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Arie M.C.A. Koster∗

Abstract

In this paper, we study wavelength assignment problems in multi-fiber WDM net-
works. We focus on the special case that all lightpaths have at most two links. This
in particular holds in case the network topology is a star. As the links incident to a
specific node in a meshed topology form a star subnetwork, results for stars are also of
interest for general meshed topologies.

We show that wavelength assignment with at most two links per lightpath can be
modeled as a generalized edge coloring problem. By this relation, we show that for a
network with an even number of fibers at all links and at most two links per lightpath,
all lightpaths can be assigned a wavelength without conversion. Moreover, we derive a
lower bound on the number of lightpaths to be converted for networks with arbitrary
numbers of fibers at the links.

A comparison with linear programming lower bounds reveals that the bounds co-
incide for problems with at most two links per lightpath. For meshed topologies, the
cumulative lower bound over all star subnetworks equals the best known solution value
for all realistic wavelength assignment instances available, by this proving optimality.

1 Introduction

As soon as the huge potential of optics as digital information carrier became clear, the
problem of assigning wavelengths to ongoing optical connections (so-called lightpaths) in
a communication network has gained the interest of researchers from areas as different as
electrical engineering, theoretical computer science, and discrete mathematics. Especially
the close relation to vertex coloring in graph theory has been considered by many authors,
cf. Beauquier et al. [2] and Ferreira et al. [6]. Classical vertex coloring however models wave-
length assignment in optical telecommunication networks in a very limited non-practical
setting. In particular, the objective does not satisfy the needs for the design and operation
of optical networks. Where in vertex coloring the objective is to minimize the number of
colors used, in an optical network the number and availability of wavelengths (=colors)
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is fixed by the installed wavelength division multiplexing (WDM) systems. Moreover, the
binary relations (=edges) typical for vertex coloring have to be generalized for wavelength
assignment in multi-fiber WDM networks, ending up with a problem without much com-
binatorial structure (at first sight). In this paper, we therefore follow another approach:
we show that the theory of (generalized) edge coloring provides a very appropriate tool for
solving real-world wavelength assignment problems.

Wavelength assignment is of importance in both the design of an optical network and the
operation of it. In the design or expansion of an optical network, we have to equip the
nodes and links of a meshed topology with the capabilities to switch and transmit a set of
lightpaths such that all (expected) demands for communication bandwidth can be realized.
Moreover, in case of network failures, we still have to guarantee that a prespecified part of
the demands survive. As the investment costs of optical communication equipment are high
and the competitiveness of the telecommunication market depresses the profit margins on
connections, minimizing the overall network cost is obviously in the interest of the network
operator. For the same reasons the utilization of an operated network should be maximized.

The task to design a minimum cost optical network consists of three subtasks: dimension-
ing the hardware topology, routing a set of lightpaths, and assigning wavelengths to these
lightpaths. The latter two are often combined to the Routing and Wavelength Assignment
(RWA) problem (cf. [15, 16, 33]), whereas the dimensioning of the network has been studied
less frequently (notably exceptions are Belotti [3], Brunetta et al. [4], Melian et al. [22, 23],
and Zymolka et al. [35]). From a cost-oriented point of view however, dimensioning and
routing are very close related to each other as the lightpaths consume the resources that are
provided by the switching and transmission equipment. Therefore, Zymolka et al. [35] pro-
posed to decompose the overall problem in a Dimensioning and Routing (DR) subproblem
and a Wavelength Assignment (WA) subproblem. In the DR problem a hardware config-
uration consisting of optical fibers, WDM systems, and optical switches as well as a set
of paths is determined that allows to route the traffic in normal operation and all failure
states. In the WA problem, the paths are supplied with a wavelength at each of its links
such that at each link the number of times a wavelength is assigned does not exceed its
availability by the WDM systems. For the DR problem, experience from the design of other
telecommunication networks can be explored, e.g., SDH network design [31]. Lower bounds
on the cost of dimensioning and routing propagate to the overall network cost, and in case
the WA subproblem can be solved without increasing the network cost, an optimal solution
for the DR problem is optimal overall. In fact, computational experiments have shown that
in many cases WA can be done without the installation of extra equipment, see [35] as well
as Section 6.

The wavelength assignment problem remains an important subproblem as it decides whether
or not additional equipment is necessary. Moreover, the problem shows interesting com-
binatorial properties. In case the available number of wavelengths does not suffice for an
ongoing assignment of a single wavelength to each lightpath, the classical vertex coloring
objective to minimize the number of wavelengths does not discriminate among solutions
that are (ir)relevant for wavelength assignment. Therefore, instead of minimizing the num-
ber of wavelengths, two alternative objectives for wavelength assignment are considered
in this paper. One option is to maximize the number of lightpaths that can be assigned
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an ongoing wavelength without conflict. Alternatively, a lightpath can be assigned differ-
ent wavelengths at different parts of the path. For the technical realization of such an
assignment, a so-call wavelength converter have to be installed in each intermediate node
where the wavelength is exchanged. In this paper, we assume that wavelength converters
can convert a single lightpath (see [15] for other converter models). In the first problem,
we minimize the blocking number of lightpaths. In the second, we minimize the number of
wavelength converters needed for a conflict-free assignment of the complete set of lightpaths.

The study of wavelength assignment concentrates on special network structures like line,
star, tree, and ring networks. For the single fiber case, several results for minimizing the
number of wavelengths in ring and tree networks have been derived, cf. Auletta et al. [1].
For multi-fiber line networks, Winkler and Zhang [32] proved that the minimum number of
wavelengths needed equals the maximum load of the links. Stated otherwise, no wavelength
conversion is needed in line networks. Li and Simha [20] studied ring networks as well as
instances in which all lightpaths are restricted to at most two links. They showed that in
case every link contains k fibers, k even, no wavelength conversion is necessary.

In this paper, we also focus on wavelength assignment with all lightpaths having at most two
links, but do not limit to this setting. Lightpath sets with at most two links per lightpath
will most likely not occur in practice, but the theoretical results are helpful to understand
the problem in more general cases. In particular, the links incident to a specific node in
a general meshed topology induce a star network. By definition, the lightpaths in a star
network have at most two links, and thus all results in this paper apply to such networks.
Moreover, a lower bound on the number of wavelength converters needed in the overall
network can be computed by summing up the lower bounds over all stars.

For the two links per lightpath case, we apply results from (generalized) edge coloring to
generalize the result of Li and Simha that no wavelength conversion is necessary by allowing
link-individual, but even, number of fibers. For the case that the number of fibers is odd at
some of the links we derive a lower bound on the number of wavelength converters needed.
We show that in the setting of two links per lightpath, this lower bound equals a column
generation based linear programming lower bound derived in [17, 19]. For general instances,
a lower bound is derived in the way as described above and tested on a set of realistic test
instances. Without exception, the lower bound turns out to be equal to the best known
solution value provided by heuristic algorithms (cf. [18]), by this proving optimality.

The remaining of this article is structured as follows. In Section 2 we start with introducing
the necessary notation and some preliminary results. Next, the case with at most two links
per lightpath is studied in Section 3. The lower bound on the number of converters for
general wavelength assignment instances is derived in Section 4. In Sections 5 and 6, we
compare the lower bound in respectively theory and practice with alternative lower bounds
as well as with the best known solution value for the minimum converter WA problem.
Concluding remarks and suggestions for further research close this paper.
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2 Preliminaries and notation

Optical networks and wavelength assignment can be modeled in many different ways. In this
paper, we model it in such a way that the relevant features are incorporated and a distinction
between graph theoretical notions and optical network notions is straightforward.

Graph theoretical notation. Let G be an undirected graph with vertex set V (G) and
edge set E(G). For S ⊆ V (G), we denote with G[S] the subgraph induced by S. If E(G)
contains at most one edge between each pair of vertices, we call G simple; otherwise G is
called a multigraph. The maximum number of parallel edges in G is denoted by µ(G).

The neighborhood of v ∈ V (G) consist of all vertices adjacent to v and is denoted by
NG(v). The closed neighborhood NG[v] is defined by NG(v) ∪ {v}. The edges incident to
a vertex v are denoted by δG(v). Let dG(v) = |δG(v)| be the degree of v ∈ V (G) and let
∆(G) = maxv∈V (G) dG(v) denote the maximum degree of G. If the graph is clear from the
context, the subscript in the above notation is suppressed.

The chromatic number χ(G) of a graph G is the minimum number of colors to be assigned
to the vertices V (G) such that adjacent vertices have different colors. It is well-known that
deciding whether the chromatic number χ(G) ≤ K for some K ≥ 3 is NP-hard (cf. [7]).

The chromatic index χ′(G) of a graph G is the minimum number of colors to be assigned
to the edges E(G) such that all edges incident to a vertex have different colors. For simple
connected graphs, χ′(G) is either ∆(G) or ∆(G) + 1, cf. [30], but deciding the exact value
is NP-hard, see Holyer [13]. For multigraphs, ∆(G) ≤ χ′(G) ≤ ∆(G) + µ(G).

Wavelength assignment notation. Let an undirected graph N = (N,L) define the
physical topology of an optical network consisting of nodes N and links L. Links are
assumed to be bidirectional, i.e., they provide the same capacity in both directions. For
a link ` ∈ L, κ` fibers with WDM systems are installed. If not explicitly mentioned, we
assume all WDM systems to be equivalent, providing the available spectrum Λ once (i.e.,
each wavelength λ ∈ Λ is available κ` times on link `). Hence, in total K` = |Λ|κ` optical
channels are available on link ` ∈ L. We assume that in each node n ∈ N enough switching
capacity is installed to switch all channels provided by the links incident to it.

For a path p in N , we denote with dp the number of lightpaths to be routed along this path.
Let L(p) ⊆ L denote the links of path p, whereas N(p) denotes the intermediate nodes.
Although lightpaths are considered to be bidirected (i.e., provide transmission capacity in
both directions), for formulation purposes the path p is directed from a source ς p to a target
τp. All lightpaths that have to be assigned wavelengths are gathered in a multi-set P where
each path p is contained dp times. In total d(P) =

∑
p∈P dp lightpaths are considered. All

lightpaths that share link ` ∈ L are subsumed in subset P` ⊂ P, whereas Pn denotes all
lightpaths that touch node n ∈ N . Throughout this paper, we assume that

∑

p∈P`
dp ≤ K` (1)

holds for all links ` ∈ L, i.e., the installed channel capacities are sufficient to route the given
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set of lightpaths. Under this assumption, lightpaths consisting of a single link can always be
assigned a wavelength independently from the other lightpaths. Therefore, such lightpaths
are left out in our further considerations. We denote an instance of the wavelength assign-
ment problem (WAP) by the quadruple W = (N ,P,Λ, κ). Instances where all lightpaths
are restricted to have at most two links are denoted by W2.

A wavelength converter is able to convert a single optical signal from any wavelength to
any other wavelength. The assumption that it is possible to install an unlimited number of
converters in a node guarantees that a feasible wavelength assignment exists. The quality
of such a wavelength assignment is measured by the number of converters that are needed.
With the converter number Υ(W) we denote the minimum number of converters needed in
any feasible wavelength assignment.

Alternatively, WAP can be considered without wavelength conversion. In such a case the
conflict-free assignment of a single wavelength to the whole lightpath can be limited to a
subset of the lightpaths. Given a WAP instance W, we denote with the lightpath num-
ber Ψ(W) the maximum number of lightpaths that can be assigned a wavelength without
wavelength conversion.

Preliminary results. Between both notions, the following relation holds for lightpaths
with arbitrary number of links:

Lemma 1 Υ(W) ≥ d(P) −Ψ(W) for any instance W.

Proof: The minimum number of lightpaths that cannot be assigned a wavelength without
conversion equals d(P) − Ψ(W). For each of these lightpaths, at least one converter is
inevitable. �

Corollary 2 For any instance W,

• Ψ(W) = d(P) if and only if Υ(W) = 0, and

• Ψ(W) = d(P) − 1 if Υ(W) = 1.

Note that the reverse of the second statement does not hold in general. It could be necessary
to convert the wavelength more than once along a lightpath that could not be assigned a
wavelength without conversion. In case |L(p)| ≤ 2 however, there is only one intermediate
node to convert the signal and thus the result can be strengthened further:

Corollary 3 Υ(W2) = d(P) −Ψ(W2) for any instance W2.

In case κ` = 1 for all links ` ∈ L, the question whether or not a wavelength assignment
without conversion exists is equivalent to the vertex coloring problem on the so-called path
conflict graph. The path conflict graph GP contains a vertex for every lightpath, and two
vertices are adjacent if their lightpaths share a link.
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Lemma 4 For any instance W with κ` = 1 for all ` ∈ L, Υ(W) = 0 if and only if
χ(GP ) ≤ |Λ|.

In case |L(p)| ≤ 2 for all paths p ∈ P, and κ` = 1 for all links ` ∈ L, the question whether
or not a wavelength assignment without conversion exists is equivalent to the edge coloring
problem in a graph GL as well: Introduce for every link ` ∈ L a vertex v` in GL. For a
lightpath that goes along links `1 and `2, `1 6= `2, we add an edge {v`1 , v`2}. Note that
parallel lightpaths result in parallel edges in the graph.

Lemma 5 For any instance W2 with κ` = 1 for all links ` ∈ L, Υ(W2) = 0 if and only if
χ′(GL) ≤ |Λ|.

The relation between edge coloring and wavelength assignment has been considered before
(cf. [5, 12, 18, 27]), particularly to prove that all variants of wavelength assignment are
NP-hard on star networks, even if κ` = 1 for all ` ∈ L.

3 Lightpaths with at most two links

In this section, we assume that |L(p)| ≤ 2 for all p ∈ P. We only state the results for Υ(W2)
as the results for Ψ(W2) can be derived by applying Corollary 3.

If κ` > 1 for some link ` ∈ L, a feasible assignment of wavelengths to the lightpaths is
not equivalent to an edge coloring in GL anymore, since two lightpaths that share link `
can be assigned the same wavelength. By its availability, we can in fact assign the same
wavelength to at most κ` lightpaths that all share link `. As the vertices of GL correspond
to the links whereas the edges correspond to the lightpaths, this implies that the same color
can be used κ` times to color edges incident to vertex v`.

Introduced by Hakimi and Kariv [11], an f -(edge)-coloring of G is a coloring of the edges
such that the number of identical colored edges incident to a vertex v ∈ V (G) is limited by
a vertex-specific bound fv ∈ Z+. The minimum number of colors needed in an f -(edge)-
coloring is the f -chromatic index χ′f (G). Now, the following results can be easily verified.

Theorem 6 Let fv` = κ` for all ` ∈ L. For any instance W2, Υ(W2) = 0 if and only if
χ′f (GL) ≤ |Λ|.

So, in order to determine whether or not wavelength conversion is necessary, we have to
compute the f -chromatic index of GL. Since χ′(G) is already NP-hard to compute, χ′f (G)
is NP-hard as well. Moreover, GL need not to have any particular structure: In a star
network, lightpaths can consist of any arbitrary set of two links resulting in any arbitrary
edge in GL. In fact, GL need not to be connected, cf. the network and lightpaths in Figure 1.

Fortunately, lower and upper bounds on χ′f (G) can be applied to bound Υ(W2). Let

df (v) = d(v)
fv

be the f -normalized degree of v and let ∆f (G) = maxv∈V (G) df (v) be the
f -normalized maximum degree of G.
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Figure 1: Optical network resulting in an f -edge-coloring problem with two components.

Lemma 7 (Hakimi and Kariv [11]) Let G be a simple graph and fv > 0 for all v ∈
V (G). Then ∆f (G) ≤ χ′f (G) ≤ ∆f (G) + 1.

Lemma 8 Let fv` = κ` for all ` ∈ L. For any instance W2 with dp = 1 for all p ∈ P, the
converter number equals the minimum size of the smallest color class in a |Λ| + 1 f -edge-
coloring.

Proof: Since W2 does not contain parallel lightpaths, GL does not contain parallel edges,
and thus is simple. By (1), the normalized degree df (v) ≤ |Λ| for all v ∈ V (G). By
Lemma 7, χ′(GL) ≤ ∆f (GL) + 1 ≤ |Λ| + 1. Given a |Λ| + 1 f -edge-coloring, the number
of converters is smallest by converting all lightpaths corresponding to edges in the smallest
color class. Minimizing this size results in the minimum number of converters needed (note
that if χ′(GL) ≤ |Λ|, the size of the smallest color class in a |Λ|+ 1 f -edge-coloring is zero).

�

For multigraphs it still holds that χ′f (GL) ≥ ∆f (GL). By (1), ∆f (GL) ≤ |Λ| and thus this
bound does not provide us with a non-trivial lower bound on Υ(W2). An alternative lower
bound for the f -chromatic index of multigraphs has been derived in [24]. This result can
be adapted to our specific setting in which conversion has to be minimized, not colors. For
a multigraph G and fv > 0 for all v ∈ V (G), let Γf (G) be defined by

Γf (G) = max

{
0, max
S⊆V (G),f(S) odd

|E(G[S])| − |Λ|
⌊

1
2f(S)

⌋}

where f(S) :=
∑

v∈S fv denotes the sum over a subset S ⊆ V (G) of vertex bounds. Note
that by (1), |E(G[S])| ≤ 1

2 |Λ|f(S) and thus subsets S with f(S) even are left out of the
maximum.

Theorem 9 Let fv` = κ` for all ` ∈ L. For any instance W2,

Υ(W2) ≥ Γf (GL) (2)

Proof: For a subset S ⊆ V (GL), at most b 1
2f(S)c of the edges can be colored with the

same color (the maximum size of a so-called f -matching). So with |Λ| colors available, at
most |Λ|b 1

2f(S)c lightpaths can be colored without conversion. Hence, at least |E(GL[S])|−
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Figure 2: Star network for which Ωf (G) = 3
2 |Λ|.

|Λ|b1
2f(S)c have to be converted. The result now follows by taking the maximum over all

subsets S of GL. �

For an instance W2, define Γf (W2) := Γf (GL). To see that Γf (W2) is the key to a non-
trivial lower bound on the number of converters, we bound |E(GL[S])| from above and show
that this bound can be tight.

Proposition 10 Let S ⊆ V (GL), |S| ≥ 3. If κ` ≥ k ≥ 1, for all ` ∈ L, then

|E(GL[S])| ≤ 3k

3k − 1
|Λ|
⌊

1

2
f(S)

⌋
.

Moreover, if S corresponds to three (pairwise non-parallel) links incident to a central node,
κ` = k = 1 for all v` ∈ S, and dp = 1

2 |Λ| for each path p corresponding to a pair of vertices
in S (cf. Figure 2), the inequality is tight. In fact, Υ(W2) = 1

2 |Λ| for this star network.

Proof: A subset S of the vertices in the f -edge-coloring problem corresponds in WAP to
a subset of the links LS ⊆ L. Each induced edge corresponds to a lightpath p with v` ∈ S
for both ` ∈ L(p). For a routing satisfying (1) it holds that

|E(GL[S])| ≤ 1

2
|Λ|f(S) =

1

2
|Λ|
∑

v`∈S
fv` =

1

2
|Λ|
∑

v`∈S
κ` . (3)

By |S| ≥ 3 and κ` ≥ k ≥ 1 for all ` ∈ L we have

1

2

∑

v`∈S
κ` ≤

3k

3k − 1

1

2

∑

v`∈S
κ`

 . (4)

In case of |S| = 3, κ` = k = 1 for all v` ∈ S and dp = 1
2 |Λ| for each path p corresponding

to a pair of vertices in S, inequalities (3) and (4) both turn into equalities and 3k
3k−1 = 3

2 .

Now by Theorem 9, Υ(W2) ≥ 1
2 |Λ|. By converting all lightpaths for one pair of nodes we

also have Υ(W2) ≤ 1
2 |Λ|. �

If the WDM systems installed at the fibers are not equivalent, lower bound Γf (W2) can be
adapted appropriately. Let κλ` denote the number of times wavelength λ ∈ Λ is available
on link ` ∈ L (by summing up over all WDM systems).
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Theorem 11 Let fλv` = κλ` for all ` ∈ L, λ ∈ Λ. For any instance W2,

Υ(W2) ≥ max

{
0, max
S⊆V (G)

|E(G[S])| −
∑

λ∈Λ

⌊
1
2f(S, λ)

⌋
}

(5)

where f(S, λ) :=
∑

v∈S f
λ
v .

Proof: Similar to the proof of Theorem 9. �

Back to the case where all WDM systems are equivalent, the upper bound of ∆f (G) + 1
for χ′f (G) does not hold in case of multigraphs. In [11], several upper bounds for χ ′f (G) are
derived as well. One of them is of special interest for the case that all capacities are even.

Lemma 12 (Hakimi and Kariv [11]) Let G be a multigraph. Suppose fv > 1 for all
v ∈ V (G). Then χ′f (G) ≤ ∆′f (G), where

∆′f (G) = max
v∈V (G)

⌈
max

(
b1

2d(v)c
b1

2fvc
,
d1

2d(v)e
d1

2fve

)⌉
.

Theorem 13 If κ` is even for all ` ∈ L, then for any instance W2, Υ(W2) = 0.

Proof: Since fv` = κ` is even for all v` ∈ S, b1
2fv`c = d1

2fv`e = 1
2κ`, and thus the maximum

is determined by d 1
2d(v`)e for some v` ∈ S. For a proper routing, d(v`) ≤ κ`|Λ|. Since κ` is

even, d 1
2κ`|Λ|e = 1

2κ`|Λ|. Hence, χ′f (GL) ≤ ∆′f (G) ≤ |Λ| and the result follows. �

So, in case of an even number of fibers at all links and lightpaths restricted to at most two
links, no wavelength conversion is necessary, whatever lightpaths have to be established.

4 General wavelength assignment instances

In real-life wavelength assignment instances the meshed topology of (optical) telecommu-
nication networks prohibits the existence of wavelength assignment instances with at most
two links per lightpath: the shortest path between two nodes often crosses three or more
links, and thus any lightpath between these nodes will have more than two links. Even
if the shortest path consists of two links, survivability requirements often imply that the
demand have to be split among several paths. Finally, optimization of the network cost
often leads to even longer paths to save equipment, see [35] for a discussion.

As the relation to generalized edge coloring depends on the condition that each lightpath
has two links, it is unclear how to extend the results of the previous section to general
wavelength assignment instances. In particular, the result that no conversion is necessary
if κ` is even for all links seems to be difficult to generalize.

The lower bound on the converter number Υ(W2) given by (2) however can be used to
determine a lower bound on Υ(W) in a general wavelength assignment instanceW. Consider
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a node n ∈ N . If we restrict WAP to the links incident to n, then all relevant lightpaths
consist of one or two links. For this restricted instance we can apply (2) to derive a lower
bound on the number of converters in node n. Summing up over all nodes we get the
following result:

Theorem 14 For any instance W,

Υ(W) ≥
∑

n∈N
Γf (Wn)

where Wn is defined by (Nn,Pn,Λ, κn) with Nn = (NN [n], δN (n)) and κn the fiber-vector
restricted to the links δG(n).

Proof: From Theorem 9 it directly follows that Υ(Wn) ≥ Γf (Wn) for all n ∈ N . Given a
wavelength assignment for W, it is straightforward to construct a wavelength assignment
for Wn with the same number of converters in node n ∈ N as in the original instance.
Hence, Υ(W) ≥∑n∈N Υ(Wn). �

Noteworthy, for the lightpath number Ψ(W) such a result cannot be derived, since a light-
path can be converted in multiple nodes along the path. By the assumption that lightpaths
are simple, i.e., do not visit nodes more than once, the best achievable is that converters in
the same node convert different lightpaths:

Theorem 15 For any instance W, Ψ(W) ≤ d(P) − maxn∈N Γf (Wn) with Wn defined as
in Theorem 14.

In Section 6, the lower bound of Theorem 14 is computed for realistic WAP instances.

5 Theoretical comparison

In this section, we compare the derived bounds for Υ(W) and Ψ(W) with other bounds
theoretically. In [17], two integer linear programming formulations for the converter number
Υ(W) have been developed (see also [19]). Both formulations can be easily adapted for the
lightpath number Ψ(W). By solving the linear relaxation of any of the formulations a lower
respectively upper bound is computed.

The first formulation of the converter number problem is straightforward with variables for
every combination of lightpath, link, and wavelength. In addition, variables to count the
converters are introduced. In [17], it has been shown that if all WDM systems provide the
same set of wavelengths, the value of the linear relaxation of this formulation always equals
zero. This drawback is due to the symmetry in the (fractional) solutions: the exchange of
any two wavelengths results in a solution with the same value.

To avoid the symmetry of solutions, a second formulation is presented in which variables
are introduced for every set of lightpaths that can be assigned the same wavelength, with-
out specifying the wavelength. The formulation generalizes those for the vertex coloring
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Figure 3: Wavelength assignment instance with 2 = Υ(W2) > Υ∗(W2) = 0 (|Λ| = 3).

problem [21] and for the edge coloring problem [25]. To compare this formulation with the
lower bound of Theorem 14, we have to study the formulation in detail and need some more
notation. For each p ∈ P, let Sp denote the set of all subpaths s of p. Let S = ∪p∈PSp
denote the set of all possible subpaths. A path packing φ is a multi-set of items of S such
that all subpaths s ∈ φ can be assigned the same wavelength, i.e., for every link ` ∈ L, at
most κ` subpaths containing link ` are in the set φ. The multiplicity of each subpath s ∈ S
in the path packing φ is denoted by tsφ. The collection of all multi-sets of S that are path
packings is denoted by Φ.

For every path packing φ ∈ Φ a general integer variable xφ is introduced, denoting the
number of wavelengths assigned to all subpaths s ∈ φ. To specify the subpaths that are
used to cover a path p ∈ P a second class of variables ysp is introduced, which denote the
number of times subpath s is used to cover the lightpaths routed along path p ∈ P. The
converter number then is formulated as:

Υ(W) = min
∑

p∈P

∑

s∈Sp
ysp −

∑

p∈P
dp (6)

s.t.
∑

s∈Sp:`∈L(s)

ysp = dp ∀p ∈ P, ` ∈ L(p) (7)

∑

φ∈Φ

tsφxφ =
∑

p∈P :s∈Sp
ysp ∀s ∈ S (8)

∑

φ∈Φ

xφ ≤ |Λ| (9)

ysp, xφ ∈ Z+
0 (10)

For a lightpath the number of converters is given by the number of subpaths minus one.
Summing up over all lightpaths gives the objective (6). For every link ` ∈ L(p) of a path
p ∈ P, (7) guarantees that dp subpaths are selected. Constraints (8) model that each
subpath s ∈ S has to be covered by path packings as often as it is needed for the lightpaths.
Finally, constraint (9) restricts the number of selectable path packings to the size of the
available spectrum Λ, and constraints (10) guarantee integrality.
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Given this formulation, we define the fractional converter number Υ∗(W) as the value of the
linear relaxation of (6)–(10). It is clear that Υ∗(W) ≤ Υ(W) and there exist instances W2

for which Υ∗(W2) < Υ(W2), cf. Figure 3. In contrast to the the value of the linear relaxation
of the first formulation, Υ∗(W) > 0 for particular instances: Consider the example of
Figure 2 one more time. Not only Γf (W2) = Υ(W2) but also Υ∗(W2) = 1

2 |Λ| = Υ(W2).

The next theorem explains why Υ∗(W2) = Γf (W2) for the example of Figure 2 is not a
coincidence.

Theorem 16 For any instance W2, Υ∗(W2) = Γf (W2).

Proof: For any instance W2, each lightpath p ∈ P consists of two links `1(p) and `2(p).

Constraints (7) for subpath s = `1(p) and s = `2(p) imply that y
`1(p)
p = y

`2(p)
p . Moreover,

ypp = dp − y`1(p)
p and thus the problem can be reformulated with only one instead of three

variables. Without loss of generality we define zp = y
`1(p)
p = y

`2(p)
p , the number of converters

to be placed in the intermediate node of path p. After resubstitution the linear relaxation
of (6)–(10) reads

Υ∗(W2) = min
∑

p∈P
zp (11)

s.t. zp ≤ dp ∀p ∈ P (12)
∑

φ∈Φ

tpφxφ = dp − zp ∀p ∈ P (13)

∑

φ∈Φ

t`φxφ =
∑

p∈P :`∈L(p)

zp ∀` ∈ L (14)

∑

φ∈Φ

xφ ≤ |Λ| (15)

zp, xφ ≥ 0 (16)

where (8) is split into constraints (13) for the two link subpaths (i.e., the lightpaths) and
constraints (14) for the single link subpaths (i.e., the links). Now, since the assignment of
a wavelength to a single link does not cause a difficulty in a proper dimensioned networks,
we relax the constraints (14) without loss of generality. Also constraints (12) are relaxed
since the objective will keep zp as low as possible. Moreover, constraints (13) are relaxed
to greater than or equal constraints since covering a path with more than the demand does
not affect the value of the linear program as long as the number of converters is minimized.

The path packings in the remaining linear program only differ in the number of times each
path p ∈ P is taken. Since each path p = `1`2 corresponds to an edge v`1v`2 ∈ E(GL),
each path packing corresponds to an f -matching in GL. Thus Φ now refers to the set of
all f -matchings in GL and tpφ denotes for p = `1`2 the number of edges between v`1 and v`2
taken in f -matching φ.

Next, we dualize the remaining linear program with variable sets πp for the constraints (13)

12



and πΛ for constraint (15):

Υ∗(W2) = max
∑

p∈P
dpπp − |Λ|πΛ (17)

s.t. πp ≤ 1 ∀p ∈ P (18)
∑

p∈P
tpφπp − πΛ ≤ 0 ∀φ ∈ Φ (19)

πp, πΛ ≥ 0 (20)

In (17)–(20) we have a constraint (19) for every f -matching in GL. In fact we only have
to consider the maximal f -matchings, as the constraints for non-maximal f -matchings are
dominated by the maximal f -matching constraints. The maximal f -matchings are exactly
the extreme points of the f -matching polytope PMf

(G). By applying Benders’ reformula-
tion [26] in a reverse way, we can obtain a formulation for Υ∗(W2) for which it is more easy
to prove equality of Υ∗(W2) and Γf (W2).

The f -matching polytope is completely described by (see [29, Chapter 31])

PMf
(G) =





ye ≥ 0 ∀e ∈ E(G)
y(δG(v)) ≤ fv ∀v ∈ V (G)
y(E(G[S])) ≤ b 1

2f(S)c ∀S ⊆ V (G) with f(S) odd



 .

If we extend this description with an inequality for every subset S ⊆ V (G), regardless
f(S) is odd or even, the system is totally dual integral (see [29, Chapter 31]). Given fixed
values πp for all p ∈ P, (17)–(20) is maximized by the f -matching for which

∑
p∈P t

p
φπp is

maximized. This f -matching can be found by solving

max
∑

p∈P
πpyp (21)

s.t.
∑

p∈P`
yp ≤ fv` ∀` ∈ L (22)

∑

`1`2∈P :
v`1v`2∈E(GL[S])

y`1`2 ≤ b1
2f(S)c ∀S ⊆ V (GL) (23)

yp ≥ 0 (24)

or alternatively by solving its dual (with variables xv` for constraints (22) and xS for con-
straints (23))

min
∑

`∈L
fv`xv` +

∑

S⊆V (GL)

b1
2f(S)cxS (25)

s.t. xv`1 + xv`2 +
∑

S⊆V (GL):
v`1 ,v`2∈S

xS ≥ πp ∀p = `1`2 ∈ P (26)
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xv` , xS ≥ 0 (27)

to optimality. Since (22)–(24) is totally dual integral, we may assume without loss of
generality that xv` ∈ Z+

0 and xS ∈ Z+
0 for all v` ∈ V (GL) and S ⊆ V (GL).

Since we minimize (25), the left hand side of constraints (26) will never exceed πp ≤ 1 in an
optimal solution. Thus, we can restrict variables xv` and xS to be binary instead of general
integer.

Given values πp we define Sπ = {p ∈ P : πp > 0} to be the support set of paths. It is
easy to verify that in this case the optimal solution of (25)–(27) is given by xv` = 0 for all
v` ∈ GL, xSπ = 1 and xS = 0 for all S 6= Sπ . Thus we neglect the variables xv` without loss
of generality. Moreover, we can add the constraint

∑

S⊆V (GL)

xS ≤ 1 (28)

Now, we can apply the reverse of a Benders’ reformulation to (17)–(20) and obtain

Υ∗(W2) = max
∑

p∈P
dpπp − |Λ|

∑

S⊆V (GL)

b1
2f(S)cxS (29)

s.t.
∑

S⊆V (GL):
v`1 ,v`2∈S

xS ≥ πp ∀p = `1`2 ∈ P (30)

∑

S⊆V (GL)

xS ≤ 1 (31)

0 ≤ πp ≤ 1, xS ∈ {0, 1} (32)

which exactly provides an integer linear programming formulation for Γf (W2) and thus
completes the proof. �

So, in case that every lightpath has at most two links the lower bounds Υ∗(W2) and Γf (W2)
are equivalent. For general instancesW we have by Theorem 14 a combinatorial lower bound
of
∑

n∈N Γf (Wn). To compare this bound with Υ∗(W), we have to compare in fact Υ∗(W)
with

∑
n∈N Υ∗(Wn). The following lemma, stating a rewriting of the objective, is helpful

in determining this relation.

Lemma 17 For any solution y satisfying the constraints (7),
∑

p∈P

∑

s∈Sp
ysp −

∑

p∈P
dp =

∑

n∈N

∑

p∈P :n∈N(p)

∑

s∈Sp:τs=n

ysp

Proof: The summation of the y-variables can be split into subpaths s ∈ Sp that reach the
target node of path p and those that do not reach the target node:

∑

p∈P

∑

s∈Sp
ysp =

∑

p∈P

∑

s∈Sp:τs=τp

ysp +
∑

p∈P

∑

s∈Sp:τs 6=τp
ysp .
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Figure 4: Wavelength assignment instance with 3 = Υ∗(W) >
∑

n∈N Γf (Wn) = 2.

By applying equation (7) for the last link of p, ` = L(p) ∩ δN (τp) we obtain

∑

p∈P

∑

s∈Sp
ysp −

∑

p∈P
dp =

∑

p∈P

∑

s∈Sp:τs 6=τp
ysp .

Now the result follows by reordering the summed y-variables according to their target. �

Proposition 18 For any instance W, Υ∗(W) ≥ ∑
n∈N Υ∗(Wn) with Wn defined as in

Theorem 14.

Proof: Let (x̄, ȳ) be a solution of the linear relaxation of (6)–(10) for the instance W
with value z(x̄, ȳ). For n ∈ N , we define a solution (x̄[n], ȳ[n]) of the linear relaxation
of (6)–(10) for the instance Wn as defined in Theorem 14. For n ∈ N , let for all p ∈ Pn,
ȳ[n]pp :=

∑
s∈Sp:n∈N(s) ȳ

s
p (the sum over all subpaths that have n as an intermediate node)

and for ` ∈ L(p), ȳ[n]`p := dp − ȳ[n]pp. For every φ ∈ Φ with x̄φ > 0 we define a path
packing φ[n] ∈ Φ[n] with for all p ∈ Pn, tpφ[n] :=

∑
s∈S:p⊆s t

s
φ and for all ` ∈ δG(n),

t`φ[n] :=
∑

s∈S:|s∩`|=1 t
s
φ, and set x̄[n]φ[n] = x̄φ.

Now, it is easy to verify that (x̄[n], ȳ[n]) is a feasible solution for the linear relaxation

of (6)–(10) for the instance Wn and has value z(x̄[n], ȳ[n]) =
∑

p∈Pn ȳ[n]`1(p)
p .

By Lemma 17 we have z(x̄, ȳ) =
∑

n∈N z(x̄[n], ȳ[n]). If (x̄, ȳ) is an optimal solution of the
linear relaxation of (6)–(10) for instance W, then it follows Υ∗(W) =

∑
n∈N z(x̄[n], ȳ[n]) ≥∑

n∈N Υ∗(Wn). �

Corollary 19 For any instance W, Υ∗(W) ≥∑n∈N Γf (Wn) with Wn defined as in Theo-
rem 14.

Figure 4 shows an example for which Υ∗(W) (and Υ(W)) equals three whereas the com-
binatorial lower bound by Theorem 14 is two. The links incident to node A and B define
two stars, both with Γf (Wn) = 1, whereas for all other nodes the bound equals zero. If we
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construct the path conflict graph GP , we obtain the well-known Petersen graph, for which
it is known that χ(GP) = 3. In fact, the size of the smallest color class in any 3-coloring
equals three, and thus Υ(W) = 3. The linear relaxation in this case equals the optimum
and thus is larger than the combinatorial bound.

6 Practical comparison

Corollary 19 states the theoretical relation between the combinatorial lower bound of The-
orem 14 with the linear relaxation bound Υ∗(W). In this section, we compare these bounds
for realistic wavelength assignment instances. For this purpose, we implemented a column
generation algorithm for the linear relaxation, see [17] for details.

By Theorem 16, computing Γf (W2) can be done via this column generation algorithm as
well. Since the pricing problem in this case is equivalent to finding a maximum weighted
f -matching, it follows that it can be computed in polynomial time by using a polynomial
time algorithm for solving the linear relaxation (e.g., the ellipsoid method) [10]. However,
Γf (W2) can also be computed directly with a combinatorial algorithm: First note that the
maximum is taken over all subsets with f(S) odd and thus rounding always takes place.
Moreover, for f(S) to be odd, there must be an odd number of vertices v ∈ S with fv odd.
Let U = {v ∈ V (G) : fv odd}. Now Γf (G) can be restated as

Γf (G) = max

{
0, 1

2 |Λ|+ max
S⊆V (G),|S∩U | odd

|E(G[S])| − 1
2 |Λ|f(S)

}
.

For S ⊆ V (G), |E(G[S])| = |E(G)| − |E(V, V \ S)| with E(S, T ) := {vw ∈ E(G) : v ∈
S,w ∈ T} and thus,

Γf (G) = max

{
0, 1

2 |Λ|+ |E(G)| − min
S⊆V (G),|S∩U | odd

γ(S)

}

with

γ(S) = |E(V, V \ S)|+ 1
2 |Λ|f(S) .

The function γ(S) is submodular (i.e., for all S, T ⊆ V (G), γ(S∪T ) ≤ γ(S)+γ(T )−γ(S∩T )
holds). Grötschel et al. [8, 9, 10] proved that submodular function minimization over all sets
S with |S ∩ U | odd can be done in strongly polynomial time. At that time only the ellipsoid
method was available for this. Independently, Schrijver [28] and Iwata et al. [14] gave a
combinatorial strongly polynomial time algorithm for minimizing submodular functions,
and hence Γf (W2) can be computed combinatorially this way.

For our computations we use a much simpler algorithm that only considers a subcollection
of all possible subsets S. Hence, the result is in fact a lower bound on Γf (G). Our algorithm
starts with S = V (G) and repeatedly removes a vertex v from S such that γ(S \ {v}) is as
large as possible. The algorithm reports the maximum γ(S) encountered.

Our test set of wavelength assignment instances has 80 members that were generated in
the context of an integer programming approach for optical network design, see [17] for
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ILP Combinatorics
instance |N | |L| d(P) |P| UB LB time LB time

europe-up1 28 41 1008 353 2 2 24.19 2 0.00
europe-up3 28 41 1008 352 5 5 17.71 5 0.00
europe-up4 28 41 1008 349 1 1 21.50 1 0.00

germany-high2 17 26 836 75 4 4 0.28 4 0.00

germany-fp1 17 26 1193 64 8 8 0.39 8 0.00

germany+-up2 17 28 686 48 16 16 0.16 16 0.00
germany+-up3 17 28 686 47 12 12 0.26 12 0.00
germany+-up5 17 28 686 44 9 9 0.09 9 0.00

germany+-low2 17 28 699 82 9 9 0.49 9 0.00

germany+-fp5 17 28 1122 102 5 5 0.99 5 0.00

Table 1: Results for the wavelength assignment instances with non-zero best solution

further details. For each of four different network topologies, 20 instances were generated,
all with |Λ| = 40. For 57 instances, a conversion-free solution was obtained by the heuristics
described in [18, 19], and thus all lower bounds on Υ(W) will be zero as well. By recent
advances in heuristic algorithms [34] another 13 instances turned out to have a conversion-
free solution. For the remaining 10 instances, Table 1 shows the problem characteristics
as well as the combinatorial lower bound, the linear programming lower bound, and the
best known solution value (cf. [17, 34]). Besides the number of nodes |N |, the number
of links |L|, and the number of lightpaths d(P), the column |P| denotes the number of
different lightpaths in P (note that P is a multi-set). The number of different paths |P|
is an important measure for the performance of the column generation algorithm to solve
the linear relaxation of the integer formulation. All computation times are in seconds on a
Linux operated PC with 3.2 GHz Intel Pentium 4 HT processor. For the linear relaxation
the fastest variant (cf. [17]) of the column generation algorithm has been taken.

Table 1 shows that without exemption the combinatorial lower bound equals the value of
linear programming relaxation. Moreover, without any exception the bounds prove opti-
mality of the best known solution. The combinatorial lower bound can be computed within
a fraction of a second whereas the column generation algorithm is somewhat slower. Note
that solving the linear relaxation of (6)–(10) for general instances is an NP-hard prob-
lem since the pricing subproblem generalizes the set packing problem (cf. [17]), whereas
computing the combinatorial lower bound can be done in polynomial time.

7 Concluding remarks

We have shown that in case all lightpaths have at most two links, wavelength assignment
is strongly related to a generalized edge coloring problem known as f -edge-coloring. From
bounds known for this problem, we have derived lower and upper bounds on the number
of converters needed or the number of lightpaths establishable in a conflict-free assignment.
In the special case that an even number of fibers is installed at every link, the lower and
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upper bound both equal zero and hence in such cases no wavelength conversion is necessary.

The practical relevance of these results lies in the fact that all links incident to a single
node form a star network. If we restrict all lightpaths to the links of the star, we obtain an
instance with at most two links per lightpath. Hence, we can compute a lower bound on
the number of converters in the central node. Applying this algorithm to all nodes in the
network gives us a lower bound on the number of converters in the overall network.

A theoretical comparison of the combinatorial lower bound with the lower bound provided
by the linear relaxation value of a novel integer programming formulation of the converter
problem reveals that both bounds coincide on instances with at most two links per lightpath.
For general instances the linear relaxation bound can be better, but for all realistic instances
we have shown that the bounds are equally good: Without exception, optimality of the best
known solution could be proved as the lower bound equals the solution value.

The relation to the (generalized) edge coloring problem heavily relies on the restriction of
at most two links per lightpath. If this restriction is lifted, we have to extend the graph GL

to a hypergraph. Unfortunately, not much is known about the (f -)coloring of the edges of a
hypergraph. Further research in this direction could be considered. A related but different
direction for further research is the investigation of the impact of the achieved results for
special network structures that generalize the star, like spiders and trees.
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[31] R. Wessäly. DImensioning Survivable Capacitated NETworks. PhD thesis, Technische
Universität Berlin, 2000.

[32] P. Winkler and L. Zhang. Wavelength assignment and generalized interval graph col-
oring. In Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 830–831, 2003.

[33] H. Zang, J.P. Jue, and B. Mukherjee. A review of routing and wavelength assignment
approaches for wavelength-routed optical WDM networks. Optical Networks Magazine,
1(1):47–60, 2000.

[34] A. Zymolka. private communication, January 2005.

[35] A. Zymolka, A. M. C. A. Koster, and R. Wessäly. Transparent optical network design
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