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Abstract. We consider a problem of managing a system of spatially distrib-
uted markets under capacity and balance constraints and show that solu-
tions of a variational inequality enjoy auction principle properties implicitly.
This enables us to develop efficient tools both for derivation of existence and
uniqueness results and for creation of solution methods.
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1 Introduction

Complex systems with spatially distributed elements arise in various fields
of applications, such as Engineering, Energy and Economics, and their man-
agement requires special methods which take into account essential features
of associated graphs, unlike those for general unstructured models. Recently,

1



such problems drew more attention due to the necessity to handle many
problems arising from restructuring large energy systems; see e.g. [1]–[4] and
references therein. Usually, the models are based on either optimization or
variational inequality approaches and yield rather complicated mathemat-
ical formulations, such as two-level (sequential) optimization problems or
so-called MPEC problems, or mixed integer optimization problems, which
create certain difficulties in dealing with high-dimensional problems arising
in applications.

Recently, very simple variational inequality formulations for auction mar-
ket problems without binding constraints were proposed in [5]–[7]. Being
based on this approach, we now consider an essentially more general prob-
lem of managing spatially separated markets with capacity and balance con-
straints. We propose a variational inequality model whose solutions possess
implicitly auction market properties, thus eliminating the corresponding con-
ditions in the initial formulation. This enables us to develop efficient tools
both for derivation of existence and uniqueness results and for creation of
solution methods.

2 Model and its properties

We consider a system of n markets of a homogeneous commodity, which
are joined by links (transmission lines) in a network. Denote by Ik and Jk

respectively, the index sets of sellers and buyers of the k-th local market
associated with the k-th node. Next, the i-th seller chooses his offer value
xi in the segment [α′i, β

′
i], i ∈ Ik and the j-th buyer chooses his bid value in

the segment [α′′j , β
′′
j ], j ∈ Jk. Given the volume vectors x(k) = (xi)i∈Ik

and
y(k) = (yj)j∈Jk

, the i-th seller (j-th buyer) determines his price gi = gi(xi)
(respectively, hj = hj(yj)). Set

X(k) =
∏
i∈Ik

[α′i, β
′
i], Y(k) =

∏
j∈Jk

[α′′j , β
′′
j ].

If the auctioneer intends to maximize his profit, he should solve the problem:
Find (x∗(k), y

∗
(k)) ∈ X(k) × Y(k), k = 1, . . . , n such that

n∑

k=1

[∑
i∈Ik

gi(x
∗
i )(xi − x∗i )−

∑
j∈Jk

hj(y
∗
j )(yj − y∗j )

]
≥ 0

∀(x(k), y(k)) ∈ X(k) × Y(k)
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for k = 1, . . . , n. However, this formulation does not reflect natural con-
straints which must be included. First of all, the solution (x∗(k), y

∗
(k)) must

satisfy the local auction market conditions:

gi(x
∗
i )




≥ p∗k if x∗i = α′i,
= p∗k if x∗i ∈ (α′i, β

′
i),

≤ p∗k if x∗i = β′i,
i ∈ Ik, (1)

and

hj(y
∗
j )




≤ p∗k if y∗j = α′′j ,
= p∗k if y∗j ∈ (α′′j , β

′′
j ),

≥ p∗k if y∗j = β′′j ,
j ∈ Jk, (2)

for some numbers p∗k, k = 1, . . . , n which are treated as auction clearing

prices. Also, the total volume balance must be fulfilled:

n∑
k=1

(
∑
i∈Ik

xi −
∑

j∈Jk

yj

)
= 0. (3)

Let fkl denote the commodity flow from node k to node l and let ckl =

ckl(fkl) denote the cost of shipment of one unit of the commodity between
these nodes. The flows satisfy the capacity constraints, i.e. fkl ∈ [0, akl]
where akl ≥ 0. By setting akl = 0 for any absent link (k, l) we will consider
the network as a full graph. We now add the flow balance and capacity
constraints:

(
n∑

l=1

fkl −
n∑

l=1

flk

)
−

(
∑
i∈Ik

xi −
∑

j∈Jk

yj

)
= 0 k = 1, . . . , n; (4)

fkl ∈ [0, akl], k, l = 1, . . . , n; (5)

xi ∈ [α′i, β
′
i], i ∈ Ik, yi ∈ [α′′j , β

′′
j ], j ∈ Jk, k = 1, . . . , n. (6)

Note that the index sets Ik and Jk can be empty for some k and the case

Ik = Jk = ∅ corresponds to an intermediate node. Set

x = (x(k))k=1,...,n, y = (y(k))k=1,...,n, f = (fkl)k,l=1,...,n
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and denote by Z the set of points (x, y, f) satisfying conditions (4)–(6).
Thus, the solution (x∗, y∗, f ∗) of the auctioneer problem should satisfy

conditions (1)–(6), maximize the profit from all the markets and minimize
the total transportation costs. Taking into account all these conditions leads
to very difficult mathematical problems even in the simplest case when all
the functions gi, hj and ckl are constant. For this reason, we now consider a
reduced variational inequality formulation. Namely, the problem is to find
(x∗, y∗, f ∗) ∈ Z such that

n∑

k=1

[∑
i∈Ik

gi(x
∗
i )(xi − x∗i )−

∑
j∈Jk

hj(y
∗
j )(yj − y∗j )

]

+
n∑

k=1

n∑
l=1

ckl(f
∗
kl)(fkl − f ∗kl) ≥ 0 ∀(x, y, f) ∈ Z.

(7)

We intend to show that each solution of problem (7) satisfies conditions
(1), (2).

Theorem 2.1 If (x∗, y∗, f ∗) is a solution to problem (7), there exist numbers
p∗k, k = 1, . . . , n such that (1)–(3) hold.

Proof. Let (x∗, y∗, f ∗) be a solution to (7). We first observe that summing
(4) over k = 1, . . . , n yields (3). For brevity, set

bi = gi(x
∗
i ), i ∈ Ik, dj = hj(y

∗
j ), j ∈ Jk,

qkl = ckl(f
∗
kl), k, l = 1, . . . , n.

Then (x∗, y∗, f ∗) also solves the optimization problem

minimize
n∑

k=1

[
∑
i∈Ik

bixi −
∑

j∈Jk

djyj

]
+

n∑
k=1

n∑
l=1

qklfkl (8)

subject to (4)–(6). Clearly, (4)–(6), (8) is a linear programming problem.
By using the usual duality results (see e.g. [8] or [9, Chapter 4]), there exist
numbers µ∗k, k = 1, . . . , n such that the point (x∗, y∗, f ∗, µ∗) ∈ X×Y ×F×Rn

constitutes a saddle point of the Lagrangian

L(x, y, f, µ) =
n∑

k=1

(∑
i∈Ik

bixi −
∑
j∈Jk

djyj

)
+

n∑

k=1

n∑

l=1

qklfkl

+
n∑

k=1

µk

[(
n∑

l=1

fkl −
n∑

l=1

flk

)
−

(
∑
i∈Ik

xi −
∑

j∈Jk

yj

)]
,
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i.e.
L(x∗, y∗, f ∗, µ) ≤ L(x∗, y∗, f ∗, µ∗) ≤ L(x, y, f, µ∗)
∀µ ∈ Rn and ∀(x, y, f) ∈ X × Y × F,

(9)

where

X =
n∏

k=1

X(k), Y =
n∏

k=1

Y(k), F =
n∏

k=1

n∏

l=1

[0, akl].

The right inequality in (9) is equivalent to the following system of inequalities:

(bi − µ∗k)(xi − x∗i ) ≥ 0 ∀xi ∈ [α′i, β
′
i], i ∈ Ik, k = 1, . . . , n;

(dj − µ∗k)(y
∗
j − yj) ≥ 0 ∀yj ∈ [α′′j , β

′′
j ], j ∈ Jk, k = 1, . . . , n;

(qkl + µ∗k − µ∗l )(fkl − f ∗kl) ≥ 0 ∀fkl ∈ [0, akl], k, l = 1, . . . , n.
(10)

Setting p∗k = µ∗k for k = 1, . . . , n, we see that the first and second rows in
(10) yield (1) and (2), respectively, as desired. 2

Thus, solutions of the variational inequality (7) with binding constraints
can be utilized for setting auction clearing prices for local auctions, i.e. con-
ditions (1) and (2) can be dropped in the initial formulation.

Observe that we do not impose any conditions on the functions gi, hj and
ckl, however, it would be reasonable to suppose that they be continuous and
have non-negative (positive) values. For instance, we can even set ckl ≡ 0,
which leads to maximizing the pure auction markets profit. The third row
in (10) reflects equilibrium conditions for arc flows and transmission costs.

The above result enables us to utilize efficient tools from the theory of
variational inequalities and optimization problems for investigation and so-
lution of the constrained spatial market problems. For example, we now give
some existence and uniqueness results.

Theorem 2.2 Suppose that the set Z is nonempty and bounded and that all
the functions gi, i ∈ Ik, hj, j ∈ Jk, k = 1, . . . , n, and ckl, k, l = 1, . . . , n are
continuous. Then problem (7) has a solution.

Proof. Clearly, Z is convex and closed. Hence (7) is a variational inequality
whose cost mapping is continuous and feasible set is nonempty, convex, and
compact. The existence result follows now e.g. from Theorem 3.1 in [10],
Chapter 1. 2

Now, for simplicity, we define the composite mapping

(x, y, f) 7→ (g(x),−h(y), c(f))
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where
g(x) = (gi(xi)) , i ∈ Ik, k = 1, . . . , n;

h(y) = (hj(yj)) , j ∈ Jk, k = 1, . . . , n;

and
c(f) = (ckl(fkl)) , k, l = 1, . . . , n.

Theorem 2.3 Suppose that the set Z is nonempty and bounded, the mapping
(x, y, f) 7→ (g(x),−h(y), c(f)) is continuous and strictly monotone. Then
problem (7) has a unique solution.

Proof. The solvability of problem (7) follows from Theorem 2.2. By as-
sumption, the cost mapping in (7) is now strictly monotone, but this yields
the uniqueness; see e.g. [10, Chapter 1]. 2

Observe that the mappings g, h, and c are diagonal, hence they are
integrable, i.e. there exist functions ϕi, i ∈ Ik, ψj, j ∈ Jk, k = 1, . . . , n,
and σkl, k, l = 1, . . . , n such that ϕ′i = gi, ψ′j = hj, and σ′kl = ckl. Therefore,
the monotonicity of gi, −hj, and ckl is equivalent to the convexity of ϕi, −ψj,
and σkl, respectively. Also, the optimization problem

minimize
n∑

k=1

[
∑
i∈Ik

ϕi(xi)−
∑

j∈Jk

ψj(yj)

]
+

n∑
k=1

n∑
l=1

σkl(fkl)

subject to (4)–(6), which minimizes the total diseconomies in the system,
then implies (7), and the reverse assertion is true if all the functions ϕi,
i ∈ Ik, −ψj, j ∈ Jk, k = 1, . . . , n, and σkl, k, l = 1, . . . , n are convex.

3 Solution methods

Being based on the above results, we can propose various efficient methods
for solving problem (1)–(7), which are adjusted for its essential features.
In the general variational inequality case, we can apply the corresponding
iterative methods; see e.g. [11], [12]. In the case when the mappings g
and h are integrable, we can apply various optimization methods; see e.g.
[13]. Note that the constant mappings g, h, and c yield the usual linear
programming problem (see (8)) and the features of the problem admit various
decomposition techniques (see e.g. [14]), which can be utilized for high-
dimensional ones arising in applications.
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To illustrate this assertion, we describe now only one of the possible iter-
ative methods applicable to (7) under additional monotonicity assumptions.

We recall that a mapping A : Rm → Rm is said to be co-coercive if there
exists a constant ν > 0 such that

〈A(u′)− A(u′′), u′ − u′′〉 ≥ ν‖A(u′)− A(u′′)‖2 ∀u′, u′′.
In general, this property is stronger than monotonicity, but it is well-known
that each monotone integrable and Lipschitz continous mapping is co-coercive;
see e.g. [12] for more details.

The simplest projection method applied to problem (7) can be described
as follows.

Method (PM). Choose a point (x0, y0, f 0) ∈ Z and a number θ > 0.
At the s-th iteration, s = 0, 1, . . ., we have a point (xs, ys, f s) ∈ Z and

find the next iterate (xs+1, ys+1, f s+1) ∈ Z such that

n∑

k=1

[∑
i∈Ik

(
gi(x

s
i ) + θ−1(xs+1

i − xs
i )

)
(xi − xs+1

i )

−
k∑

j∈Jk

(
hj(y

s
j )− θ−1(ys+1

j − ys
j )

)
(yj − ys+1

j )

]

+
n∑

k=1

n∑
l=1

(
ckl(f

s
kl) + θ−1(f s+1

kl − f s
kl)

)
(fkl − f s+1

kl ) ≥ 0

∀(x, y, f) ∈ Z.

(11)

Observe that (11) is a quadratic programming problem, which always has
a unique solution under the assumptions of Theorem 2.2.

Theorem 3.1 Suppose that the set Z is nonempty and bounded, the mapping
(x, y, f) 7→ (g(x),−h(y), c(f)) is co-coercive. Then there exists a number θ >
0 such that the sequence {(xs, ys, f s)} generated by Method (PM) converges
to a solution of problem (7).

From the assumptions we have that the cost mapping in (7) is co-coercive,
so the result follows e.g. from Theorem 12.1.8 in [12].

Together with this simplest variant with fixed stepsize, the descent ver-
sions of the method can be also applied. If the cost mapping is only monotone,
we can utilize combined proximal point and descent procedures. In general,
there exist a great number of efficient iterative methods for finding a solution.
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