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Abstract 
 
 
This paper presents a hybrid genetic algorithm for the Job Shop Scheduling problem. 
The chromosome representation of the problem is based on random keys. The schedules 
are constructed using a priority rule in which the priorities are defined by the genetic 
algorithm. Schedules are constructed using a procedure that generates parameterized 
active schedules. After a schedule is obtained a local search heuristic is applied to 
improve the solution. The approach is tested on a set of standard instances taken from 
the literature and compared with other approaches. The computation results validate the 
effectiveness of the proposed algorithm. 
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1. Introduction 
 
The job shop scheduling problem (JSP), may be described as follows: given n jobs, each 
composed of several operations that must be processed on m machines. Each operation 
uses one of the m machines for a fixed duration. Each machine can process at most one 
operation at a time and once an operation initiates processing on a given machine it 
must complete processing on that machine without interruption. The operations of a 
given job have to be processed in a given order. The problem consists in finding a 
schedule of the operations on the machines, taking into account the precedence 
constraints, that minimizes the makespan (Cmax), that is, the finish time of the last 
operation completed in the schedule. 
 
Let J = {0, 1, …, n, n+1} denote the set of operations to be scheduled and M = {1,..., m} 
the set of machines. The operations 0 and n+1 are dummy, have no duration and 
represent the initial and final operations. The operations are interrelated by two kinds of 
constraints. First, the precedence constraints, which force each operation j to be 
scheduled after all predecessor operations, Pj, are completed. Second, operation j can 
only be scheduled if the machine it requires is idle. Further, let dj denote the (fixed) 
duration (processing time) of operation j.  
 
Let Fj represent the finish time of operation j. A schedule can be represented by a vector 
of finish times (F1, , Fm, ... , Fn+1). Let A(t) be the set of operations being processed at 
time t, and let rj,m = 1 if operation j requires machine m to be processed and rj,m = 0 
otherwise. 
 
The conceptual model of the JSP can be described the following way: 

 
Minimize Fn+1     (Cmax) (1) 

 
            Subject to: 
                 
                1, ... , 1 ;k j j jF F d j n k P≤ − = + ∈                         (2) 
 
               ,

( )
1 ; 0j m

j A t
r m M t

∈

≤ ∈ ≥∑                         (3) 

 
               0 1, ... , 1jF j n≥ = + .                       (4) 
  
   
The objective function (1) minimizes the finish time of operation n+1 (the last 
operation), and therefore minimizes the makespan. Constraints (2) impose the 
precedence relations between operations and constraints (3) state that one machine can 
only process one operation at a time. Finally (4) forces the finish times to be non-
negative. 
 
The JSP is amongst the hardest combinatorial optimization problems. The JSP is NP-
hard (Lenstra and Rinnooy Kan, 1979), and has also proven to be computationally 
challenging.  
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Exact methods (Giffler and Thompson (1960), Carlier and Pinson (1989, 1990), 
Applegate and Cook (1991),  Brucker et al. (1994), Williamson et al. (1997)) have been 
successful in solving small instances, including the notorious 10×10 instance of Fisher 
and Thompson proposed in 1963 and only solved twenty years later. Problems of 
dimension 15×15 are still considered to be beyond the reach of today's exact methods. 
For such problems there is a need for good heuristics. Surveys of heuristic methods for 
the JSP are given in Pinson (1995), Vaessens et al. (1996) and Cheng et al. (1999). 
These include dispatching rules reviewed in French (1982), Gray and Hoesada (1991), 
Gonçalves and Mendes (1994), the shifting bottleneck approach (Adams et al. (1988) 
and Applegate and Cook (1991)), local search (Vaessens et al. (1996), Lourenço (1995) 
and Lourenço and Zwijnenburg (1996)), simulated annealing (Lourenço (1995), 
Laarhoven et al. (1992)), tabu search (Taillard (1994), Lourenço and Zwijnenburg 
(1996), and Nowicki and Smutnicki (1996)), and genetic algorithms (Davis (1985), 
Storer et al. (1992), Aarts et al. (1994), Croce et al. (1995), Dorndorf et al. (1995), 
Gonçalves and Beirão (1999), and Oliveira (2000)). Recently, Binato et al. (2002) 
described a greedy randomized adaptive search procedure (GRASP), Aiex et al. (2001) 
described a parallel GRASP with path-relinking, and Wang and Zheng (2001) described 
a hybrid optimization strategy for JSP. A comprehensive survey of job shop scheduling 
techniques can be found in Jain and Meeran (1999).  
 
In this paper, we present a new hybrid genetic algorithm for the job shop scheduling 
problem. The remainder of the paper is organized as follows. In Section 2, we present 
the different classes of schedules. In Section 3, we present our approach to solve the job 
shop scheduling problem: genetic algorithm, schedule generation procedure, and local 
search procedure. Section 4 reports the computational results and the conclusions are 
made in Section 5. 
 
 
2. Types of Schedules 
 
Schedules can be classified into one of following three types of schedules:  
 

• Semi-active schedule: These feasible schedules are obtained by sequencing 
operations as early as possible. In a semi-active schedule, no operation can be 
started earlier without altering the processing sequences. 

 
• Active schedule: These feasible schedules are schedules in which no operation 

could be started earlier without delaying some other operation or breaking a 
precedence constraint. Active schedules are also semi-active schedules. An 
optimal schedule is always active, so the search space can be safely limited to 
the set of all active schedules. 

 
• Non-delay schedule: These feasible schedules are schedules in which no 

machine is kept idle when it could start processing some operation. Non-delay 
schedules are necessarily active and hence also necessarily semi-active. 

 
Later in this paper we will use parameterized active schedules (Gonçalves and Beirão 
(1999)). This type of schedule consists of schedules in which no machine is kept idle for 
more than a predefined value if it could start processing some operation.  If the 
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predefined value is set to zero, then we obtain a non-delay schedule. The basis concept 
of this type of schedule is presented in the next section. 
 
 
2.1 Parameterized Active Schedules 
 
As mentioned above, the optimal schedule is in the set of all active schedules. However, 
the set of active schedules is usually very large and contains many schedules with 
relatively large delay times, and therefore poor quality in terms of makespan. In order to 
reduce the solution space and to control the delay times, we used the concept of 
parameterized active schedules (Gonçalves and Beirão (1999)). 
 
Figure 1 illustrates where the set of parameterized active schedules is located relative to 
the class of semi-active, active, and non-delay schedules. By controlling the maximum 
delay time allowed, one can reduced or increased this solution space. A maximum delay 
time equal to zero is equivalent to restricting the solution space to non-delay schedules. 
 

Semi-Actives

Actives

Non-Delay

Delay Time 1 Delay Time 2 

Semi-Actives

Actives

Non-Delay

Parametrized Actives

Delay Time 2 > Delay Time 1 

 
Figure 1 – Parameterized active schedules. 

 
 
Section 3.3 presents a detailed pseudo-code procedure to generate parameterized active 
schedules. 
 
 
3. New Approach for Job Shop Scheduling 
 
The new approach combines a genetic algorithm, a schedule generator procedure that 
generates parameterized active schedules, and a local search procedure. The approach 
consists in the following three phases: 
 

• Assignment of priorities and delay times to the operations. This phase makes use 
of a genetic algorithm to define and evolve the priorities of the operations and 
delay times. 

 
• Construction procedure. This phase makes use of the priorities and the delay 

times defined in the first phase, and constructs parameterized active schedules. 
 

• Local search procedure. This phase is used to improve the solution obtained by 
the construction procedure. 
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Details about each of these phases will be presented in the next sections. 
 
 
 
3.1 Genetic Algorithm 
 
Genetic algorithms are adaptive methods, which may be used to solve search and 
optimization problems (Beasley et al. (1993)). They are based on the genetic process of 
biological organisms. Over many generations, natural populations evolve according to 
the principles of natural selection, i.e. survival of the fittest, first clearly stated by 
Charles Darwin in The Origin of Species. By mimicking this process, genetic algorithms 
are able to evolve solutions to real world problems, if they have been suitably encoded. 
 
Before a genetic algorithm can be run, a suitable encoding (or representation) for the 
problem must be devised. A fitness function is also required, which assigns a figure of 
merit to each encoded solution. During the run, parents must be selected for 
reproduction, and recombined to generate offspring (see Figure 2). 
 
It is assumed that a potential solution to a problem may be represented as a set of 
parameters. These parameters (known as genes) are joined together to form a string of 
values (chromosome). In genetic terminology, the set of parameters represented by a 
particular chromosome is referred to as an individual. The fitness of an individual 
depends on its chromosome and is evaluated by the fitness function. 
 
The individuals, during the reproductive phase, are selected from the population and 
recombined, producing offspring, which comprise the next generation. Parents are 
randomly selected from the population using a scheme, which favors fitter individuals. 
Having selected two parents, their chromosomes are recombined, typically using 
mechanisms of crossover and mutation. Mutation is usually applied to some individuals, 
to guarantee population diversity. 
 
____________________________________________________________________ 
Genetic Algorithm 
{ 

Generate initial population Pt 
Evaluate population Pt 
While stopping criteria not satisfied Repeat  
{ 

Select elements from Pt to copy into Pt+l 
Crossover elements of Pt and put into Pt+l 
Mutation elements of Pt and put into Pt+l 
Evaluate new population Pt+l 
Pt = Pt+l 

} 
} 
_____________________________________________________________________ 

Figure 2 - A standard genetic algorithm. 
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3.1.1 Chromosome Representation and Decoding 
 
The genetic algorithm described in this paper uses a random key alphabet U(0,1) and an 
evolutionary strategy identical to the one proposed by Bean (1994). The important 
feature of random keys is that all offspring formed by crossover are feasible solutions. 
This is accomplished by moving much of the feasibility issue into the objective function 
evaluation. If any random key vector can be interpreted as a feasible solution, then any 
crossover vector is also feasible. Through the dynamics of the genetic algorithm, the 
system learns the relationship between random key vectors and solutions with good 
objective function values. 
 
A chromosome represents a solution to the problem and is encoded as a vector of 
random keys (random numbers). Each solution chromosome is made of 2n genes where 
n is the number of operations. 

 
Chromosome = (genel , gene2 , ..., genen ,  gene n+1 , ... , gene 2n ) 

 
The first n genes are used as operations priorities, i.e. 
 

Priorityj = Genej. 
 
The genes between n+1 and 2n are used to determine the delay times used when 
scheduling an operation. The delay time used by each scheduling iteration g, Delayg , is 
calculated by the following expression: 
 

Delayg = geneg  ×××× 1.5 ×××× MaxDur, 
 
where MaxDur is the maximum duration of all operations. The factor 1.5 was obtained 
after experimental tuning. 
 
 
3.1.2 Evolutionary Strategy 
 
To breed good solutions, the random key vector population is operated upon by a 
genetic algorithm. There are many variations of genetic algorithms obtained by altering 
the reproduction, crossover, and mutation operators. The reproduction and crossover 
operators determine which parents will have offspring, and how genetic material is 
exchanged between the parents to create those offspring. Mutation allows for random 
alteration of genetic material. Reproduction and crossover operators tend to increase the 
quality of the populations and force convergence. Mutation opposes convergence and 
replaces genetic material lost during reproduction and crossover. 
 
Reproduction is accomplished by first copying some of the best individuals from one 
generation to the next, in what is called an elitist strategy (Goldberg (1989)). The 
advantage of an elitist strategy over traditional probabilistic reproduction is that the best 
solution is monotonically improving from one generation to the next. The potential 
downside is population convergence to a local mimimum. This can, however, be 
overcome by high mutation rates as described below. 
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Parameterized uniform crossovers (Spears and DeJong (1991)) are employed in place of 
the traditional one-point or two-point crossover. After two parents are chosen randomly 
from the full, old population (including chromosomes copied to the next generation in 
the elitist pass), at each gene we toss a biased coin to select which parent will contribute 
the allele. Figure 3 presents an example of the crossover operator. It assumes that a coin 
toss of heads selects the gene from the first parent, a tails chooses the gene from the 
second parent, and that the probability of tossing a heads is for example 0.7 (this value 
is determined empirically). Figure 3 shows one potential crossover outcome: 
 
 

Coin toss H H T H T 
      
Parent 1 0.57 0.93 0.36 0.12 0.78 
      
Parent 2 0.46 0.35 0.59 0.89 0.23 
      
Offspring 0.57 0.93 0.59 0.12 0.23 

 
 

Figure 3 - Example of Parameterized Uniform crossover. 

  
Rather than the traditional gene-by-gene mutation with very small probability at each 
generation, one or more new members of the population are randomly generated from 
the same distribution as the original population. This process prevents premature 
convergence of the population, like in a mutation operator, and leads to a simple 
statement of convergence. 
 
Figure 4 depicts the transitional process between two consecutive generations. 

 
 

Crossover

Randomly generated

Current  Population Next  Population

Copy best

 
Figure 4- Transitional process between consecutive generations. 

 
 
3.2 Schedule Generation Procedure 
 
The procedure used to construct parameterized active schedules is based on a 
scheduling generation scheme that does time incrementing. For each iteration g, there is 
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a scheduling time tg. The active set comprises all operations which are active at tg, i.e. 
{ }( ) |g g j j g jA t j J F d t F= ∈ − ≤ < . The remaining machine capacity at tg is given by 

,( ) 1
g

m g j m
j A

RMC t r
∈

= − ∑ .  Sg comprises all operations which have been scheduled up 

to iteration g, and Fg comprises the finish times of the operations in Sg. Let Delayg  be 
the delay time associated with iteration g, and let Eg comprise all operations which are 
precedence feasible in the interval [tg , tg  + Delayg  ],  i.e. 
 

{ }( , ) \ | ( )g g g g i g g jE t Delay j J S F t Delay i P= ∈ ≤ + ∈ . 
 
The algorithmic description of the scheduling generation scheme used to generate 
parameterized active schedules is given by pseudo-code shown in Figure 5. 
 

Initialization: g=0, tg=0, A0={0}, RMCm (0)= 1,  Fg (0) ={0}, Sg (0) ={0} 
 
while  | Sg | ≤ n+1  repeat 
{ 

Iteration increment 
g = g+1 
 
Determine the time associated with iteration g  

{ }gg j A jt Min F∈=
 

 
Calculate Ag (tg),  RMCm (tg),  Eg = Eg (tg , Delayg )  

 
 while Eg ≠ {} repeat 
{ 
             Select operation with highest priority 

{ }* argmax
g

j
j E

j PRIORITY
∈

=  

 
Calculate earliest finish time (in terms of precedence only) 

{ }* *max
ji P ij j

EF F d∈= +  

 
Calculate the earliest finish time (in terms of precedence and capacity) 

{
}

* * * *

* * *

,

,

min , | ( ) ,

| 0 , ,

g mj j j j m

j m j j

F t EF d F r RMC

m r t t d d

τ

τ

 = ∈ − ∞ ∩ ≤ 

 > ∈ + + 

 

Iteration increment 
g = g+1 
 
Calculate Ag (tg), RMCm (tg),  Eg = Eg (tg , Delayg )  
 
Update Sg and Fg 

{ }*
1g gS S j−= ∪  

{ }*1g g jF F F−= ∪  

} 
        } 
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Calculate Makespan 
{ }

11 nn l P lF Max F
++ ∈=  

 
Figure 5 - Pseudo-code used to construct parameterized active schedules. 

 
The makespan of the solution is given by the maximum of all predecessors operations of 
operation n+1, i.e. { }lPln FMaxF

n 11 +∈+ = . 
 
3.3 Local Search Procedure 
 
Since there is no guarantee that the schedule obtained in the construction phase is 
locally optimal with respect to the local neighborhood being adopted, local search may 
be applied to attempt to decrease the makespan. We employ the two exchange local 
search, based on the disjunctive graph model of Roy and Sussmann (1964) and the 
neighborhood of Nowicki and Smutnicki (1996). 
 
The local search procedure begins by identifying the critical path in the solution 
obtained by the schedule generation procedure. Any operation on the critical path is 
called a critical operation. It is possible to decompose the critical path into a number of 
blocks where a block is a maximal sequence of adjacent critical operations that require 
the same machine.  
 
In this paper, we use the approach of Nowicki and Smutnicki (1996) (see Figure 6). In 
this approach, if a job predecessor and a machine predecessor of a critical operation are 
also critical, then choose the predecessor (from among these two alternatives) which 
appears first in the operation sequence. The critical path thus gives rise to the following 
neighborhood of moves. Given b blocks, if 1 < l < b, then swap only the last two and 
first two block operations. Otherwise, if l = 1 (b) swap only the last (first) two block 
operations (see Figure 6). In the case where the first and/or last block contains only two 
operations, these operations are swapped. If a block contains only one operation, then 
no swap is made.  
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M1 6.1 2.3 1.2 3.1 4.3 5.3 7.4

M2 1.1 4.2 5.2 2.2 6.3 3.2 7.2

M3 5.1 6.2 7.3 3.4 2.4 1.4 4.4

M4 4.1 2.1 7.1 5.4 6.4 1.3 3.3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

M1 6.1 2.3 1.2 3.1 4.3 5.3 7.4

M2 1.1 4.2 5.2 2.2 6.3 3.2 7.2

M3 5.1 6.2 7.3 3.4 2.4 1.4 4.4

M4 4.1 2.1 7.1 5.4 6.4 1.3 3.3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Current Solution

Critical path, critical blocks and possible operations swaps 

 
Figure 6 – Neighborhood of Nowicki and Smutnicki (1996). 

 
If the swap improves the makespan, it is accepted. Otherwise, the swap is undone. Once 
a swap is accepted, the critical path may change and a new critical path must be 
identified. If no swap of first or last operations in any block of critical path improves the 
makespan, the local search ends. 
 
The algorithmic description of the Local Search Procedure is given in the  pseudo-code 
shown in Figure 6. 
 
 
Local_Search ( CurrentSolution ) 

 
do  
{ 

CurrentSolutionUpdated = False 
 
Determine the critical path and all critical blocks of CurrentSolution  
 
while Unprocessed blocks and not CurrentSolutionUpdated do 
{ 

if not First Critical Block then 
 

NewSolution := Swap first two operations of block in CurrentSolution 
 
if  Makespan ( NewSolution )  <   Makespan ( CurrentSolution ) then 

CurrentSolution = NewSolution 
CurrentSolutionUpdated  =  true 

endif 
endif 
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if not Last Critical Block and not CurrentSolutionUpdated then 
 

NewSolution = Swap last two operations of block in CurrentSolution 
 
if  Makespan ( NewSolution )  <  Makespan ( CurrentSolution ) then 

CurrentSolution =  NewSolution 
CurrentSolutionUpdated  =  true 

endif 
endif 

} 
}  
until CurrentSolutionUpdated  = false 
 

return CurrentSolution 
 
 

Figure 6 – Pseudo-code for the local search procedure. 
 
 
4. Computational Results 
 
To illustrate the effectiveness of the algorithm described in this paper, we consider 43 
instances from two classes of standard JSP test problems: Fischer and Thompson (1963) 
instances FT06, FT10, FT20, and Lawrence (1984) instances LA01 to LA40. 
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The proposed algorithm is compared with the following algorithms: 
 

Problem And Heuristic Space 
• Storer et al. (1992) 

Genetic Algorithms 
• Aarts et al. (1994) 
• Croce et al (1995) 
• Dorndorf et al. (1995) 
• Gonçalves and Beirão (1999) 

GRASP 
• Binato et al. (2002) 
• Aiex et al. (2001) 

Hybrid Genetic and Simulate Annealing 
• Wang and Zheng (2001) 

Tabu Search 
• Nowicki and Smutnicki (1996) 

 
 
The experiments were performed using the following configuration: 
 

 
Population Size: 

 

 
The number of chromosomes in the population equals twice 
the number of operations in the problem. 
 

Crossover: 
 

The probability of tossing heads is equal to 0.7.  
 

Selection: 
 

The top 10% from the previous population chromosomes 
are copied to the next generation.  
 

Mutation: 
 

The bottom 20% of the population chromosomes are 
replaced with  randomly generated chromosomes. 
 

 Fitness: 
 

Makespan (to minimize)  
 

  Seeds: 
 

20  
 

Stopping Criteria: 
 

After 400 generations.  

 
 
The algorithm was implemented in Visual Basic 6.0 and the tests were run on a 
computer with a 1.333 GHz  AMD Thunderbird CPU on the MS Windows Me 
operating system. Table 1 summarizes the results.  It lists problem name, problem 
dimension (number of jobs × number of operations), the best known solution (BKS), 
CPU time (in seconds) for 400 generations of the genetic algorithm, and the solution 
obtained by each of the algorithms. 
 
 



 

*  AT&T Labs Research Technical Report TD-5EAL6J, September 2002. 
 

 
Table 1 - Experimental results. 

                 Dorndorf & Pesch Aarts et al.   

 Instance  Size BKS 
 

HGA Time Wang  Aiex Binato Nowicki Gonçalves Croce   SBGA SBGA     Storer 

    
 (sec.) 

 
and 

Zheng et al. et al. 
and 

Smutnicki
and 

Beirão et al.. P-GA (40) (60) GLS1 GLS2 et al. 
        (2001) (2001) (2002) (1996) (1999) (1995) (1995) (1995) (1995) (1994)  (1994) (1992) 

FT06 6x6 55 55 13 55 55 55 55 55   -           

FT10 10x10 930 930 292 930 930 938 930 936 946 960     935 945 952 
FT20 20x5 1165 1165 204 1165 1165 1169 1165 1177 1178 1249     1165 1167   
LA01 10x5 666 666 37 666 666 666 666 666 666 666 666   666 666 666 

LA02 10x5 655 655 51  655 655 655 666 666 681 666   668 659   
LA03 10x5 597 597 39  597 604 597 597 666 620 604   613 609   

LA04 10x5 590 590 42  590 590 590 590 - 620 590   599 594   
LA05 10x5 593 593 32  593 593 593 593 - 593 593   593 593   
LA06 15x5 926 926 99 926 926 926 926 926 926 926 926   926 926   

LA07 15x5 890 890 86  890 890 890 890 - 890 890   890 890   
LA08 15x5 863 863 99  863 863 863 863 - 863 863   863 863   

LA09 15x5 951 951 94  951 951 951 951 - 951 951   951 951   
LA10 15x5 958 958 91  958 958 958 958 - 958 958   958 958   

LA11 20x5 1222 1222 197 1222 1222 1222 1222 1222 1222 1222 1222   1222 1222   
LA12 20x5 1039 1039 201  1039 1039 1039 1039 - 1039 1039   1039 1039   
LA13 20x5 1150 1150 189  1150 1150 1150 1150 - 1150 1150   1150 1150   

LA14 20x5 1292 1292 187  1292 1292 1292 1292 - 1292 1292   1292 1292   
LA15 20x5 1207 1207 187  1207 1207 1207 1207 - 1237 1207   1207 1207   

LA16 10x10 945 945 232 945 945 946 945 977 979 1008 961 961 977 977 981 
LA17 10x10 784 784 216  784 784 784 787 - 809 787 784 791 791 794 
LA18 10x10 848 848 219  848 848 848 848 - 916 848 848 856 858 860 

LA19 10x10 842 842 235  842 842 842 857 - 880 863 848 863 859 860 
LA20 10x10 902 907 235  902 907 902 910 - 928 911 910 913 916   

LA21 15x10 1046 1046 602 1058 1057 1091 1047 1047 1097 1139 1074 1074 1084 1085   
LA22 15x10 927 935 629  927 960 927 936 - 998 935 936 954 944   

LA23 15x10 1032 1032 594  1032 1032 1032 1032 - 1072 1032 1032 1032 1032   
LA24 15x10 935 953 578  954 978 939 955 - 1014 960 957 970 981   
LA25 15x10 977 986 609  984 1028 977 1004 - 1014 1008 1007 1016 1010   

LA26 20x10 1218 1218 1 388 1218 1218 1271 1218 1218 1231 1278 1219 1218 1240 1236   
LA27 20x10 1235 1256 1 251  1269 1320 1236 1260 - 1378 1272 1269 1308 1300   

LA28 20x10 1216 1232 1 267  1225 1293 1216 1241 - 1327 1240 1241 1281 1265   
LA29 20x10 1157 1196 1 350  1203 1293 1160 1190 - 1336 1204 1210 1290 1260   
LA30 20x10 1355 1355 1 260  1355 1368 1355 1356 - 1411 1355 1355 1402 1386   

LA31 30x10 1784 1784 3 745 1784 1784 1784 1784 1784 1784 -     1784 1784   
LA32 30x10 1850 1850 3 741  1850 1850 1850 1850 - -     1850 1850   

LA33 30x10 1719 1719 3 637  1719 1719 1719 1719 - -     1719 1719   
LA34 30x10 1721 1721 3 615  1721 1753 1721 1730 - -     1737 1730   

LA35 30x10 1888 1888 3 716  1888 1888 1888 1888 - -     1894 1890   
LA36 15x15 1268 1279 1 826 1292 1287 1334 1268 1305 1305 1373 1317 1317 1324 1311 1305 
LA37 15x15 1397 1408 1 860  1410 1457 1407 1441 - 1498 1484 1446 1449 1450 1458 

LA38 15x15 1196 1219 1 859  1218 1267 1196 1248 - 1296 1251 1241 1285 1283 1239 
LA39 15x15 1233 1246 1 869  1248 1290 1233 1264 - 1351 1282 1277 1279 1279 1258 

LA40 15x15 1222 1241 2 185  1244 1259 1229 1252 - 1321 1274 1252 1273 1260 1258 
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Table 2 shows the number of instances solved (NIS), and the average relative deviation 
(ARD), with respect to the BKS. The ARD was calculated for the Hybrid Genetic 
Algorithm (HGA), and for the other algorithms (OA). The last column (Improvement), 
presents the reduction in ARD obtained  by the genetic algorithm with respect to each 
of the other algorithms. 
 

Table 2 – Average Relative Deviation to the BKS. 
 
Algorithm 
 

 
NIS 

 
ARD 

 
Improvement 

  OA HGA HGA 
Problem and Heuristic Space     
     Storer et al. (1992) 11 2.44% 0.56%    1.88 %      
Genetic Algorithms     
     Aarts et al. (1994) - GLS1 42 1.97% 0.40%    1.57 %    
     Aarts et al. (1994) - GLS2 42 1.71% 0.40%    1.31 %    
     Croce et al (1995) 12 2.37% 0.07%    2.30 %      
     Dorndorf et al. (1995) - PGA 37 4.61% 0.46%    4.15 %       
     Dorndorf et al. (1995) - SBGA (40) 35 1.42% 0.48%    0.94 %       
     Dorndorf et al. (1995) - SBGA (60) 20 1.94% 0.84%    1.10 %       
     Gonçalves and Beirão (1999) 43 0.90% 0.39%    0.51 %       
GRASP     
     Binato et al. (2002) 43 1.77% 0.39%    1.38 %       
     Aiex et al. (2001) 43 0.43% 0.39%    0.04 %       
Hybrid Genetic and Simulated Annealing     
     Wang and Zheng (2001) 11 0.28% 0.08%    0.20 %       
Tabu Search     
     Nowicki and Smutnicki (1996) 43 0.05 % 0.39%    -0.34 %       
 
 
Overall, we solved 43 instances with HGA and obtained an ARD of 0.39%. The HGA 
obtained the best-known solution for 31 instances, i.e. in 72% of problem instances. 
HGA presented an improvement with respect to almost all others algorithms, the 
exception being the tabu search algorithm of Nowicki and Smutnicki that had better 
performance, mainly in the 15×15 problems.   
 
 
 
5. Conclusions 
 
This paper presents a hybrid genetic algorithm for the Job Shop Scheduling problem. 
The chromosome representation of the problem is based on random keys. The schedules 
are constructed using a priority rule in which the priorities are defined by the genetic 
algorithm. Schedules are constructed using a procedure that generates parameterized 
active schedules. After a schedule is obtained, a local search heuristic is applied to 
improve the solution. The approach is tested on a set of 43 standard instances taken 
from the literature and compared with 12 other approaches. The computational results 
show that the algorithm produced optimal or near-optimal solutions on all instances 
tested. Overall, the algorithm produced solutions with an average relative deviation of 
0.39% to the best known solution. 
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