priori. However, our results indicate that if we do know our query of interest, then UCR provides an315

even faster way for its estimation, especially when the treatment variable of interest is not directly316

intervenable. Note the different axis scales, indicating that the task is harder in this case, as expected.317

6 Discussion318

Assumptions, Limitations, and Extensions. In § 4, we have made several assumptions to facilitate319

tractable inference and showcase the ABCI framework in a relatively simple causal setting. In320

particular, our assumptions exclude heteroscedastic noise, unobserved confounding, and cyclic321

relationships. On the experimental design side, we only considered hard interventions, but for322

some applications soft interventions [12] are more plausible. On the query side, we only considered323

interventional distributions. However, SCMs also naturally lend themselves to counterfactual324

reasoning, so one could also consider counterfactual queries such as the effect of the treatment325

on the treated [22, 50]. In principle, the ABCI framework as presented in § 3 extends directly to326

such generalisations. In practice, however, these can be non-trivial to implement, especially with327

regard to model parametrisation and tractable inference. Since actively performed interventions328

allow for causal learning even under causal sufficiency violations, we consider this a promising329

avenue for future work and believe the ABCI framework to be particularly well-suited for exploring it.330

Extensions to other causal modelling frameworks, such as graphical causal models are also of interest.331

Reflections on the ABCI Framework. The main conceptual advantages of the ABCI framework332

are that it is flexible and principled. By considering general target causal queries, we can precisely333

specify what aspects of the causal model we are interested in, thereby offering a fresh perspective on334

the classical divide between causal discovery and reasoning: sometimes, the main objective may be335

to foster scientific understanding by uncovering the qualitative causal structure underlying real-world336

systems; other times, causal discovery may only be a means to an end—to support causal reasoning.337

Of particular interest in the context of actively selecting interventions is the setting where we cannot338

directly intervene on variables whose causal effect on others we are interested in (see Fig. 4), which339

connects to concepts such as transportability and external validity [5, 40]. ABCI is also flexible in340

that it easily allows for incorporating available domain knowledge: if we know some aspects of the341

model a priori (as assumed in conventional causal reasoning) or have access to a large observational342

sample (from which we can infer the MEC of DAGs), we can encode this in our prior and only343

optimise over a smaller model class, which should boost efficiency. The principled Bayesian nature344

of ABCI evidently comes at a significant computational cost: most integrals are intractable, and345

approximating them with Monte-Carlo sampling is computationally expensive and can introduce346

bias when resources are limited. On the other hand, in many real-world applications, such as in the347

context of biological networks, active interventions are possible but only at a significant cost [7, 37].348

Particularly in such cases, a careful and computationally-heavy experimental design approach as349

presented in the present work is warranted and might be easily amortised.350
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