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Abstract In this paper we propose a variant of the random coordinate descent
method for solving linearly constrained convex optimization problems with com-
posite objective functions. If the smooth part of the objective function has Lip-
schitz continuous gradient, then we prove that our method obtains an ϵ-optimal
solution in O(N2/ϵ) iterations, where N is the number of blocks. For the class of
problems with cheap coordinate derivatives we show that the new method is faster
than methods based on full-gradient information. Analysis for the rate of conver-
gence in probability is also provided. For strongly convex functions our method
converges linearly. Extensive numerical tests confirm that on very large problems,
our method is much more numerically efficient than methods based on full gradient
information.

Keywords Coordinate descent · composite objective function · linearly coupled
constraints · randomized algorithms · convergence rate O(1/ϵ).

1 Introduction

The basic problem of interest in this paper is the following convex minimization
problem with composite objective function:

min
x∈Rn

F (x) (:= f(x) + h(x))

s.t.: aT x = 0,
(1)

where f : Rn → R is a smooth convex function defined by a black-box oracle,
h : Rn → R is a general closed convex function and a ∈ Rn. Further, we assume
that function h is coordinatewise separable and simple (by simple we mean that
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we can find a closed-form solution for the minimization of h with some simple aux-
iliary function). Special cases of this model include linearly constrained smooth
optimization (where h ≡ 0) which was analyzed in [16,30], support vector ma-
chines (where h is the indicator function of some box constrained set) [10,14] and
composite optimization (where a = 0) [23,27–29].

Linearly constrained optimization problems with composite objective function
arise in many applications such as compressive sensing [5], image processing [6],
truss topology design [17], distributed control [15], support vector machines [28],
traffic equilibrium and network flow problems [3] and many other areas. For prob-
lems of moderate size there exist many iterative algorithms such as Newton, quasi-
Newton or projected gradient methods [8,9,13]. However, the problems that we
consider in this paper have the following features: the dimension of the optimization

variables is very large such that usual methods based on full gradient computations
are prohibitive. Moreover, the incomplete structure of information that may appear
when the data are distributed in space and time, or when there exists lack of
physical memory and enormous complexity of the gradient update can also be an
obstacle for full gradient computations. In this case, it appears that a reasonable
approach to solving problem (1) is to use (block) coordinate descent methods. These
methods were among the first optimization methods studied in literature [4]. The
main differences between all variants of coordinate descent methods consist of the
criterion of choosing at each iteration the coordinate over which we minimize our
objective function and the complexity of this choice. Two classical criteria, used
often in these algorithms, are the cyclic and the greedy (e.g., Gauss-Southwell)
coordinate search, which significantly differ by the amount of computations re-
quired to choose the appropriate index. The rate of convergence of cyclic coordi-
nate search methods has been determined recently in [1,26]. Also, for coordinate
descent methods based on the Gauss-Southwell rule, the convergence rate is given
in [27–29]. Another interesting approach is based on random coordinate descent,
where the coordinate search is random. Recent complexity results on random co-
ordinate descent methods were obtained by Nesterov in [20] for smooth convex
functions. The extension to composite objective functions was given in [23] and
for the grouped Lasso problem in [22]. However, all these papers studied optimiza-
tion models where the constraint set is decoupled (i.e., characterized by Cartesian
product). The rate analysis of a random coordinate descent method for linearly
coupled constrained optimization problems with smooth objective function was
developed in [16].

In this paper we present a random coordinate descent method suited for large
scale problems with composite objective function. Moreover, in our paper we focus
on linearly coupled constrained optimization problems (i.e., the constraint set is
coupled through linear equalities). Note that the model considered in this paper is
more general than the one from [16], since we allow composite objective functions.

We prove for our method an expected convergence rate of order O(N
2

k ), where
N is number of blocks and k is the iteration counter. We show that for functions
with cheap coordinate derivatives the new method is much faster, either in worst
case complexity analysis, or numerical implementation, than schemes based on
full gradient information (e.g., coordinate gradient descent method developed in
[29]). But our method also offers other important advantages, e.g., due to the ran-
domization, our algorithm is easier to analyze and implement, it leads to more
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robust output and is adequate for modern computational architectures (e.g, par-
allel or distributed architectures). Analysis for rate of convergence in probability
is also provided. For strongly convex functions we prove that the new method con-
verges linearly. We also provide extensive numerical simulations and compare our
algorithm against state-of-the-art methods from the literature on three large-scale
applications: support vector machine, the Chebyshev center of a set of points and
random generated optimization problems with an ℓ1-regularization term.

The paper is organized as follows. In order to present our main results, we
introduce some notations and assumptions for problem (1) in Section 1.1. In Sec-
tion 2 we present the new random coordinate descent (RCD) algorithm. The main
results of the paper can be found in Section 3, where we derive the rate of con-
vergence in expectation, probability and for the strongly convex case. In Section
4 we generalize the algorithm and extend the previous results to a more general
model. We also analyze its complexity and compare it with other methods from
the literature, in particular the coordinate descent method of Tseng [29] in Sec-
tion 5. Finally, we test the practical efficiency of our algorithm through extensive
numerical experiments in Section 6.

1.1 Preliminaries

We work in the space Rn composed of column vectors. For x, y ∈ Rn we denote:

⟨x, y⟩ =
n∑

i=1

xiyi.

We use the same notation ⟨·, ·⟩ for spaces of different dimensions. If we fix a norm
∥·∥ in Rn, then its dual norm is defined by:

∥y∥∗ = max
∥x∥=1

⟨y, x⟩.

We assume that the entire space dimension is decomposable into N blocks:

n =
N∑
i=1

ni.

We denote by Ui the blocks of the identity matrix:

In = [U1 . . . UN ] ,

where Ui ∈ Rn×ni . For some vector x ∈ Rn, we use the notation xi for the ith
block in x, ∇if(x) = UT

i ∇f(x) is the ith block in the gradient of the function

f at x, and ∇ijf(x) =

[
∇if(x)

∇jf(x)

]
. We denote by supp(x) the number of nonzero

coordinates in x. Given a matrix A ∈ Rm×n, we denote its nullspace by Null(A).
In the rest of the paper we consider local Euclidean norms in all spaces Rni , i.e.,
∥xi∥ =

√
(xi)T xi for all xi ∈ Rni and i = 1, . . . , N .

For model (1) we make the following assumptions:
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Assumption 1 The smooth and nonsmooth parts of the objective function in opti-

mization model (1) satisfy the following properties:

(i) Function f is convex and has block-coordinate Lipschitz continuous gradient:

∥∇if(x+ Uihi)−∇if(x)∥ ≤ Li ∥hi∥ ∀x ∈ Rn, hi ∈ Rni , i = 1, . . . , N.

(ii) The nonsmooth function h is convex and coordinatewise separable.

Assumption 1 (i) is typical for composite optimization, see e.g., [19,29]. Assump-
tion 1 (ii) covers many applications as we further exemplify. A special case of
coordinatewise separable function that has attracted a lot of attention in the area
of signal processing and data mining is the ℓ1-regularization [22]:

h(x) = λ ∥x∥1 , (2)

where λ > 0. Often, a large λ factor induces sparsity in the solution of optimiza-
tion problem (1). Note that the function h in (2) belongs to the general class of
coordinatewise separable piecewise linear/quadratic functions with O(1) pieces.
Another special case is the box indicator function, i.e.:

h(x) = 1[l,u] =

{
0, l ≤ x ≤ u

∞, otherwise.
(3)

Adding box constraints to a quadratic objective function f in (1) leads e.g., to
support vector machine (SVM) problems [7,28]. The reader can easily find many
other examples of function h satisfying Assumption 1 (ii).
Based on Assumption 1 (i), the following inequality can be derived [18]:

f(x+ Uihi) ≤ f(x) + ⟨∇if(x), hi⟩+
Li

2
∥hi∥2 ∀x ∈ Rn, hi ∈ Rni . (4)

In the sequel, we use the notation:

L = max
1≤i≤N

Li.

For α ∈ [0, 1] we introduce the extended norm on Rn similar as in [20]:

∥x∥α =

(
N∑
i=1

Lα
i ∥xi∥2

) 1
2

and its dual norm

∥y∥∗α =

(
N∑
i=1

1

Lα
i

∥yi∥2
) 1

2

.

Note that these norms satisfy the Cauchy-Schwartz inequality:

∥x∥α ∥y∥∗α ≥ ⟨x, y⟩ ∀x, y ∈ Rn.

For a simpler exposition we use a context-dependent notation as follows: let x ∈ Rn

such that x =
∑N

i=1 Uixi, then xij ∈ Rni+nj denotes a two component vector

xij =

[
xi

xj

]
. Moreover, by addition with a vector in the extended space y ∈ Rn,

i.e., y + xij , we understand y + Uixi + Ujxj . Also, by inner product ⟨y, xij⟩ with
vectors y from the extended space Rn we understand ⟨y, xij⟩ = ⟨yi, xi⟩+ ⟨yj , xj⟩.
Based on Assumption 1 (ii) we can derive from (4) the following result:
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Lemma 1 Let function f be convex and satisfy Assumption 1. Then, the function f

has componentwise Lipschitz continuous gradient w.r.t. every pair (i, j), i.e.:∥∥∥∥∥
[
∇if(x+Uisi+Ujsj)

∇jf(x+Uisi+Ujsj)

]
−

[
∇if(x)

∇jf(x)

]∥∥∥∥∥
∗

α

≤Lα
ij

∥∥∥∥∥
[
si

sj

]∥∥∥∥∥
α

∀x ∈ Rn, si ∈ Rni , sj ∈ Rnj ,

where we define Lα
ij = L1−α

i + L1−α
j .

Proof Let f∗ = min
x∈Rn

f(x). Based on (4) we have for any pair (i, j):

f(x)− f∗ ≥ max
l∈{1,...N}

1

2Ll
∥∇lf(x)∥

2 ≥ max
l∈{i,j}

1

2Ll
∥∇lf(x)∥

2

≥ 1

2
(
L1−α
i + L1−α

j

) ( 1

Lα
i

∥∇if(x)∥
2+

1

Lα
j

∥∥∇jf(x)
∥∥2)

=
1

2Lα
ij

∥∥∇ijf(x)
∥∥∗2
α

,

where in the third inequality we used that αa+(1−α)b ≤ max{a, b} for all α ∈ [0, 1].
Now, note that the function g1(yij) = f(x+ yij − xij) − f(x) − ⟨∇f(x), yij − xij⟩
satisfies the Assumption 1 (i). If we apply the above inequality to g1(yij) we get
the following relation:

f(x+yij−xij) ≥ f(x)+⟨∇f(x), yij−xij⟩+
1

2Lα
ij

∥∥∇ijf(x+ yij − xij)−∇ijf(x)
∥∥∗2
α

.

On the other hand, applying the same inequality to g2(xij) = f(x) − f(x+ yij −
xij)+ ⟨∇f(x+ yij − xij), yij − xij⟩, which also satisfies Assumption 1 (i), we have:

f(x) ≥ f(x+ yij − xij) + ⟨∇f(x+yij − xij), yij − xij⟩+
1

2Lα
ij

∥∥∇ijf(x+ yij − xij)−∇ijf(x)
∥∥∗2
α

.

Further, denoting sij = yij − xij and adding up the resulting inequalities we get:

1

Lα
ij

∥∥∇ijf(x+ sij)−∇ijf(x)
∥∥∗2
α

≤ ⟨∇ijf(x+ sij)−∇ijf(x), sij⟩

≤
∥∥∇ijf(x+ sij)−∇ijf(x)

∥∥∗
α

∥∥sij∥∥α ,

for all x ∈ Rn and sij ∈ Rni+nj , which proves the statement of this lemma. ⊓⊔

It is straightforward to see that we can obtain from Lemma 1 the following in-
equality (see also [18]):

f(x+ sij) ≤ f(x) + ⟨∇ijf(x), sij⟩+
Lα
ij

2

∥∥sij∥∥2α , (5)

for all x ∈ Rn, sij ∈ Rni+nj and α ∈ [0, 1].
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2 Random coordinate descent algorithm

In this section we introduce a variant of Random Coordinate Descent (RCD)
method for solving problem (1) that performs a minimization step with respect to
two block variables at each iteration. The coupling constraint (that is, the weighted
sum constraint aTx = 0) prevents the development of an algorithm that performs a
minimization with respect to only one variable at each iteration. We will therefore
be interested in the restriction of the objective function f on feasible directions
consisting of at least two nonzero (block) components.

Let (i, j) be a two dimensional random variable, where i, j ∈ {1, . . . , N} with i ̸=
j and pikjk = Pr((i, j) = (ik, jk)) be its probability distribution. Given a feasible
x, two blocks are chosen randomly with respect to a probability distribution pij
and a quadratic model derived from the composite objective function is minimized
with respect to these coordinates. Our method has the following iteration: given
a feasible initial point x0, that is aTx0 = 0, then for all k ≥ 0

Algorithm 1 (RCD)

1. Choose randomly two coordinates (ik, jk) with probability pikjk

2. Set xk+1 = xk + Uikdik + Ujkdjk ,

where the directions dik and djk are chosen as follows: if we use for simplicity the
notation (i, j) instead of (ik, jk), the direction dij = [dTi dTj ]

T is given by

dij=arg min
sij∈Rni+nj

f(xk)+⟨∇ijf(x
k), sij⟩+

Lα
ij

2

∥∥sij∥∥2α+h(xk + sij)

s.t.: aTi si + aTj sj = 0,

(6)

where ai ∈ Rni and aj ∈ Rnj are the ith and jth blocks of vector a, respectively.

Clearly, in our algorithm we maintain feasibility at each iteration, i.e. aT xk = 0
for all k ≥ 0.

Remark 1

(i) Note that for the scalar case (i.e., N = n) and h given by (2) or (3), the
direction dij in (6) can be computed in closed form. For the block case (i.e.,
ni > 1 for all i) and if h is a coordinatewise separable, strictly convex and piece-
wise linear/quadratic function with O(1) pieces (e.g., h given by (2)), there
are algorithms for solving the above subproblem in linear-time (i.e., O(ni+nj)
operations) [29]. Also for h given by (3), there exist in the literature algorithms
for solving the subproblem (6) with overall complexity O(ni + nj) [2,12].

(ii) In algorithm (RCD) we consider (i, j) = (j, i) and i ̸= j. Moreover, we know that
the complexity of choosing randomly a pair (i, j) with a uniform probability
distribution requires O(1) operations. ⊓⊔

We assume that random variables (ik, jk)k≥0 are i.i.d. In the sequel, we use nota-

tion ηk for the entire history of random pair choices and ϕk for the expected value
of the objective function w.r.t. ηk, i.e.:

ηk = {(i0, j0), . . . , (ik−1, jk−1)} and ϕk = EηkF (xk).
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2.1 Previous work

We briefly review some well-known methods from the literature for solving the
optimization model (1). In [27–29] Tseng studied optimization problems in the
form (1) and developed a (block) coordinate gradient descent(CGD) method based
on the Gauss-Southwell choice rule. The main requirement for the (CGD) iteration
is the solution of the following problem: given a feasible x and a working set of
indexes J , the update direction is defined by

dH(x;J ) = arg min
s∈Rn

f(x) + ⟨∇f(x), s⟩+ 1

2
⟨Hs, s⟩+ h(x+ s)

s.t.: aT s = 0, sj = 0 ∀j /∈ J ,

(7)

where H ∈ Rn×n is a symmetric matrix chosen at the initial step of the algorithm.

Algorithm (CGD):

1. Choose a nonempty set of indices J k ⊂ {1, . . . , n} with respect to the

Gauss-Southwell rule

2. Solve (7) with x = xk, J = J k, H = Hk to obtain dk = dHk
(xk;J k)

3. Choose stepsize αk > 0 and set xk+1 = xk + αkdk.

In [29], the authors proved for the particular case when function h is piece-wise

linear/quadratic with O(1) pieces that an ϵ-optimal solution is attained in O(
nLR2

0
ϵ )

iterations, where R0 denotes the Euclidean distance from the initial point to some
optimal solution. Also, in [29] the authors derive estimates of order O(n) on the
computational complexity of each iteration for this choice of h.

Furthermore, for a quadratic function f and a box indicator function h (e.g.,
support vector machine (SVM) applications) one of the first decomposition ap-
proaches developed similar to (RCD) is Sequential Minimal Optimization (SMO)
[21]. SMO consists of choosing at each iteration two scalar coordinates with re-
spect to some heuristic rule based on KKT conditions and solving the small QP
subproblem obtained through the decomposition process. However, the rate of con-
vergence is not provided for the SMO algorithm. But the numerical experiments
show that the method is very efficient in practice due to the closed form solution
of the QP subproblem. List and Simon [14] proposed a variant of block coordinate

descent method for which an arithmetical complexity O(
n2LR2

0
ϵ ) is proved on a

quadratic model with a box indicator function and generalized linear constraints.
Later, Hush et al. [10] presented a more practical decomposition method which
attains the same complexity as the previous methods.

A random coordinate descent algorithm for model (1) with a = 0 and h being
the indicator function for a Cartesian product of sets was analyzed by Nesterov in
[20]. The generalization of this algorithm to composite objective functions has been
studied in [22,23]. However, none of these papers studied the application of coor-
dinate descent algorithms to linearly coupled constrained optimization models. A
similar random coordinate descent algorithm as the (RCD) method described in
the present paper, for optimization problems with smooth objective and linearly
coupled constraints, has been developed and analyzed by Necoara et al. in [16].
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We further extend these results to linearly constrained composite objective func-
tion optimization and provide in the sequel the convergence rate analysis for the
previously presented variant of the (RCD) method (see Algorithm 1 (RCD)).

3 Convergence results

In the following subsections we derive the convergence rate of Algorithm 1 (RCD)
for composite optimization model (1) in expectation, probability and for strongly
convex functions.

3.1 Convergence in expectation

In this section we study the rate of convergence in expectation of algorithm (RCD).
We consider uniform probability distribution, i.e., the event of choosing a pair (i, j)
can occur with probability:

pij =
2

N(N − 1)
,

since we assume that (i, j) = (j, i) and i ̸= j ∈ {1, . . . , N} (see Remark 1 (ii)). In
order to provide the convergence rate of our algorithm, first we have to define the
conformal realization of a vector introduced in [24,25].

Definition 1 Let d, d′ ∈ Rn, then the vector d′ is conformal to d if:

supp(d′) ⊆ supp(d) and d′jdj ≥ 0 ∀j = 1, . . . , n.

For a given matrix A ∈ Rm×n, with m ≤ n, we introduce the notion of elementary
vectors defined as:

Definition 2 An elementary vector of Null(A) is a vector d ∈ Null(A) for which
there is no nonzero vector d′ ∈ Null(A) conformal to d and supp(d′) ̸= supp(d).

Based on Exercise 10.6 in [25] we state the following lemma:

Lemma 2 [25] Given d ∈ Null(A), if d is an elementary vector, then |supp(d)| ≤
rank(A) + 1 ≤ m+ 1. Otherwise, d has a conformal realization:

d = d1 + · · ·+ ds,

where s ≥ 1 and dt ∈ Null(A) are elementary vectors conformal to d for all t = 1, . . . , s.

For the scalar case, i.e., N = n and m = 1, the method provided in [29] finds a
conformal realization with dimension s ≤ |supp(d)|−1 within O(n) operations. We
observe that elementary vectors dt in Lemma 2 for the case m = 1 (i.e., A = aT )
have at most 2 nonzero components.
Our convergence analysis is based on the following lemma, whose proof can be
found in [29, Lemma 6.1]:

Lemma 3 [29] Let h be coordinatewise separable and convex. For any x, x+d ∈ dom h,

let d be expressed as d = d1 + · · · + ds for some s ≥ 1 and some nonzero dt ∈ Rn

conformal to d for t = 1, . . . , s. Then, we have:

h(x+ d)− h(x) ≥
s∑

t=1

(
h(x+ dt)− h(x)

)
.
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For the simplicity of the analysis we introduce the following linear subspaces:

Sij =
{
d ∈ Rni+nj : aTijd = 0

}
and S =

{
d ∈ Rn : aT d = 0

}
.

A simplified update rule of algorithm (RCD) is expressed as:

x+ = x+ Uidi + Ujdj .

We denote by F ∗ and X∗ the optimal value and the optimal solution set for
problem (1), respectively. We also introduce the maximal residual defined in terms
of the norm ∥ · ∥α:

Rα = max
x

{
max

x∗∈X∗

∥∥x− x∗
∥∥
α
: F (x) ≤ F (x0)

}
,

which measures the size of the level set of F given by x0. We assume that this
distance is finite for the initial iterate x0.
Now, we prove the main result of this section:

Theorem 1 Let F satisfy Assumption 1. Then, the random coordinate descent algo-

rithm (RCD) based on the uniform distribution generates a sequence xk satisfying the

following convergence rate for the expected values of the objective function:

ϕk − F ∗ ≤ N2L1−αR2
α

k +
N2L1−αR2

α
F (x0)−F∗

.

Proof For simplicity, we drop the index k and use instead of (ik, jk) and xk the
notation (i, j) and x, respectively. Based on (5) we derive:

F (x+) ≤ f(x) + ⟨∇ijf(x), dij⟩+
Lα
ij

2

∥∥dij∥∥2α + h(x+ dij)

(6)
= min

sij∈Sij

f(x) + ⟨∇ijf(x), sij⟩+
Lα
ij

2

∥∥sij∥∥2α + h(x+ sij).

Taking expectation in both sides w.r.t. random variable (i, j) and recalling that
pij =

2
N(N−1) , we get:

Eij

[
F (x+)

]
≤ Eij

[
min

sij∈Sij

f(x) +⟨∇ijf(x), sij⟩+
Lα
ij

2

∥∥sij∥∥2α + h(x+ sij)

]
≤ Eij

[
f(x) + ⟨∇ijf(x), sij⟩+

Lα
ij

2

∥∥sij∥∥2α + h(x+ sij)

]
=

2

N(N−1)

∑
i,j

(
f(x)+⟨∇ijf(x), sij⟩+

Lα
ij

2

∥∥sij∥∥2α+h(x+ sij)

)

=f(x)+
2

N(N−1)

⟨∇f(x),
∑
i,j

sij⟩+
∑
i,j

Lα
ij

2

∥∥sij∥∥2α+∑
i,j

h(x+sij)

,

(8)

for all possible sij ∈ Sij and pairs (i, j) with i ̸= j ∈ {1, . . . , N}.
Based on Lemma 2 for m = 1, it follows that any d ∈ S has a conformal realization

defined by d =
s∑

t=1

dt, where the vectors dt ∈ S are conformal to d and have only



10 I. Necoara, A. Patrascu

two nonzero components. Thus, for any t = 1, . . . , s there is a pair (i, j) such that
dt ∈ Sij . Therefore, for any d ∈ S we can choose an appropriate set of pairs (i, j)

and vectors sdij ∈ Sij conformal to d such that d =
∑
i,j

sdij . As we have seen, the

above chain of relations in (8) holds for any set of pairs (i, j) and vectors sij ∈ Sij .

Therefore, it also holds for the set of pairs (i, j) and vectors sdij such that d =
∑
i,j

sdij .

In conclusion, we have from (8) that:

Eij

[
F (x+)

]
≤ f(x)+

2

N(N − 1)

⟨∇f(x),
∑
i,j

sdij⟩+
∑
i,j

Lα
ij

2

∥∥∥sdij∥∥∥2
α
+
∑
i,j

h(x+ sdij)

,

for all d ∈ S. Moreover, observing that Lα
ij ≤ 2L1−α and applying Lemma 3 in

the previous inequality for coordinatewise separable functions ∥·∥2α and h(·), we
obtain:

Eij

[
F (x+)

]
≤f(x)+

2

N(N−1)
(⟨∇f(x),

∑
i,j

sdij⟩+
∑
i,j

Lα
ij

2
∥sdij∥

2
α+
∑
i,j

h(x+sdij))

Lemma 3
≤ f(x) +

2

N(N − 1)
(⟨∇f(x),

∑
i,j

sdij⟩+ L1−α∥
∑
i,j

sdij∥
2
α+

h(x+
∑
i,j

sdij)+(
N(N − 1)

2
− 1)h(x))

d=
∑
i,j

sdij

= (1− 2

N(N − 1)
)F (x) +

2

N(N − 1)
(f(x) + ⟨∇f(x), d⟩+

L1−α ∥d∥2α+h(x+ d)),

(9)

for any d ∈ S. Note that (9) holds for every d ∈ S since (8) holds for any sij ∈ Sij .
Therefore, as (9) holds for every vector from the subspace S, it also holds for the
following particular vector d̃ ∈ S defined as:

d̃ = argmin
s∈S

f(x) + ⟨∇f(x), s⟩+ L1−α ∥s∥2α + h(x+ s).

Based on this choice and using similar reasoning as in [19,23] for proving the
convergence rate of gradient type methods for composite objective functions, we
derive the following:

f(x) + ⟨∇f(x), d̃⟩+ L1−α
∥∥d̃∥∥2

α
+ h(x+ d̃)

= min
y∈S

f(x) + ⟨∇f(x), y − x⟩+ L1−α ∥y − x∥2α + h(y)

≤ min
y∈S

F (y) + L1−α ∥y − x∥2α

≤ min
β∈[0,1]

F (βx∗ + (1− β)x) + β2L1−α
∥∥x− x∗

∥∥2
α

≤ min
β∈[0,1]

F (x)− β(F (x)− F ∗) + β2L1−αR2
α

= F (x)− (F (x)− F ∗)2

L1−αR2
α

,
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where in the first inequality we used the convexity of f while in the second and third
inequalities we used basic optimization arguments. Therefore, at each iteration k

the following inequality holds:

Eikjk

[
F (xk+1)

]
≤(1− 2

N(N − 1)
)F (xk)+

2

N(N − 1)

[
F (xk)− (F (xk)− F ∗)2

L1−αR2
α

]
.

Taking expectation with respect to ηk and using convexity properties we get:

ϕk+1 − F ∗ ≤(1− 2

N(N − 1)
)(ϕk − F ∗)+

2

N(N − 1)

[
(ϕk − F ∗)− (ϕk − F ∗)2

L1−αR2
α

]
≤(ϕk − F ∗)− 2

N(N − 1)

[
(ϕk − F ∗)2

L1−αR2
α

]
.

(10)

Further, if we denote ∆k = ϕk − F ∗ and γ = N(N − 1)L1−αR2
α we get:

∆k+1 ≤ ∆k − (∆k)2

γ
.

Dividing both sides with ∆k∆k+1 > 0 and using the fact that ∆k+1 ≤ ∆k we get:

1

∆k+1
≥ 1

∆k
+

1

γ
∀k ≥ 0.

Finally, summing up from 0, . . . , k we easily get the above convergence rate. ⊓⊔

Let us analyze the convergence rate of our method for the two most common
cases of the extended norm introduced in this section: w.r.t. extended Euclidean
norm ∥·∥0 (i.e., α = 0) and norm ∥·∥1 (i.e., α = 1). Recall that the norm ∥·∥1 is
defined by:

∥x∥21 =
N∑
i=1

Li ∥xi∥2 .

Corrollary 1 Under the same assumptions of Theorem 1, the algorithm (RCD) gen-

erates a sequence xk such that the expected values of the objective function satisfy the

following convergence rates for α = 0 and α = 1:

α = 0 : ϕk − F ∗ ≤ N2LR2
0

k +
N2LR2

0

F (x0)−F∗

,

α = 1 : ϕk − F ∗ ≤ N2R2
1

k +
N2R2

1

F (x0)−F∗

.



12 I. Necoara, A. Patrascu

Remark 2 We usually have R2
1 ≤ LR2

0 and this shows the advantages that the
general norm ∥·∥α has over the Euclidean norm. Indeed, if we denote by r2i =

maxx{maxx∗∈X∗ ∥xi − x∗i ∥
2 : F (x) ≤ F (x0)}, then we can provide upper bounds

on R2
1 ≤

∑N
i=1 Lir

2
i and R2

0 ≤
∑n

i=1 r
2
i . Clearly, the following inequality is valid:

N∑
i=1

Lir
2
i ≤

N∑
i=1

Lr2i ,

and the inequality holds with equality for Li = L for all i = 1, . . . , N . We recall
that L = maxi Li. Therefore, in the majority of cases the estimate for the rate of
convergence based on norm ∥·∥1 is much better than that based on norm ∥·∥0.

3.2 Convergence for strongly convex functions

Now, we assume that the objective function in (1) is σα-strongly convex with
respect to norm ∥·∥α, i.e.:

F (x) ≥ F (y) + ⟨F ′(y), x− y⟩+ σα
2

∥x− y∥2α ∀x, y ∈ Rn, (11)

where F ′(y) denotes some subgradient of F at y. Note that if the function f is σ-
strongly convex w.r.t. extended Euclidean norm, then we can remark that it is also
σα-strongly convex function w.r.t. norm ∥·∥α and the following relation between
the strong convexity constants holds:

σ

Lα

N∑
i=1

Lα ∥xi − yi∥2 ≥ σ

Lα

N∑
i=1

Lα
i ∥xi − yi∥2

≥ σα ∥x− y∥2α ,

which leads to
σα ≤ σ

Lα
.

Taking y = x∗ in (11) and from optimality conditions ⟨F ′(x∗), x − x∗⟩ ≥ 0 for all
x ∈ S we obtain:

F (x)− F ∗ ≥ σα
2

∥∥x− x∗
∥∥2
α
. (12)

Next, we state the convergence result of our algorithm (RCD) for solving the
problem (1) with σα-strongly convex objective w.r.t. norm ∥·∥α.

Theorem 2 Under the assumptions of Theorem 1, let F be also σα-strongly convex

w.r.t. ∥·∥α. For the sequence xk generated by algorithm (RCD) we have the following

rate of convergence of the expected values of the objective function:

ϕk − F ∗ ≤
(
1− 2(1− γ)

N2

)k

(F (x0)− F ∗),

where γ is defined by:

γ =

{
1− σα

8L1−α , if σα ≤ 4L1−α

2L1−α

σα
, otherwise.
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Proof Based on relation (9) it follows that:

Eikjk [F (xk+1)] ≤(1− 2

N(N − 1)
)F (xk)+

2

N(N − 1)
min
d∈S

(
f(xk)+⟨∇f(xk), d⟩+ L1−α ∥d∥2α+h(xk + d)

)
.

Then, using similar derivation as in Theorem 1 we have:

min
d∈S

f(xk) + ⟨∇f(xk), d⟩+ L1−α ∥d∥2α + h(xk + d)

≤ min
y∈S

F (y) + L1−α
∥∥∥y − xk

∥∥∥2
α

≤ min
β∈[0,1]

F (βx∗ + (1− β)xk) + β2L1−α
∥∥∥xk − x∗

∥∥∥2
α

≤ min
β∈[0,1]

F (xk)− β(F (xk)− F ∗) + β2L1−α
∥∥∥xk − x∗

∥∥∥2
α

≤ min
β∈[0,1]

F (xk) + β

(
2βL1−α

σα
− 1

)(
F (xk)− F ∗

)
,

where the last inequality results from (12). The statement of the theorem is ob-
tained by noting that β∗ = min{1, σα

4L1−α } and the following subcases:

1. If β∗ = σα

4L1−α and we take the expectation w.r.t. ηk we get:

ϕk+1 − F ∗ ≤
(
1− σα

4L1−αN2

)
(ϕk − F ∗), (13)

2. if β∗ = 1 and we take the expectation w.r.t. ηk we get:

ϕk+1 − F ∗ ≤

[
1−

2(1− 2L1−α

σα
)

N2

]
(ϕk − F ∗). (14)

⊓⊔

3.3 Convergence in probability

Further, we establish some bounds on the required number of iterations for which
the generated sequence xk attains ϵ-accuracy with prespecified probability. In order
to prove this result we use Theorem 1 from [23] and for a clear understanding we
present it bellow.

Lemma 4 [23] Let ξ0 > 0 be a constant, 0 < ϵ < ξ0 and consider a nonnegative

nonincreasing sequence of (discrete) random variables {ξk}k≥0 with one of the following

properties:

(1) E[ξk+1|ξk] ≤ ξk − (ξk)2

c for all k, where c > 0 is a constant,

(2) E[ξk+1|ξk] ≤
(
1− 1

c

)
ξk for all k such that ξk ≥ ϵ, where c > 1 is a constant.
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Then, for some confidence level ρ ∈ (0, 1) we have in probability that:

Pr(ξK ≤ ϵ) ≥ 1− ρ,

for a number K of iterations which satisfies

K ≥ c

ϵ

(
1 + log

1

ρ

)
+ 2− c

ξ0
,

if property (1) holds, or

K ≥ c log
ξ0

ϵρ
,

if property (2) holds.

Based on this lemma we can state the following rate of convergence in probability:

Theorem 3 Let F be a σα-strongly convex function satisfying Assumption 1 and ρ > 0
be the confidence level. Then, the sequence xk generated by algorithm (RCD) using

uniform distribution satisfies the following rate of convergence in probability of the

expected values of the objective function:

Pr(ϕK − F ∗ ≤ ϵ) ≥ 1− ρ,

with K satisfying

K ≥


2N2L1−αR2

α
ϵ

(
1 + log 1

ρ

)
+ 2− 2N2L1−αR2

α
F (x0)−F∗ , σα = 0

N2

2(1−γ) log
F (x0)−F∗

ϵρ , σα > 0,

where γ =

{
1− σα

8L1−α , if σα ≤ 4L1−α

2L1−α

σα
, otherwise.

Proof Based on relation (10), we note that taking ξk as ξk = ϕk−F ∗, the property
(1) of Lemma 4 holds and thus we get the first part of our result. Relations (13) and
(14) in the strongly convex case are similar instances of property (2) in Theorem
4 from which we get the second part of the result. ⊓⊔

4 Generalization

In this section we study the optimization problem (1), but with general linearly
coupling constraints:

min
x∈Rn

F (x) (:= f(x) + h(x))

s.t.: Ax = 0,
(15)

where the functions f and h have the same properties as in Assumption 1 and
A ∈ Rm×n is a matrix with 1 < m ≤ n. There are very few attempts to solve this
problem through coordinate descent strategies and up to our knowledge the only
complexity result can be found in [29].
For the simplicity of the exposition, we work in this section with the standard
Euclidean norm, denoted by ∥·∥0, on the extended space Rn. We consider the set
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of all (m + 1)-tuples of the form N = (i1, . . . , im+1), where ip ∈ {1, . . . , N} for
all p = 1, . . . ,m+ 1. Also, we define pN as the probability distribution associated
with (m+1)-tuples of the form N . Given this probability distribution pN , for this
general optimization problem (15) we propose the following random coordinate
descent algorithm:

Algorithm 2 (RCD)N

1. Choose randomly a set of (m+ 1)-tuple Nk = (i1k, . . . , i
m+1
k )

with probability pNk

2. Set xk+1 = xk + dNk
,

where the direction dNk
is chosen as follows:

dNk
= arg min

s∈Rn
f(xk) + ⟨∇f(xk), s⟩+

LNk

2
∥s∥20 + h(xk + s)

s.t.: As = 0, si = 0 ∀i /∈ Nk.

We can easily see that the linearly coupling constraints Ax = 0 prevent the de-
velopment of an algorithm that performs at each iteration a minimization with
respect to less than m+ 1 coordinates. Therefore we are interested in the class of
iteration updates which restricts the objective function on feasible directions that
consist of at least m+ 1 (block) components.

Further, we redefine the subspace S as S = {s ∈ Rn : As = 0} and additionally
we denote the local subspace SN = {s ∈ Rn : As = 0, si = 0 ∀i ∈ N}. Note that
we still consider an ordered (m+1)-tuple Nk = (i1k, . . . , i

m+1
k ) such that ipk ̸= ilk for

all p ̸= l. We observe that for a general matrix A, the previous subproblem does
not necessarily have a closed form solution. However, when h is coordinatewise
separable, strictly convex and piece-wise linear/quadratic with O(1) pieces (e.g., h
given by (2)) there are efficient algorithms for solving the previous subproblem in
linear-time [29]. Moreover, when h is the box indicator function (i.e., h given by (3))
we have the following: in the scalar case (i.e., N = n) the subproblem has a closed
form solution; for the block case (i.e., N < n) there exist linear-time algorithms
for solving the subproblem within O(

∑
i∈Nk

ni) operations [2]. Through a similar

reasoning as in Lemma 1 we can derive that given a set of indices N = (i1, . . . , ip),
with p ≥ 2, the following relation holds:

f(x+ dN ) ≤ f(x) + ⟨∇f(x), dN ⟩+ LN
2

∥dN ∥20 , (16)

for all x ∈ Rn and dN ∈ Rn with nonzero entries only on the blocks i1, . . . , ip.
Here, LN = Li1 + · · ·+Lip . Moreover, based on Lemma 2 it follows that any d ∈ S

has a conformal realization defined by d =
∑s

t=1 d
t, where the elementary vectors

dt ∈ S are conformal to d and have at most m+1 nonzeros. Therefore, any vector
d ∈ S can be generated by d =

∑
N sN , where sN ∈ SN and their extensions in

Rn have at most m + 1 nonzero blocks and are conformal to d. We now present
the main convergence result for this method.

Theorem 4 Let F satisfy Assumption 1. Then, the random coordinate descent al-

gorithm (RCD)N that chooses uniformly at each iteration m + 1 blocks generates a
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sequence xk satisfying the following rate of convergence for the expected values of the

objective function:

ϕk − F ∗ ≤ Nm+1LR2
0

k +
Nm+1LR2

0

F (x0)−F∗

.

Proof The proof is similar to that of Theorem 1 and we omit it here for brevity.

5 Complexity analysis

In this section we analyze the total complexity (arithmetic complexity [18]) of
algorithm (RCD) based on extended Euclidean norm for optimization problem (1)
and compare it with other complexity estimates. Tseng presented in [29] the first
complexity bounds for the (CGD) method applied to our optimization problem
(1). Up to our knowledge there are no other complexity results for coordinate
descent methods on the general optimization model (1).

Note that the algorithm (RCD) has an overall complexity w.r.t. extended Eu-
clidean norm given by:

O
(
N2LR2

0

ϵ

)
O(iRCD),

where O(iRCD) is the complexity per iteration of algorithm (RCD). On the other
hand, algorithm (CGD) has the following complexity estimate:

O
(
nLR2

0

ϵ

)
O(iCGD),

where O(iCGD) is the iteration complexity of algorithm (CGD). Based on the par-
ticularities and computational effort of each method, we will show in the sequel
that for some optimization models arising in real-world applications the arithmetic
complexity of (RCD) method is lower than that of (CGD) method. For certain in-
stances of problem (1) we have that the computation of the coordinate directional
derivative of the smooth component of the objective function is much more simpler
than the function evaluation or directional derivative along an arbitrary direction.
Note that the iteration of algorithm (RCD) uses only a small number of coordinate
directional derivatives of the smooth part of the objective, in contrast with the
(CGD) iteration which requires the full gradient. Thus, we estimate the arithmetic
complexity of these two methods applied to a class of optimization problems con-
taining instances for which the directional derivative of objective function can be
computed cheaply. We recall that the process of choosing a uniformly random pair
(i, j) in our method requires O(1) operations.

Let us structure a general coordinate descent iteration in two phases:
Phase 1: Gather first-order information to form a quadratic approximation of the
original optimization problem.
Phase 2: Solve a quadratic optimization problem using data acquired at Phase 1
and update the current vector.
Both algorithms (RCD) and (CGD) share this structure but, as we will see, there
is a gap between computational complexities. We analyze the following example:

f(x) =
1

2
xTZTZx+ qTx, (17)
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where Z = [z1 . . . zn] ∈ Rm×n has sparse columns, with an average p << n

nonzero entries on each column zi for all i = 1, . . . , n. A particular case of this
class of functions is f(x) = 1

2 ∥Zx− q∥2, which has been considered for numerical
experiments in [20] and [23]. The problem (1), with the aforementioned structure
(17) of the smooth part of the objective function, arises in many applications:
e.g., linear SVM [28], truss topology [17], internet (Google problem) [20], Cheby-
shev center problems [31], etc. The reader can easily find many other examples of
optimization problems with cheap coordinate directional derivatives.

Further, we estimate the iteration complexity of the algorithms (RCD) and
(CGD). Given a feasible x, from the expression

∇if(x) = ⟨zi, Zx⟩+ qi,

we note that if the residual r(x) = Zx is already known, then the computation
of ∇if(x) requires O(p) operations. We consider that the dimension ni of each
block is of order O( n

N ). Thus, the (RCD) method updates the current point x

on O( n
N ) coordinates and summing up with the computation of the new residual

r(x+) = Zx+, which in this case requires O(pnN ) operations, we conclude that up
to this stage, the iteration of (RCD) method has numerical complexity O(pnN ).
However, the (CGD) method requires the computation of the full gradient for
which are necessary O(np) operations. As a preliminary conclusion, Phase 1 has
the following complexity regarding the two algorithms:

(RCD). Phase 1 : O(
np

N
)

(CGD). Phase 1 : O(np)

Suppose now that for a given x, the blocks (∇if(x),∇jf(x)) are known for
(RCD) method or the entire gradient vector ∇f(x) is available for (CGD) method
within previous computed complexities, then the second phase requires the find-
ing of an update direction with respect to each method. For the general linearly
constrained model (1), evaluating the iteration complexity of both algorithms can
be a difficult task. Since in [29] Tseng provided an explicit total computational
complexity for the cases when the nonsmooth part of the objective function h is
separable and piece-wise linear/quadratic with O(1) pieces, for clarity of the com-
parison we also analyze the particular setting when h is a box indicator function
as given in equation (3). For algorithm (RCD) with α = 0, at each iteration, we
require the solution of the following problem (see (3)):

min
sij∈Rni+nj

⟨∇ijf(x), sij⟩+
L0
ij

2

∥∥sij∥∥20
s.t.: aTi si + aTj sj = 0, (l − x)ij ≤ sij ≤ (u− x)ij .

(18)

It is shown in [12] that problem (18) can be solved in O(ni + nj) operations.
However, in the scalar case (i.e., N = n) problem (18) can solved in closed form.
Therefore, Phase 2 of algorithm (RCD) requires O( n

N ) operations. Finally, we
estimate for algorithm (RCD) the total arithmetic complexity in terms of the
number of blocks N as:

O
(
N2LR2

0

ϵ

)
O(

pn

N
).
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On the other hand, due to the Gauss-Southwell rule, the (CGD) method re-
quires at each iteration the solution of a quadratic knapsack problem of dimension
n. It is argued in [12] that for solving the quadratic knapsack problem we need O(n)
operations. In conclusion, the Gauss-Southwell procedure in algorithm (CGD) re-
quires the conformal realization of the solution of a continuous knapsack problem
and the selection of a “good” set of blocks J . This last process has a different cost
depending on m. Overall, we estimate the total complexity of algorithm (CGD)
for one equality constraint, m = 1, as:

O
(
nLR2

0

ϵ

)
O(pn)

Table 1: Comparison of arithmetic complexities for alg. (RCD), (CGD) and [10,14] for m = 1.

Algorithm / m = 1 h(x) Probabilities Complexity

(RCD) separable 1
N2 O(

pNnLR2
0

ϵ
)

(CGD) separable greedy O(
pn2LR2

0
ϵ

)

Hush [10], List [14] box indicator greedy O(
pn2LR2

0
ϵ

)

First, we note that in the case m = 1 and N << n (i.e., the block case)
algorithm (RCD) has better arithmetic complexity than algorithm (CGD) and
previously mentioned block-coordinate methods [10,14] (see Table 1). When m =
1 and N = n (i.e., the scalar case), by substitution in the above expressions
from Table 1, we have a total complexity for algorithm (RCD) comparable to the
complexity of algorithm (CGD) and the algorithms from [10,14].

On the other hand, the complexity of choosing a random pair (i, j) in algorithm
(RCD) is very low, i.e., we need O(1) operations. Thus, choosing the working pair
(i, j) in our algorithm (RCD) is much simpler than choosing the working set J
within the Gauss-Southwell rule for algorithm (CGD) which assumes the following
steps: first, compute the projected gradient direction and second, find the confor-
mal realization of computed direction; the overall complexity of these two steps
being O(n). In conclusion, the algorithm (RCD) has a very simple implementation
due to simplicity of the random choice for the working pair and a low complexity
per iteration.

For the case m = 2 the algorithm (RCD) needs in Phase 1 to compute coor-
dinate directional derivatives with complexity O(pnN ) and in Phase 2 to find the
solution of a 3-block dimensional problem of the same structure as (18) with com-
plexity O( n

N ). Therefore, the iteration complexity of the (RCD) method in this
case is still O(pnN ). On the other hand, the iteration complexity of the algorithm
(CGD) for m = 2 is given by O(pn+ n log n) [29].

For m > 2, the complexity of Phase 1 at each iteration of our method still
requires O(pnN ) operations and the complexity of Phase 2 is O(mn

N ), while in the
(CGD) method the iteration complexity is O(m3n2) [29].

For the case m > 1, a comparison between arithmetic complexities of algo-
rithms (RCD) and (CGD) is provided in Table 2. We see from this table that de-
pending on the values of n,m and N , the arithmetic complexity of (RCD) method
can be better or worse than that of the (CGD) method.
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Table 2: Comparison of arithmetic complexities for algorithms (RCD) and (CGD) for m ≥ 2.

Algorithm m = 2 m > 2

(RCD)
pN2nLR2

0
ϵ

(p+m)NmnLR2
0

ϵ

(CGD)
(p+logn)n2LR2

0
ϵ

m3n3LR2
0

ϵ

We conclude from the rate of convergence and the previous complexity analysis
that algorithm (RCD) is easier to be implemented and analyzed due to the ran-
domization and the typically very simple iteration. Moreover, on certain classes
of problems with sparsity structure, that appear frequently in many large-scale
real applications, the arithmetic complexity of (RCD) method is better than that
of some well-known methods from the literature. All these arguments make the
algorithm (RCD) to be competitive in the composite optimization framework.
Moreover, the (RCD) method is suited for recently developed computational ar-
chitectures (e.g., distributed or parallel architectures).

6 Numerical Experiments

In this section we present extensive numerical simulations, where we compare our
algorithm (RCD) with some recently developed state-of-the-art algorithms from
the literature for solving the optimization problem (1): coordinate gradient descent
(CGD) [29], projected gradient method for composite optimization (GM) [19] and
LIBSVM [7]. We test the four methods on large-scale optimization problems rang-
ing from n = 103 to n = 107 arising in various applications such as: support vector
machine (Section 6.1), Chebyshev center of a set of points (Section 6.2) and ran-
dom generated problems with an ℓ1-regularization term (Section 6.3). Firstly, for
the SVM application we compare algorithm (RCD) against (CGD) and LIBSVM
and we remark that our algorithm has the best performance on large-scale prob-
lem instances with sparse data. Secondly, we also observe a more robust behavior
for algorithm (RCD) in comparison with algorithms (CGD) and (GM) when using
different initial points on Chebyshev center problem instances. In the final part, we
test our algorithm on randomly generated problems, where the nonsmooth part of
the objective function contains an ℓ1-norm term, i.e., λ

∑n
i=1 |xi| for some λ > 0,

and we compare our method with algorithms (CGD) and (GM).
We have implemented all the algorithms in C-code and the experiments were

run on a PC with Intel Xeon E5410 CPU and 8GB RAM memory. In all algorithms
we considered the scalar case, i.e., N = n and we worked with the extended
Euclidean norm (α = 0). In our applications the smooth part f of the composite
objective function is of the form (17). The coordinate directional derivative at the
current point for algorithm (RCD) ∇if(x) = ⟨zi, Zx⟩ + qi is computed efficiently
by knowing at each iteration the residual r(x) = Zx. For (CGD) method the
working set is chosen accordingly to Section 6 in [28]. Therefore, the entire gradient
at current point ∇f(x) = ZTZx + q is required, which is computed efficiently
using the residual r(x) = Zx. For gradient and residual computations we use
an efficient sparse matrix-vector multiplication procedure. We coded the standard
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(CGD) method presented in [29] and we have not used any heuristics recommended
by Tseng in [28], e.g., the “3-pair” heuristic technique. The direction dij at the
current point from subproblem (6) for algorithm (RCD) is computed in closed form
for all three applications considered in this section. For computing the direction
dH(x;J ) at the current point from subproblem (7) in the (CGD) method for
the first two applications, we coded the algorithm from [12] for solving quadratic
knapsack problems of the form (18) that has linear time complexity. For the second
application, the direction at the current point for algorithm (GM) is computed
using a linear time simplex projection algorithm introduced in [11]. For the third
application, we used the equivalent formulation of the subproblem (7) given in
[29], obtaining for both algorithms (CGD) and (GM), an iteration which requires
the solution of some double size quadratic knapsack problem of the form (18).

In the following tables, for each algorithm we present the final objective func-
tion value (obj), the number of iterations (iter) and the necessary CPU time for
our computer to execute all the iterations. As the algorithms (CGD), LIBSVM
and (GM) use the whole gradient information to obtain the working set and to
find the direction at the current point, we also report for the algorithm (RCD) the
equivalent number of full-iterations which means the total number of iterations
divided by n

2 (i.e., the number of iterations groups x0, xn/2, . . . , xkn/2).

6.1 Support vector machine

In order to better understand the practical performance of our method, we have
tested the algorithms (RCD), (CGD) and LIBSVM on two-class data classification
problems with linear kernel, which is a well-known real-world application that can
be posed as a large-scale optimization problem in the form (1) with a sparsity
structure. In this section, we describe our implementation of algorithms (RCD),
(CGD) [28] and LIBSVM [7] and report the numerical results on different test
problems. Note that linear SVM is a technique mainly used for text classification,
which can be formulated as the following optimization problem:

min
x∈Rn

1

2
xTZTZx− eT x+ 1[0,C](x)

s.t.: aTx = 0,

(19)

where 1[0,C] is the indicator function for the box constrained set [0, C]n, Z ∈ Rm×n

is the instance matrix with an average sparsity degree p (i.e., on average, Z has
p nonzero entries on each column), a ∈ Rn is the label vector of instances, C

is the penalty parameter and e = [1 . . . 1]T ∈ Rn. Clearly, this model fits the
aforementioned class of functions (17). We set the primal penalty parameter C = 1
in all SVM test problems. As in [28], we initialize all the algorithms with x0 = 0.
The stopping criterion used in the algorithm (RCD) is: f(xk−j)− f(xk−j+1) ≤ ϵ,
where j = 0, . . . , 10, while for the algorithm (CGD) we use the stopping criterion
f(xk)− f(xk+1) ≤ ϵ, where ϵ = 10−5.

We report in Table 3 the results for algorithms (RCD), (CGD) and LIBSVM
implemented in the scalar case, i.e., N = n. The data used for the experiments can
be found on the LIBSVMwebpage (http://www.csie.ntu.edu.tw/cjlin/libsvmtools/
datasets/). For problems with very large dimensions, we generated the data ran-
domly (see “test1” and “test2”) such that the nonzero elements of Z fit into the
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Table 3: Comparison of algorithms (RCD), (CGD) and library LIBSVM on SVM problems.

Data
set

n/m (RCD) (CGD) LIBSVM

full-iter/obj/time(min) iter/obj/time(min) iter/obj/time(min)

a7a 16100/122
(p = 14)

11242/-5698.02/2.5 23800/-5698.25/21.5 63889/-5699.25/0.46

a8a 22696/123
(p = 14)

22278/-8061.9/18.1 37428/-8061.9/27.8 94877/-8062.4/1.42

a9a 32561/123
(p = 14)

15355/-11431.47/7.01 45000/-11431.58/89 78244/-11433.0/2.33

w8a 49749/300
(p = 12)

15380/-1486.3/26.3 19421/-1486.3/27.2 130294/-1486.8/42.9

ijcnn1 49990/22
(p = 13)

7601/-8589.05/6.01 9000/-8589.52/16.5 15696/-8590.15/1.0

web 350000/254
(p = 85)

1428/-69471.21/29.95 13600/-27200.68/748 59760/-69449.56/467

covtyp 581012/54
(p = 12)

1722/-337798.34/38.5 12000/-24000/480 466209/-
337953.02/566.5

test1 2.2 · 106/106

(p = 50)
228/-1654.72/51 4600/-473.93/568 *

test2 107/5 · 103

(p = 10)
350/-508.06/112.65 502/-507.59/516.66 *

available memory of our computer. For each algorithm we present the final objec-
tive function value (obj), the number of iterations (iter) and the necessary CPU
time (in minutes) for our computer to execute all the iterations. For the algorithm
(RCD) we report the equivalent number of full-iterations, that is the number
of iterations groups x0, xn/2, . . . , xkn/2. On small test problems we observe that
LIBSVM outperforms algorithms (RCD) and (CGD), but we still have that the
CPU time for algorithm (RCD) does not exceed 30 min, while algorithm (CGD)
performs much worse. On the other hand, on large-scale problems the algorithm
(RCD) has the best behavior among the three tested algorithms (within a factor
of 10). For very large problems (n ≥ 106), LIBSVM has not returned any result
within 10 hours.

Fig. 1: Performance of algorithm (RCD) for different block dimensions.
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For the block case (i.e., N ≤ n), we have plotted for algorithm (RCD) on the
test problem “a7a” the CPU time and total time (in minutes) to solve knapsack
problems (left) and the number of full-iterations (right) for different dimensions of
the blocks ni. We see that the number of iterations decreases with the increasing
dimension of the blocks, while the CPU time increases w.r.t. the scalar case due
to the fact that for ni > 1 the direction dij cannot be computed in closed form as
in the scalar case (i.e., ni = 1), but requires solving a quadratic knapsack problem
(18) whose solution can be computed in O(ni + nj) operations [12].

6.2 Chebyshev center of a set of points

Many real applications such as location planning of shared facilities, pattern recog-
nition, protein analysis, mechanical engineering and computer graphics (see e.g.,
[31] for more details and appropriate references) can be formulated as finding the
Chebyshev center of a given set of points. The Chebyshev center problem involves
the following: given a set of points z1, . . . , zn ∈ Rm, find the center zc and radius r

of the smallest enclosing ball of the given points. This geometric problem can be
formulated as the following optimization problem:

min
r,zc

r

s.t.: ∥zi − zc∥2 ≤ r ∀i = 1, . . . , n,

where r is the radius and zc is the center of the enclosing ball. It can be immediately
seen that the dual formulation of this problem is a particular case of our linearly
constrained optimization model (1):

min
x∈Rn

∥Zx∥2 −
n∑

i=1

∥zi∥2 xi + 1[0,∞)(x) (20)

s.t.: eT x = 1,

where Z is the matrix containing the given points zi as columns. Once an optimal
solution x∗ for the dual formulation is found, a primal solution can be recovered
as follows:

r∗ =

(
−
∥∥Zx∗

∥∥2 + n∑
i=1

∥zi∥2 x∗i

)1/2

, z∗c = Zx∗. (21)

The direction dij at the current point in the algorithm (RCD) is computed in
closed form. For computing the direction in the (CGD) method we need to solve
a quadratic knapsack problem that has linear time complexity [12]. The direction
at the current point for algorithm (GM) is computed using a linear time simplex
projection algorithm introduced in [11]. We compare algorithms (RCD), (CGD)
and (GM) for a set of large-scale problem instances generated randomly with a
uniform distribution. We recover a suboptimal radius and Chebyshev center using
the same set of relations (21) evaluated at the final iteration point xk for all three
algorithms.

In Fig. 2 we present the performance of the three algorithms (RCD), (GM)
and (CGD) on a randomly generated matrix Z ∈ R2×1000 for 50 full-iterations
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Fig. 2: Performance of algorithms (RCD), (GM) and (CGD) for 50 full-iterations and initial
point e1 (top) and e

n
(bottom) on a randomly generated matrix Z ∈ R2×1000.
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Fig. 3: Time performance of algorithms (RCD), (GM) and (CGD) for initial point e
n

(left) and

e1(right) on a randomly generated matrix Z ∈ R30×1000.
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with two different initial points: x0 = e1 (the vector with the first entry 1 and the
rest of the entries zeros) and x0 = e

n . Note that for the initial point x0 = e1, the
algorithm (GM) is outperformed by the other two methods: (RCD) and (CGD).
Also, if all three algorithms are initialized with x0 = e

n , the algorithm (CGD) has
the worst performance among all three. We observe that our algorithm (RCD) is
very robust against the initial point choice.

In Fig. 3 we plot the objective function evaluation over time (in seconds) for
the three algorithms (RCD), (GM) and (CGD) on a matrix Z ∈ R30×1000. We
observe that the algorithm (RCD) has a comparable performance with algorithm
(GM) and a much better performance than (CGD) when the initial point is taken
e
n . On the other hand, the algorithm (GM) has the worst behavior among all
three methods when sparse initializations are used. However, the behavior of our
algorithm (RCD) is not dependent on the sparsity of the initial point.
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Table 4: Comparison of algorithms (RCD), (CGD) and (GM) on Chebyshev center problems.

x0 n
m

(RCD) (CGD) GM

full-iter/obj/time(sec) iter/obj/time(sec) iter/obj/time(sec)

e
n

5 · 103

10
2064/-79.80/0.76 4620/-79.80/5.3 17156/-79.82/5.6

104

10
6370/-84.71/4.75 9604/-84.7/23.2 42495/-84.71/28.01

3 · 104

10
13213/-87.12/31.15 27287/-86.09/206.52 55499/-86.09/111.81

5 · 103

30
4269/-205.94/2.75 823/-132.08/0.6 19610/-204.94/13.94

104

30
5684/-211.95/7.51 9552/-211.94/33.42 28102/-210.94/40.18

3 · 104

30
23744/-215.66/150.86 156929/-214.66/1729.1 126272/-214.66/937.33

e1

5 · 103

10
2392/-79.81/0.88 611/-80.8/0.77 29374/-79.8/9.6

104

10
9429/-84.71/7.05 350/-85.2/0.86 60777/-84.7/40.1

3 · 104

10
13007/-87.1/30.64 615/-88.09/6.20 129221/-86.09/258.88

5 · 103

30
2682/-205.94/1.73 806/-206.94/1.13 35777/-204.94/25.29

104

30
4382/-211.94/5.77 594/-212.94/2.14 59825/-210.94/85.52

3 · 104

30
16601/-215.67/102.11 707 /-216.66/8.02 191303/-214.66/1421

In Table 4, for a number of n = 5·103, 104 and 3·104 points generated randomly
using uniform distribution in R10 and R30, we compare all three algorithms (RCD),
(CGD) and (GM) with two different initial points: x0 = e1 and x0 = e

n . Firstly,
we have computed f∗ with the algorithm (CGD) using x0 = e1 and imposing the
termination criterion f(xk)−f(xk+1) ≤ ϵ, where ϵ = 10−5. Secondly, we have used
the precomputed optimal value f∗ to test the other algorithms with termination
criterion f(xk)−f∗ ≤ 1 or 2. We clearly see that our algorithm (RCD) has superior
performance over the (GM) method and is comparable with (CGD) method when
we start from x0 = e1. When we start from x0 = e

n our algorithm provides better
performance in terms of objective function and CPU time (in seconds) than the
(CGD) and (GM) methods (at least 6 times faster). We also observe that our
algorithm is not sensitive w.r.t. the initial point.

6.3 Random generated problems with ℓ1-regularization term

In this section we compare our algorithm (RCD) with the methods (CGD) and
(GM) on problems with composite objective function, where the nonsmooth part
contains an ℓ1-regularization term λ

∑n
i=1 |xi|. Many applications from signal pro-

cessing and data mining can be formulated into the following optimization problem
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[5,22]:

min
x∈Rn

1

2
xTZTZx+ qTx+

(
λ

n∑
i=1

|xi|+ 1[l,u](x)

)
(22)

s.t.: aTx = b,

where Z ∈ Rm×n and the penalty parameter λ > 0. Further, the rest of the
parameters are chosen as follows: a = e, b = 1 and −l = u = 1. The direction
dij at the current point in the algorithm (RCD) is computed in closed form. For
computing the direction in the (CGD) and (GM) methods we need to solve a
double size quadratic knapsack problem of the form (18) that has linear time
complexity [12].

Table 5: Comparison of algorithms (RCD), (CGD) and (GM) on ℓ1-regularization problems.

x0 λ n (RCD) (CGD) (GM)

full-iter/obj/time(sec) iter/obj/time(sec) iter/obj/time(sec)

e
n

0.1

104 905/-6.66/0.87 10/-6.67/0.11 9044/-6.66/122.42

5 ·104 1561/-0.79/12.32 8/-0.80/0.686 4242/-0.75/373.99

105 513/-4.12/10.45 58/-4.22/7.55 253/-4.12/45.06

5 ·105 245/-2.40/29.03 13/-2.45/9.20 785/-2.35/714.93

2 ·106 101/-10.42/61.27 6/-10.43/22.79 1906/-9.43/6582.5

107 29/-2.32/108.58 7/-2.33/140.4 138/-2.21/2471.2

10

104 316/11.51/0.29 5858/11.51/35.67 22863/11.60/150.61

5 ·104 296/23.31/17.65 1261/23.31/256.6 1261/23.40/154.6

105 169/22.43/12.18 46/22.34/15.99 1467/22.43/423.4

5 ·105 411/21.06/50.82 37/21.02/22.46 849/22.01/702.73

2 ·106 592/11.84/334.30 74/11.55/182.44 664/12.04/2293.1

107 296/20.9/5270.2 76/20.42/1071.5 1646/20.91/29289.1

e1

0.1

104 536/-6.66/0.51 4/-6.68/0.05 3408/-6.66/35.26

5 ·104 475/-0.79/24.30 84564/-0.70/7251.4 54325/-0.70/4970.7

105 1158/-4.07/21.43 24/-4.17/4.83 6699/-3.97/1718.2

5 ·105 226/-2.25/28.81 8/-2.35/9.03 2047/-2.25/2907.5

2·106 70/-10.42/40.4 166/-10.41/632 428/-10.33/1728.3

107 30/-2.32/100.1 * 376/-2.22/6731

10

104 1110/11.51/1.03 17/11.52/0.14 184655/11.52/1416.8

5 ·104 237/23.39/1.22 21001/23.41/4263.5 44392/23.1/5421.4

105 29/22.33/2.47 * *

5 ·105 29/21.01/3.1 * *

2·106 5/11.56/2.85 * *

107 2/20.42/4.51 * *
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In Table 5, for dimensions ranging from n = 104 to n = 107 and m = 10,
we have generated randomly the matrix Z ∈ Rm×n and q ∈ Rn using uniform
distribution. We compare all three algorithms (RCD), (CGD) and (GM) with two
different initial points x0 = e1 and x0 = e

n and two different values of the penalty
parameter λ = 0.1 and λ = 10. Firstly, we have computed f∗ with the algorithm
(CGD) using x0 = e

n and imposing the termination criterion f(xk)− f(xk+1) ≤ ϵ,
where ϵ = 10−5. Secondly, we have used the precomputed optimal value f∗ to test
the other algorithms with termination criterion f(xk) − f∗ ≤ 0.1 or 1. For the
penalty parameter λ = 10 and initial point e1 the algorithms (CGD) and (GM)
have not returned any result within 5 hours. We can clearly see from Table 5
that for most of the tests with the initialization x0 = e1 our algorithm (RCD)
performs up to 100 times faster than the other two methods. Also, note that when
we start from x0 = e

n our algorithm provides a comparable performance in terms
of objective function and CPU time (in seconds) with algorithm (CGD). Finally,
we observe that algorithm (RCD) is the most robust w.r.t. the initial point among
all three tested methods.
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