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Abstract

In this paper, we consider the l0 norm minimization problem with linear equation

and nonnegativity constraints. By introducing the concept of generalized Z-matrix for a

rectangular matrix, we show that this l0 norm minimization with such a kind of measure-

ment matrices and nonnegative observations can be exactly solved via the corresponding

lp (0 < p ≤ 1) norm minimization. Moreover, the lower bound of sample number is

allowed to be k for recovering the unique k-sparse solution of the underlying l0 norm

minimization. A practical application in communications is presented which satisfies the

generalized Z-matrix recovery condition.
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1 Introduction

The l0 norm minimization problem is a core model in the compressed sensing (CS) which

was initiated by Donoho [10], Candés, Romberg and Tao [6, 7] with the involved essential

idea–recovering some original n-dimensional but sparse signal\image from linear measure-

ment with dimension far fewer than n. CS has attracted much attention and obtained rapid
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developments in recent years [2, 8] owing to its wide applications in signal processing, commu-

nications, machine learning, medicine science, sensor location and many other fields. However,

in some specific applications, the unknown signal\image may inherently possess some prior

information such as the nonnegativity. Such a kind of signals\images is extensively encoun-

tered in communications, DNA microarrays, spectroscopy, tomography, network monitoring,

and hidden Markov models [14, 18, 20, 21, 25]. This scenario drives us to study the following

l0 norm minimization with linear equation and nonnegativity constraints (also called sparse

nonnegative recovery)

(L0)

min ‖x‖0
s.t. Ax = b,

x ≥ 0.

where x ∈ Rn, A ∈ Rm×n, m ≤ n and b ∈ Rm. Here ‖x‖0 denotes the number of the nonzero

entries of x, and a vector x is called k-sparse if its l0 norm is no more than k.

Mathematically, problem (L0) is actually to find the sparsest nonnegative solutions for

an underdetermined system of linear equations, which is NP-hard in general due to the

combinatorial search [17, 22]. One popular method is to substitute the l0 norm by the lp
(0 < p ≤ 1) norm. This leads to the following relaxation–the lp norm minimization problem

with linear equation and nonnegative constraints

(Lp)

min ‖x‖p
s.t. Ax = b,

x ≥ 0.

As in the CS setting, a fundamental question arises: under what conditions the sparse non-

negative signal\image can be exactly recovered via the above relaxation (Lp) with a promising

compression ratio (i.e., n/m)? Specifically, how to design the measure matrix A

(1) to guarantee the equivalence of problems (L0) and (Lp);

(2) to decrease the lower bound of sample number for the improvement of the compression

ratio.

To achieve the above equivalence, many researchers have done a series of investigations

from different perspectives, see, e.g., [3, 12, 13, 19, 20, 23, 26, 27] and the references therein.

The first characterization of this equivalence, introduced by Donoho and Tanner in [12]

from a geometric point of view, is that the polytope AT is outwardly k-neighborly with

T being the standard simplex in Rn. In [12] Donoho and Tanner also certified that the

random polytope generated by a Gaussian matrix offers this property with an overwhelming

probability. Zhang [27] analyzed the algebraic structure of the measurement matrix and built

up the equivalence under the condition that the null space of A is strictly half k-balance.

Recently, by employing the optimality condition of (L1), Juditsky, Karzan and Nemirovski

[19] developed some verifiable k-semigood conditions for the equivalence based on some prior

information on signs of the original image, which includes the nonnegative constraints as a
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special case. More recently, by developing the well-known restricted isometry property (RIP)

condition, Qin, Xiu, Kong and Li [23] proposed a nonnegative RIP of the measurement matrix

A to get the desired equivalence.

Some more special case was also analyzed for the desired equivalence. It is trivial that if

the feasible set of (L0) is a singleton, the unique feasible solution is definitely the unique sparse

solution which can be achieved by minimizing any objective function over this constraint

set. Based on this observation, some recovery conditions were tailored for the uniqueness of

feasible solutions to problem (L0). Toward this direction, Bruckstein, Elad and Zibulevsky

[3] gave a sufficient condition that A has a row-span intersecting the positive orthant. Later,

this condition was shown to be also necessary by Xu and Tang [26]. By exploiting the

geometrical structure features of the feasible set, Donoho and Tanner [13] derived that the

desired uniqueness holds if and only if polytope ARn+ and Rn+ have the same number of k-faces.

Another equivalent condition for the uniqueness property was proposed by Khajehnejad,

Dimakis, Xu and Hassibi [20] in terms of the support size of vectors in the null space of A.

In this paper, by employing Z-matrices and the least element theory in linear comple-

mentarity problems (for details, see [1, 4]), together with the relation among problems (L0),

(Lp) and the following multi-objective programming

(Lmulti)

min x

s.t. Ax = b,

x ≥ 0,

we present that if the observation vector b is nonnegative and the measurement matrix is a

generalized Z-matrix (see Section 2 for details), problems (L0) and (Lp) share the common

unique solution, which is exactly the unique least element solution of (Lmulti). In comparison

to the existing recovery conditions, our condition on the measurement matrix A is quite easy

to check, only at the price of restricting the observations to be nonnegative.

To improve the lower bound of sample number, there are also plenty of meaningful ex-

plorations, such as the works in [5, 6, 9] to name a few. For the k-sparse recovery problem

with no prior information, the existing best lower bound for stable recovery (with noise cor-

ruption) is O(klog(n/k)) which is shown to be tight in [9]. Intuitionally, it is quite possible

to improve this bound when the original signal has some favorable features besides sparsity,

such as the nonnegativity. This has also been pointed out by Donoho and Tanner in [12]

as “there are substantial quantitative improvements on the breakdown points when nonneg-

ativity constraints are present”. Up to date, only a few discussions are addressed on this

lower bound for the sparse nonnegative recovery [12, 26, 27], and to our best knowledge, the

corresponding best lower bound is 2k as stated by Donoho and Tanner in [12] and Zhang in

[27]. In this paper, under the same conditions for the aforementioned equivalence, the exact

recovery of a nonnegative k-sparse signal\image can be pursued with no less than k linear

measurements. This lower bound k obviously improves the compression ratio greatly.

The organization of this paper is as follows. The concept of generalized Z-matrix for
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a rectangular matrix is introduced and the feasibility of problem (L0) with such a kind of

measurement matrices is discussed in Section 2. The equivalence of problems (L0) and (Lp),

together the lower bound of sample number, is presented under generalized Z-matrix measure-

ment by using (Lmulti) as a bridge in Section 3. A practical application in communications

is exhibited in Section 4 which satisfies our proposed recovery conditions.

2 Generalized Z-matrix

In this section, we introduce the concept of generalized Z-matrix and explore some of its

interesting properties. The feasibility of problem (L0) with such generalized Z-matrix as the

measurement matrix is also studied. We begin with recalling the definition of Z-matrix.

Definition 2.1 ([16]) A matrix M ∈ Rn×n is called a Z-matrix if all its off-diagonal entries

are nonpositive.

Z-matrices appear in various fields and have extensive applications in differential equa-

tions, dynamical systems, optimization, economics, etc., see [1] for details. In this paper, we

will generalize this important concept from square matrices to rectangular matrices in the

following fashion.

Definition 2.2 Let A ∈ Rm×n with m ≤ n. We say that A is a generalized Z-matrix if

[A> 0]> ∈ Rn×n is a Z-matrix.

We use Zm×n to denote the set of all generalized Z-matrices in Rm×n(m ≤ n). The

generalized Z-matrix we defined here is different from the one introduced in [24] for block

matrices. However, we still use “generalized” since it possesses these properties: (a) the

generalized Z-matrix turns to be the Z-matrix when m = n; (b) the submatrix Am, formed

by the first m columns of A is a Z-matrix.

An interesting property of the generalized Z-matrix is presented as follows by observation.

Lemma 2.3 Let A ∈ Zm×n, and AI ∈ R|I|×n be its submatrix formed by those rows with

index set I. Then ĀI := [AII AIĪ ] ∈ Z|I|×n, where AII ∈ R|I|×|I| is the submatrix of AI
formed by those columns with index set I and Ī is the complement set of I with respect to

{1, · · · , n}.

Another interesting but essential property of the generalized Z-matrix is related to the

least element theory which is analogous to that of the standard Z-matrix.

Proposition 2.4 Let A ∈ Zm×n and b ∈ Rm. If F̃ := {x ∈ Rn | Ax ≥ b, x ≥ 0} 6= ∅, then

F̃ has a least element u which satisfies ui(Au − b)i = 0 for all i = 1, · · · , m. Moreover, if

F̃u := {x ∈ Rn | Ax ≥ b, 0 ≤ x ≤ u} 6= ∅ for some u ≥ 0, then F̃ and F̃u share the same least

element.
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The remaining of this section is devoted to the feasibility of problem (L0) for the gener-

alized Z-matrix case. For simplicity, we denote the corresponding feasible set by

F := {x | Ax = b, x ≥ 0}.

Proposition 2.5 Let A ∈ Zm×n and b ∈ Rm+ . The following two systems are equivalent:

(a) Ax = b, x ≥ 0;

(b) x ≥ 0, Ax− b ≥ 0, xi(Ax− b)i = 0, ∀i = 1, · · · ,m.

Proof. For any solution x∗ of system (a), it is trivial that x∗ is a solution to (b). Let x̄ be

any solution of system (b). To get the converse part, it suffices to show that (Ax̄ − b)i = 0

for any i ∈ {1, · · · ,m} with x̄i = 0. By the observation that

(Ax̄− b)i = Aiix̄i +
n∑

j=1,j 6=i
Aij x̄j − bi ≤ 0,

together with Ax̄− b ≥ 0, the desired result follows. �

The above proposition provides a necessary and sufficient condition for the feasibility of

problem (L0). Below, we will give a sufficient condition and a necessary condition for this

feasibility. The involved P -matrix means that all the principal sub-determinants of a matrix

are positive, see [4] for details.

Proposition 2.6 Let A ∈ Zm×n and b ∈ Rm+ .

(a) If the submatrix Am, formed by the first m columns of A, is a P -matrix, then F 6= ∅;

(b) If F 6= ∅, then for any i ∈ {1, · · · ,m} with bi > 0, we have Aii > 0.

Proof. For (a), let A = [Am, An−m] with Am ∈ Rm×m being a P -matrix and An−m ∈
Rm×(n−m) being the remaining part of A. Note that Am is a Z-matrix. By employing the

equivalence of P -matrix and inverse-positiveness for the Z-matrix Am [1], we can obtain that

A−1
m exists and all its entries are nonnegative. Combining with b ≥ 0, we have A−1

m b ≥ 0,

which further implies that x∗ := ((A−1
m b)> 0)> ∈ F .

To get (b), for any bi > 0, we have (Ax∗ − b)i = Aiix
∗
i +

n∑
j=1,j 6=i

Aijx
∗
j − bi = 0 which

implies that Aii > 0. Henceforth, the desired assertion holds. �

It is worth mentioning that under the condition F 6= ∅, Aii could be negative when bi = 0.

A simple example follows for the illustration.

Example 2.7 Let A =

[
1 −1 0

0 −1 0

]
and b =

[
1

0

]
. Evidently A ∈ Z2×3 and b ∈ R2

+. By

direct calculation, the feasible set F = {(1, 0, t)> | t ∈ R+} 6= ∅.
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3 Main Results

In this section, we explore the relation of problems (L0), (Lp) (0 < p ≤ 1) and (Lmulti) for

the generalized Z-matrix case. For the sake of simplicity, we use S0 and Sp to respectively

denote the optimal solution sets of problems (L0) and (Lp), and Smulti to denote the set of all

Pareto points of the multi-objective programming problem (Lmulti). Here a Pareto solution

u of problem (Lmulti) means that there exists no feasible solution y such that y ≤ u and

yj < uj for at least one index j ∈ {1, · · · , n}. Before stating the main theorem of this section,

we give the relation of S0, Sp and Smulti for the general case as a start.

Proposition 3.1 Let A ∈ Rm×n(m ≤ n) and b ∈ Rm. We have S0 ∪ Sp ⊆ Smulti.

Proof. When F = ∅, the assertion holds trivially since S0 = Sp = Smulti = ∅. For the case

F 6= ∅, it is equivalent to show that S0 ⊆ Smulti and Sp ⊆ Smulti. For any x∗ ∈ S0, assume

on the contrary that x∗ /∈ Smulti. Then by the definition of Pareto point, there exists some

y ∈ F such that y ≤ x∗ and yj < x∗j for some j ∈ {1, · · · , n}. Let β := I(x∗) = {i : x∗i > 0}
and β̄ := {1, · · · , n} \ β. From the nonnegativity of y, we can easily get yβ̄ := (yi)i∈β̄ = 0.

Noticing that x∗ is one of the sparsest solution in F , we immediately have yβ := (yi)i∈β > 0.

Thus,

x∗ − y ∈ Rn+, ∅ 6= I(x∗ − y) ⊆ β.

Let δ := min{ x∗i
x∗i−yi

} and z := x∗ − δ(x∗ − y). It follows that

z ≥ 0, Az = b, ‖z‖0 ≤ ‖x∗‖0 − 1,

which contradicts to x∗ ∈ S0. Henceforth, x∗ ∈ Smulti.

To get the assertion Sp ⊆ Smulti, it suffices to show that for any x∗ ∈ Sp, there exists

no y ∈ F such that y ≤ x∗ and yj < x∗j for at least one index j ∈ {1, · · · , n}. While this is

trivial from the fact that ‖x∗‖p =

(
n∑
i=1

(x∗i )
p

) 1
p

is the minimum of

(
n∑
i=1

upi

) 1
p

for any u ∈ F

with p ∈ (0, 1]. This completes the proof. �

Generally, S0, Sp and Smulti are not equivalent to each other, as the following example

shows.

Example 3.2 Let A =

[
4 8 1

8 4 1

]
and b =

[
8

8

]
. By direct calculation, we have

S0 = {(0, 0, 8)>}, S1 = {(2

3
,
2

3
, 0)>}, Smin = {(2t

3
,
2t

3
, 8− 8t)> : 0 ≤ t ≤ 1}.

The equivalence of the above three solution sets are attainable by employing the concept

of generalized Z-matrix as introduced in Section 2. This is established in the following main

theorem.
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Theorem 3.3 Let A ∈ Zm×n and b ∈ Rm+ such that F 6= ∅. We have

(i) problems (L0), (Lp)(p ∈ (0, 1]) and (Lmulti) share the same unique solution x∗;

(ii) ‖b‖0 ≤ ‖x∗‖0 ≤ m.

Proof. By employing Propositions 2.4 and 2.5, we can derive that F has a unique least

element, says x∗. Evidently, x∗ is exactly the unique solution of problem (Lmulti) by definition.

Note that problems (L0) and (Lp) are solvable under the assumption that F 6= ∅. It further

implies that S0 = Sp = Smulti = {x∗} by invoking Proposition 3.1. This arrives at the

assertion in (i).

For (ii), observe that if bi > 0, we have 0 < (Ax∗)i = Aiix
∗
i +

n∑
j=1,j 6=i

Aijx
∗
j . This implies

that x∗i > 0 by the condition that A is a generalized Z-matrix. Henceforth, ‖b‖0 ≤ ‖x∗‖0. To

get the other inequality, we take p = 1. In this case, problem (Lp) turns out to be a linear

program. Utilizing (i), we know that this linear program has the unique solution x∗, which

further implies that x∗ is an extreme point of F by the property in linear program theory

which says at least one optimal solution of a linear program should be an extreme point of

the corresponding feasible set. This immediately leads to ‖x∗‖0 ≤ m. This completes the

whole proof. �

Remark 3.4 In [15], Fung and Mangasarian have proven that for a bounded system of lin-

ear equalities and inequalities, problem (L0) is completely equivalent to problem (Lp) for a

sufficiently small p ∈ (0, 1). Here, by imposing the generalized Z-matrix measurement and

the nonnegativity of the observation vector, this equivalence can be achieved for any p ∈ (0, 1],

as shown in Theorem 3.3.

A corollary follows immediately from Proposition 2.6 and Theorem 3.3 for the P -matrix

case.

Corollary 3.5 Let A ∈ Zm×n, b ∈ Rm+ , and Am ∈ Rm×m be a P -matrix, where Am is the

submatrix formed by the first m columns of A. Then ((A−1
m b)> 0)> is the unique solution of

problem (L0).

Proof. According to the proof of Proposition 2.6, we know that ((A−1
m b)> 0)> is actually a

feasible solution of problem (L0). It suffices to show that this feasible solution is the unique

solution of Smulti from Theorem 3.3 (i). Assume on the contrary that there exists some

feasible solution x̂ = (x̂>m x̂>n−m)> 6= x∗ with x̂ ≤ x∗ and x̂ 6= x∗. Obviously, x̂n−m = 0 and

Ax̂ = Amx̂m = b = Amx
∗
m. By the invertibility of Am, we obtain that x̂m = x∗m and hence

x̂ = x∗. This contradicts to the assumption x̂ 6= x∗. Therefore, x∗ is the unique solution of

problem (P0). This completes the proof. �
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4 An Application

In this section, we will briefly introduce an application in communications, more specifically,

in the joint power and admission control problem for single-input single-output interference

channel. It is known from [21] that this problem can be regarded as two stages, with the

first stage to get a maximum number of links, and the second one to achieve a minimum

total transmission power to support that maximum number of links at their specified signal

to interference plus noise ratio (SINR) targets. The involved subproblem of the second stage

can be actually reformulated as
min p̄>q

s.t. CIq ≥ cI
0 ≤ q ≤ e

(4.1)

where the variable q ∈ RK is the normalized power allocation vector with K the total number

of all possible links in the whole communication system, p ∈ RK is the prescribed upper bound

of power vector for all possible links, I ⊆ {1, · · · ,K} is the set of links with the maximum

total number, c ∈ RK > 0 is the normalized noise vector and cI = {ci}i∈I , C is the normalized

channel matrix whose entries have the form

Cij =

{
1, if i = j;

−γigij p̄j
giip̄i

, otherwise.

Here γi > 0 is the specified requirement of the SINR for link i, gij > 0 is the channel gain

from transmitter j to receiver i. And CI ∈ R|I|×K is the corresponding submatrix formed by

those rows of C with the row index set I. By choosing suitable subset I, problem (4.1) is

always feasible and hence solvable in practical cases.

Let Ī be complement set of I in {1, · · · ,K}. We can rewritten CIq ≥ cI as

CIIqI + CIĪqĪ ≥ cI .

By setting Ā := [CII CIĪ ], x := [q>I q>
Ī

]>, p̃ := [p̄>I p̄>
Ī

]> and b̄ := cI , problem (4.1) can be

expressed as
min p̃>x

s.t. Āx ≥ b̄
0 ≤ x ≤ e.

(4.2)

Utilizing Lemma 2.3, we know that Ā is a generalized Z-matrix. Combining with Proposition

2.4 and the fact p̃ > 0, the above problem is equivalent to

min p̃>x

s.t. Āx ≥ b̄
x ≥ 0,

(4.3)

which can be equivalently transformed to

min ‖x‖p
s.t. Āx = b̄

x ≥ 0,

(4.4)
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with p ∈ (0, 1] by invoking Propositions 2.4 and 2.5. Furthermore, Theorem 3.3 tells us that

problem (4.4) is also equivalent to the following l0 minimization problem

min ‖x‖0
s.t. Āx = b̄

x ≥ 0,

(4.5)

and the multi-objective programming problem

min x

s.t. Āx = b̄

x ≥ 0.

(4.6)

This immediately gives a theoretical explanation of the convention that to pursue the min-

imum total transmission power for all links is consistent to aim for the minimum power for

every link which is widely applied in practice.
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