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1 Introduction and preliminaries

1.1 Polynomial optimization over the simplex

Let Hn,d denote the set of all homogeneous polynomials of degree d in n variables. We consider the
problem of minimizing a polynomial f ∈ Hn,d on the standard simplex

∆n =

{
x ∈ Rn+ :

n∑
i=1

xi = 1

}
.

That is, the problem of computing

f = min
x∈∆n

f(x), or f = max
x∈∆n

f(x).

This problem is known to be NP-hard, even if f is a quadratic function. Indeed, if G denotes
a graph with vertex set V and adjacency matrix A, and I denotes the identity matrix, then the
maximum cardinality α(G) of a stable set in G can be obtained via

1

α(G)
= min
x∈∆|V |

xT (I +A)x,

by a theorem of Motzkin and Straus [15].
On the other hand, the problem does allow a polynomial-time approximation scheme (PTAS),

as was shown by Bomze and De Klerk (for quadratic f) [3], and by De Klerk, Laurent and Parrilo
(for more general, fixed-degree f) [11]. The PTAS is particularly simple, and takes the minimum
of f on the regular grid:

∆(n, r) = {x ∈ ∆n : rx ∈ Nn}

for increasing values of r. We denote the minimum over the grid by

f∆(n,r) = min
x∈∆(n,r)

f(x),

and observe that the computation of f∆(n,r) requires |∆(n, r)| =
(
n+r−1

r

)
evaluations of f .

Several properties of the regular grid ∆(n, r) have been studied in the literature. In Bos [5],
the Lebesgue constant of ∆(n, r) is studied in the context of Lagrange interpolation and finite
element methods. Given a point x ∈ ∆n, Bomze, Gollowitzer and Yildirim [4] study a scheme to
find the closest point to x on ∆(n, r) with respect to certain norms (including `p-norms for finite
p). Furthermore, for any quadratic polynomial f ∈ Hn,2 and r ≥ 2, Sagol and Yildirim [18] and
Yildirim [20] consider the upper bound on f defined by minx∈∪rk=2∆(n,k) f(x) (r = 2, 3, . . .), and
analyze the error bound. The following error bounds are known for the approximation f∆(n,r) of f .

Theorem 1 ((i) Bomze-De Klerk [3] and (ii) De Klerk-Laurent-Parrilo [11])

(i) For any quadratic polynomial f ∈ Hn,2 and r ≥ 2, one has

f∆(n,r) − f ≤
f − f
r

.
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(ii) For any polynomial f ∈ Hn,d and r ≥ d, one has

f∆(n,r) − f ≤
(

1− rd

rd

)(
2d− 1

d

)
dd(f − f),

where rd = r(r − 1) · · · (r − d+ 1).

Note that these results indeed imply the existence of a PTAS in the sense of the following definition,
that has been used by several authors (see e.g. [2,10,11,17,19]).

Definition 1 (PTAS) A value ψε approximates f with relative accuracy ε ∈ [0, 1] if

|ψε − f | ≤ ε(f − f).

The approximation is called implementable if ψε = f(xε) for some feasible xε. If a problem allows
an implementable approximation ψε = f(xε) for each ε ∈ (0, 1], such that the feasible xε can be
computed in time polynomial in n and the bit size required to represent f , we say that the problem
allows a polynomial time approximation scheme (PTAS).

Indeed, Theorem 1 clearly implies that f∆(n,r) yields a PTAS for polynomials of fixed degree d.
In this paper we give alternative proofs of this result, and also refine the relevant error bound in the
special case of degree three polynomials. The proof of the PTAS in the quadratic case is completely
elementary, and much simpler than the proof given in [3]. It is in fact closely related to a proof
given by Nesterov [16]; see Section 6. In fact, the main contribution of our paper is to provide new
insight into the PTAS by establishing precise connections with Bernstein approximation, and the
approach of Nesterov [16], which in turn requires an understanding of the precise connection to the
multinomial distribution. We also prove, by giving an example, that the error bound in Theorem
1(i) is tight in terms of its dependence on r.

Our main tool will be Bernstein approximation on the simplex (which is similar to the approach
used by De Klerk and Laurent [12] for polynomial optimization over the hypercube).

We start by reviewing the necessary background material on Bernstein approximation.

1.2 Bernstein approximation on the simplex

Given an integer r ≥ 0, we define

I(n, r) :=

{
α ∈ Nn :

n∑
i=1

αi = r

}
= r∆(n, r).

The Bernstein approximation of order r ≥ 1 on the simplex of a polynomial f ∈ Hn,d is the
polynomial Br(f) ∈ Hn,r defined by

Br(f)(x) =
∑

α∈I(n,r)

f
(α
r

) r!
α!
xα, (1)

where α! :=
∏n
i=1 αi! and xα :=

∏n
i=1 x

αi
i . For instance, for the constant polynomial f ≡ 1, its

Bernstein approximation of any order r is
∑
α∈I(n,r)

r!
α!x

α, which is equal to (
∑n
i=1 xi)

r by the
multinomial theorem, and thus to 1 for any x ∈ ∆n.
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There is a vast literature on Bernstein approximation, and the interested reader may consult
e.g. the papers by Ditzian [6,7], Ditzian and Zhou [8], the book by Altomare and Campiti [1], and
the references therein for more details than given here.

To motivate our use of Bernstein approximation, we state one well-known result that shows
uniform convergence.

Theorem 2 (See e.g. [1], §5.2.11) Let f : Rn → R be any continuous function defined on ∆n,
and Br(f) as defined in (1). One has

|Br(f)(x)− f(x)| ≤ 2ω

(
f,

1√
r

)
∀x ∈ ∆n,

where ω denotes the modulus of continuity:

ω(f, δ) := max
x,y∈∆n
‖x−y‖≤δ

|f(x)− f(y)| (δ ≥ 0).

Next we state some simple inequalities relating a polynomial, its Bernstein approximation and
their minimum over the set ∆(n, r) of grid points.

Lemma 1 Given a polynomial f ∈ Hn,d and r ≥ 1, one has

min
x∈∆n

Br(f)(x) ≥ f∆(n,r), (2)

f∆(n,r) − f ≤ min
x∈∆(n,r)

Br(f)(x)− f ≤ max
x∈∆n

{Br(f)(x)− f(x)}. (3)

Proof We first show (2). Fix x ∈ ∆n. By the multinomial theorem, 1 = (
∑n
i=1 xi)

r =
∑
α∈I(n,r)

r!
α!x

α.

Hence, Br(f)(x) is a convex combination of the values f(αr ) (α ∈ I(n, r)), which implies that
Br(f)(x) ≥ minα∈I(n,r) f(αr ) = f∆(n,r).

The left most inequality in (3) follows directly from (2). To show the right most inequality, let
x∗ be a global minimizer of f over ∆n, so that f(x∗) = f . Then, minx∈∆n Br(f)(x)− f is at most
Br(f)(x∗)− f = Br(f)(x∗)− f(x∗), which concludes the proof. ut
The motivation for using Bernstein approximation to study the quantity f∆(n,r) is now clear from
Theorem 2 and relation (2). Indeed, the Bernstein approximation Br(f) converges uniformly to f
as r →∞, and the minimum of Br(f) on ∆n is lower bounded by f∆(n,r).

Our strategy for upper bounding the range f∆(n,r) − f will be to upper bound the (possibly
larger) range maxx∈∆n{Br(f)(x) − f(x)} – see Theorems 4, 5, 6 and 8. Hence our results can be
seen as refinements of the previously known results quoted in Theorem 1 above.

The following example shows that all inequalities can be strict in relation (3).

Example 1 Consider the quadratic polynomial f = 2x21 + x22 − 5x1x2 ∈ H2,2. Then, B2(f)(x) =
x21 + 1

2x
2
2− 5

2x1x2 +x1 + 1
2x2. One can easily check that f = − 17

32 (attained at the unique minimizer

( 7
16 ,

9
16 )), minx∈∆2 B2(f)(x) = 7

16 (attained at the unique minimizer x = ( 3
8 ,

5
8 )), and f∆(2,2) = − 1

2

(attained at the unique minimizer ( 1
2 ,

1
2 )). In this example, the polynomial f and its Bernstein

approximation B2(f)(x) do not have a common minimizer over the simplex.
Moreover, we note that f = 2 and maxx∈∆2

{B2(f)(x)−f(x)} = 1, so that we have the following
chain of strict inequalities:

f∆(2,2)−f (=
1

32
) < min

x∈∆2

B2(f)(x)−f (=
31

32
) < max

x∈∆2

{B2(f)(x)−f(x)} (= 1) <
1

2
(f −f) (=

81

64
),

which shows that all the inequalities can be strict in (3).
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1.3 Bernstein coefficients

For any polynomial f =
∑
β∈I(n,d) fβx

β ∈ Hn,d, one can write

f =
∑

β∈I(n,d)

fβx
β =

∑
β∈I(n,d)

(
fβ
β!

d!

)
d!

β!
xβ .

We call fβ
β!
d! (β ∈ I(n, d)) the Bernstein coefficients of f , since they are the coefficients of the

polynomial f when it is expressed in the Bernstein basis { d!β!x
β : β ∈ I(n, d)} of Hn,d. Using the

multinomial theorem (as in the proof of Lemma 1), one can see that, for x ∈ ∆n, f(x) is a convex
combination of its Bernstein coefficients fβ

β!
d! (β ∈ I(n, d)). Therefore, one has

min
β∈I(n,d)

fβ
β!

d!
≤ f ≤ f ≤ max

β∈I(n,d)
fβ
β!

d!
. (4)

We will use the following result of [11], which bounds the range of the Bernstein coefficients in
terms of the range of function values.

Theorem 3 [11, Theorem 2.2] For any polynomial f =
∑
β∈I(n,d) fβx

β ∈ Hn,d and x ∈ ∆n, one
has

f − f ≤ max
β∈I(n,d)

fβ
β!

d!
− min
β∈I(n,d)

fβ
β!

d!
≤
(

2d− 1

d

)
dd(f − f).

1.4 Structure of the paper

The paper is organized as follows. In Section 2, we give an elementary proof of the PTAS for
quadratic polynomial optimization over the simplex, that is closely related to a proof given by
Nesterov [16]. In Section 3, we refine the known PTAS result for cubic polynomial optimization over
the simplex. In addition, we give an elementary proof of the PTAS result for square-free polynomial
optimization over the simplex in Section 4. Moreover, in Section 5, we provide an alternative proof
of the PTAS for general (fixed-degree) polynomial optimization over the simplex. We conclude with
a discussion of the exact relation between our analysis and that by Nesterov [16] in Section 6. In
the Appendix we provide a self-contained proof for an explicit description of the moments of the
multinomial distribution in terms of the Stirling numbers of the second kind.

1.5 Notation

Throughout we use the notation [n] = {1, 2, . . . , n} and Nn is the set of all nonnegative integral
vectors. For α ∈ Nn, we define |α| =

∑n
i=1 αi and α! = α1!α2! · · ·αn!. For two vectors α, β ∈ Nn, the

inequality α ≤ β is coordinate-wise and means that αi ≤ βi for any i = 1, . . . , n. We let e1, . . . , en
denote the standard unit vectors in Rn. Moreover, for I ⊆ [n] we set eI =

∑
i∈I ei and we let e

denote the all-ones vector in Rn. As before, I(n, d) = {α ∈ Nn : |α| = d} and Hn,d denotes the set
of all multivariate homogeneous polynomials in n variables with degree d. Monomials in Hn,d are
denoted as xα =

∏n
i=1 x

αi
i for α ∈ I(n, d), while for I ⊆ [n], we use the notation xI =

∏
i∈I xi.

Finally, for β ∈ Nn, we also use φβ to denote the monomial xβ , i.e., we set φβ(x) = xβ .
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2 PTAS for quadratic polynomial optimization over the simplex

We first recall the explicit Bernstein approximation of the monomials of degree at most two, i.e.,
we compute Br(φei), Br(φ2ei) and Br(φei+ej ). We give a proof for clarity.

Lemma 2 For r ≥ 1 one has Br(φei)(x) = xi, Br(φ2ei)(x) = 1
rxi(1−xi)+x2i , and Br(φei+ej )(x) =

r−1
r xixj for all x ∈ ∆n.

Proof By the definition (1), one has:

Br(φei)(x) =
∑

α∈I(n,r)

αi
r

r!

α!
xα = xi

∑
β∈I(n,r−1)

(r − 1)!

β!
xβ = xi(

n∑
i=1

xi)
r−1 = xi,

Br(φ2ei)(x) =
∑

α∈I(n,r)

α2
i

r2
r!

α!
xα =

r − 1

r
x2i

∑
β∈I(n,r−2)

(r − 2)!

β!
xβ +

1

r
xi

∑
β∈I(n,r−1)

(r − 1)!

β!
xβ

=
r − 1

r
x2i +

1

r
xi =

1

r
xi(1− xi) + x2i ,

Br(φei+ej )(x) =
∑

α∈I(n,r)

αiαj
r2

r!

α!
xα =

r − 1

r
xixj

∑
β∈I(n,r−2)

(r − 2)!

β!
xβ =

r − 1

r
xixj ,

where we have used at several places the multinomial theorem (and the fact that an empty sum-
mation is equal to 0). ut

Consider now a quadratic polynomial f = xTQx ∈ Hn,2. By Lemma 2, its Bernstein approximation
on the simplex is given by

Br(f)(x) =
1

r

n∑
i=1

Qiixi + (1− 1

r
)f(x) ∀x ∈ ∆n. (5)

Theorem 4 For any polynomial f = xTQx ∈ Hn,2 and r ≥ 1, one has

max
x∈∆n

{Br(f)(x)− f(x)} ≤
Qmax − f

r
≤
f − f
r

.

setting Qmax = maxi∈[n]Qii.

Proof Using (5), one obtains that

rBr(f)(x) =

n∑
i=1

Qiixi + (r − 1)f(x)

≤ max
x∈∆n

n∑
i=1

Qiixi + rf(x)− min
x∈∆n

f(x)

= max
i
Qii − f + rf(x)

≤ f − f + rf(x),

where in the last inequality we have used the fact that maxiQii ≤ f , since Qii = f(ei) ≤ f for
i ∈ [n]. This gives the two right-most inequalities in the theorem. ut
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Combining Theorem 4 with Lemma 1, we obtain the following corollary, which gives the PTAS
result by Bomze and de Klerk [3, Theorem 3.2].

Corollary 1 For any polynomial f = xTQx ∈ Hn,2 and r ≥ 1, one has

f∆(n,r) − f ≤
Qmax − f

r
≤
f − f
r

.

We note that the proof given here is completely elementary and much simpler than the original
one in [3]. Our proof is, however, closely related to another proof by Nesterov [16], we will give the
precise relation in Section 6.

Example 2 Consider the quadratic polynomial f =
∑n
i=1 x

2
i ∈ Hn,2. As f is convex, it is easy to

check that f = 1
n (attained at x = 1

ne) and f = 1 (attained at any standard unit vector).
For the computation of f∆(n,r), it is convenient to write r as r = kn + s, where k ≥ 0 and

0 ≤ s < n. Then we have

f∆(n,r) =
1

n
+

1

r2
s(n− s)

n
,

which is attained at any point x ∈ ∆(n, r) having n − s coordinates equal to k
r and s coordinates

equal to k+1
r . To see this, pick a minimizer x ∈ ∆(n, r). First we claim that xi − xj ≤ 1

r for any
i 6= j ∈ [n]. Indeed, assume (say) that x2 − x1 > 1

r . Then define the new point x′ ∈ ∆(n, r) by
x′1 = x1 + 1

r , x′2 = x2 − 1
r and x′i = xi for all i 6= 1, 2 and observe that f(x′) < f(x), which

contradicts the optimality of x. Therefore, the coordinates of x can take at most two possible values
h
r ,

h+1
r for some 0 ≤ h ≤ r − 1 and it is easy to see these two values belong to {kr ,

k+1
r }. Hence we

obtain that

f∆(n,r) − f =
1

r2
s(n− s)

n
and

f∆(n,r) − f
f − f

=
1

r2
s(n− s)
n− 1

.

We observe that this latter ratio might be in the order 1
r , thus matching the upper bound in

Corollary 1 in terms of the dependence of the error bound on r. For instance, for r = 3n
2 (i.e.,

k = 1, s = n
2 ), we have that

f∆(n,r) − f =
1

6r − 9
(f − f). (6)

Moreover, we have Br(f)(x) = 1
r + (1− 1

r )f(x), so that

min
x∈∆n

Br(f)(x)− f = max
x∈∆n

{Br(f)(x)− f(x)} =
1

r
(f − f).

Hence, equality holds throughout in the inequalities of Theorem 4, which shows that the upper
bound is tight on this example.

By Example 2, there does not exist any ε > 0 such that, for any quadratic form f ,

f∆(n,r) − f ≤
1

r1+ε
(
f − f

)
∀r ≥ 1,

and thus the error bound in Corollary 1 is tight in terms of its dependence on r. On the other hand,
one may easily show that, for the polynomial f in Example 2,

ρr(f) :=
f∆(n,r) − f
f − f

≤ n

4r2
= O(1/r2).
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Thus, lim supr→∞(r2ρr(f)) < ∞, i.e. the asymptotic convergence rate of the sequence {ρr(f)}
for the example is O(1/r2). It turns out that this will be the case also for the other polynomials
considered in Examples 3, 4 and 5.

3 PTAS for cubic polynomial optimization over the simplex

Using similar arguments as for Lemma 2, one can compute the Bernstein approximations of the
monomials of degree three. Namely, for distinct i, j, k ∈ [n] and x ∈ ∆n,

Br(φ3ei)(x) =
1

r2
xi +

3(r − 1)

r2
x2i +

(r − 1)(r − 2)

r2
x3i ,

Br(φ2ei+ej )(x) =
(r − 1)

r2
xixj +

(r − 1)(r − 2)

r2
x2ixj ,

Br(φei+ej+ek)(x) =
(r − 1)(r − 2)

r2
xixjxk.

We show the following result.

Theorem 5 For any polynomial f ∈ Hn,3 and r ≥ 2, one has

max
x∈∆n

{Br(f)(x)− f(x)} ≤
(

4

r
− 4

r2

)
(f − f).

Proof Consider a cubic polynomial f ∈ Hn,3 of the form

f =

n∑
i=1

fix
3
i +

∑
1≤i<j≤n

(fijxix
2
j + gijx

2
ixj) +

∑
1≤i<j<k≤n

fijkxixjxk.

Applying the above description for the Bernstein approximation of degree 3 monomials, the Bern-
stein approximation of f at any x ∈ ∆n reads

Br(f)(x) =
(r − 1)(r − 2)

r2
f(x) +

1

r2

 n∑
i=1

fixi + (r − 1)

 n∑
i=1

3fix
2
i +

∑
i<j

(fij + gij)xixj

 . (7)

Evaluating f at ei and at (ei + ej)/2 yields, respectively, the relations:

f ≤ fi ≤ f, (8)

fi + fj + fij + gij ≤ 8f. (9)

Using (9) and the fact that
∑n
i=1 xi = 1, one can obtain

∑
i<j

(fij + gij)xixj ≤
∑
i<j

(8f − fi − fj)xixj = 8f
∑
i<j

xixj −
n∑
i=1

fixi(1− xi). (10)
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Combining (7) and (10), one obtains that, for any x ∈ ∆n,

r2Br(f)(x) = (r − 1)(r − 2)f(x) +

n∑
i=1

fixi + (r − 1)

 n∑
i=1

3fix
2
i +

∑
i<j

(fij + gij)xixj


≤ (r − 1)(r − 2)f(x)− (r − 2)

n∑
i=1

fixi + (r − 1)

 n∑
i=1

4fix
2
i + 8f

∑
i<j

xixj

 .

We now use (8) to bound the two inner summations as follows:

−
∑
i

fixi ≤ −f
∑
i

xi = −f and

n∑
i=1

4fix
2
i + 8f

∑
i<j

xixj ≤ 4f(
∑
i

xi)
2 = 4f.

This implies:

r2(Br(f)(x)− f(x)) ≤ −(3r − 2)f − (r − 2)f + 4(r − 1)f = 4(r − 1)(f − f),

which concludes the proof. ut

Combining Theorem 5 with Lemma 1, we obtain the following error bound.

Corollary 2 For any polynomial f ∈ Hn,3 and r ≥ 2, one has

f∆(n,r) − f ≤
(

4

r
− 4

r2

)
(f − f).

This result is a bit stronger than the result by de Klerk et al. [11, Theorem 3.3], which states that
f∆(n,r) − f ≤ 4

r (f − f).

Example 3 Consider the cubic polynomial f = x31 + x32 ∈ H2,3. One can check that f = 1, f = 1
4 ,

f∆(2,r) =

{
1/4 if r is even,
1
4 + 3

4r2 if r is odd.

Moreover, one can check that Br(f)(x) = 1 +
(
3
r − 3

)
x1x2 and minx∈∆2

Br(f)(x) = 1
4 + 3

4r . Hence,
for any integer r ≥ 2, one has strict inequality minx∈∆2

Br(f)(x) > f∆(2,r). Moreover, for r ≥ 2,

min
x∈∆2

Br(f)(x)− f = max
x∈∆2

{Br(f)(x)− f(x)} =
3

4r
=

1

r
(f − f) < (

4

r
− 4

r2
)(f − f).

On the other hand, for odd r, the range f∆(2,r) − f is equal to 3
4r2 = 1

r2 (f − f) and thus grows

proportionally to 1
r2 .
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4 PTAS for square-free polynomial optimization over the simplex

Here we consider square-free (aka multilinear) polynomials, involving only monomials xI for I ⊆ [n].
The Bernstein approximation of the square-free monomial φeI (x) := xI , with d = |I|, is given by

Br(φeI )(x) =
∑

α∈I(n,r)

αI

rd
r!

α!
xα =

rd

rd
xI

∑
α∈I(n,r−d)

(r − d)!

α!
xα =

rd

rd
xI(
∑
i

xi)
r−d =

rd

rd
xI

for x ∈ ∆n. Recall that, for an integer r ≥ 1, rd = r(r − 1) · · · (r − d+ 1) and observe that rd = 0
if r < d. Hence the Bernstein approximation of the square-free polynomial f =

∑
I⊆[n],|I|=d fIx

I

satisfies

Br(f)(x) =
rd

rd
f(x) ∀x ∈ ∆n,

which implies the following identities:

min
x∈∆n

Br(f)(x)− f = max
x∈∆n

{Br(f)(x)− f(x)} = −
(

1− rd

rd

)
f. (11)

Theorem 6 For any square-free polynomial f ∈ Hn,d and r ≥ 1, one has

max
x∈∆n

{Br(f)(x)− f(x)} ≤
(

1− rd

rd

)
(f − f) ∀x ∈ ∆n.

Proof We use (11). For degree d = 1 the result is clear and, for d ≥ 2, we use the fact that f ≥ 0
since f(ei) = 0 for any i ∈ [n]. ut

Combining with Lemma 1 we obtain the following error bound.

Corollary 3 For any square-free polynomial f ∈ Hn,d and r ≥ 1, one has

f∆(n,r) − f ≤
(

1− rd

rd

)
(f − f).

This result was first shown by Nesterov [16, Theorem 2] (see also De Klerk, Laurent, and Parrilo
[11, Remark 3.4]). In fact, our proof is again closely related to the one by Nesterov; see Section 6
for the details.

Example 4 Consider the square-free polynomial f = −x1x2. Then, Br(f)(x) = − r−1r x1x2 and one

can check that f = 0, f = − 1
4 , and minx∈∆2 Br(f)(x) = − 1

4
r−1
r . Moreover,

f∆(2,r) =

{
− 1

4 if r is even,
− 1

4 + 1
4r2 if r is odd.

Hence, for any integer r ≥ 2, one has strict inequality: minx∈∆2
Br(f)(x) > f∆(n,r). Moreover,

as minx∈∆2
Br(f)(x) − f = maxx∈∆2

{Br(f)(x) − f(x)} = 1
4r = 1

r (f − f), the upper bound from

Theorem 6 is tight on this example. On the other hand, f∆(2,r) − f = 1
4r2 = 1

r2 (f − f) for odd r,

and thus the range f∆(2,r) − f grows proportionally to 1
r2 .
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5 PTAS for general polynomial optimization over the simplex

In this section we deal with the minimization of an arbitrary polynomial f ∈ Hn,d. In order to
be able to bound the minimum of Br(f) over ∆n we need an explicit description of the Bernstein
approximation of f .

5.1 Bernstein approximation over the simplex of an arbitrary monomial

Here we work out an explicit description of the Bernstein approximation of arbitrary monomials
φβ(x) = xβ (β ∈ I(n, d)). The key ingredient is to express it in terms of the moments of the
multinomial distribution.

Fix x = (x1, . . . , xn) ∈ ∆n and consider the multinomial distribution with n categories and r
independent trials, where the probability for the i-th category is given by xi. Then, given α ∈ I(n, r),
the probability of drawing αi times the i-th category for each i ∈ [n] is equal to r!

α!x
α. Therefore,

for β ∈ Nn, the β-th moment of this multinomial distribution is given by

mβ
(n,r) :=

∑
α∈I(n,r)

αβ
r!

α!
xα.

Comparing with the definition of the Bernstein approximation of φβ(x) = xβ we find the identity

Br(φβ)(x) =
∑

α∈I(n,r)

(
α

r
)β
r!

α!
xβ =

1

r|β|
mβ

(n,r).

Combining [9, relation (34.18)] and [9, relation (35.5)], we can obtain an explicit formula for the

moments mβ
(n,r) of the multinomial distribution in terms of the Stirling numbers of the second kind.

Recall that, for integers n, k ∈ N, the Stirling number of the second kind S(n, k) counts the number
of ways of partitioning a set of n objects into k nonempty subsets. Thus S(n, k) = 0 if k > n,
S(n, 0) = 0 if n ≥ 1, and S(0, 0) = 1 by convention.

Theorem 7 For β ∈ Nn, one has

mβ
(n,r) =

∑
α∈Nn:α≤β

r|α|xα
n∏
i=1

S(βi, αi),

where S(βi, αi) are Stirling numbers of the second kind.

Therefore, we can deduce the explicit formula of the Bernstein approximation for any monomial.

Corollary 4 For any monomial φβ(x) = xβ, one has

Br(φβ)(x) =
1

r|β|

∑
α∈Nn:α≤β

r|α|xα
n∏
i=1

S(βi, αi) ∀x ∈ ∆n.

For completeness, we will give a self-contained proof for Corollary 4 in the Appendix.
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5.2 Error bound analysis

We show the following error bound for the Bernstein approximation of order r of an arbitrary
polynomial on the simplex.

Theorem 8 For any polynomial f ∈ Hn,d and r ≥ 1, one has

maxx∈∆n{Br(f)(x)− f(x)} ≤
(

1− rd

rd

)(
max

β∈I(n,d)
fβ
β!

d!
− min
β∈I(n,d)

fβ
β!

d!

)
≤
(

1− rd

rd

) (
2d−1
d

)
dd(f − f).

For the proof we will need two auxiliary results about the Stirling numbers of the second kind. The
first result is implied by [13, relation (3.2)], and we therefore only sketch the proof.

Lemma 3 For positive integers d and r ≥ 1, one has

d−1∑
k=1

rkS(d, k) = rd − rd.

Proof The proof is by induction on d, and using relation (20) (in the appendix to this paper) for
the induction step. ut

The second result gives an alternative expression for Stirling numbers of the second kind. We provide
a full proof, since we could not find this result in the literature.

Lemma 4 Given α ∈ I(n, k) and d > k, one has

S(d, k) =
α!

k!

∑
β∈I(n,d)

d!

β!

n∏
i=1

S(βi, αi). (12)

Proof For integers d, k ≥ 0, let Sd,k denote the number of surjective maps from a d-elements set to
a k-elements set. It is not difficult to see the following relation between Sd,k and S(d, k):

Sd,k = k!S(d, k).

Indeed, let B = [d] and A = [k]. In order to choose a surjective map f from B to A one needs to
select the pre-image Bi = f−1(i) ⊆ B for each element i ∈ [k]. So to define a surjective map f ,
one first selects a partition of B into k non-empty subsets B1, . . . , Bk, which can be done in S(d, k)
ways. As any permutation of the B′is gives rise to a distinct surjective map, there are k!S(d, k)
surjective maps from [d] to [k].

Now, the identity (12) about the Stirling numbers S(d, k) can be equivalently reformulated as
the following identity about the numbers Sd,k: For any α ∈ I(n, k),

Sd,k =
∑

β∈I(n,d)

d!

β!

n∏
i=1

Sβi,αi .

Again set B = [d] and A = [k]. Say, α has p non-zero coordinates, i.e., α1, . . . , αp ≥ 1 and
α1 + . . .+ αp = k. Fix a partition of A = [k] into p subsets A1, . . . , Ap where |Ai| = αi for i ∈ [p].
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Then, a surjection f from B to A defines a surjection from Bi = f−1(Ai) to Ai for each i ∈ [p].
Setting βi = |Bi|, we have β1 + . . . + βp = d since the B′is partition B. Hence one can count the
number of surjections from B to A as follows.

First, select β1, . . . , βp ≥ 1 such that β1 + . . . + βp = d. Then split the d elements of B into
an ordered sequence of p disjoint subsets B1, . . . , Bp where |Bi| = βi for i ∈ [p]; there are d!

β! ways
of doing so. Once B1, . . . , Bp are selected, there are Sβi,αi possible surjections from Bi to Ai for
each i ∈ [p] and thus a total of

∏p
i=1 Sβi,αi possibilities. Therefore, we get that the total number of

surjections from B to A is equal to
∑
β∈I(p,d)

d!
β!

∏p
i=1 Sβi,αi , which shows the result. ut

We are now ready to prove Theorem 8.

Proof (of Theorem 8) Consider a polynomial f =
∑
β∈I(n,d) fβx

β ∈ Hn,d and x ∈ ∆n. Applying
Corollary 4, we can write the Bernstein approximation of f at x ∈ ∆n as follows:

Br(f)(x) =
1

rd

∑
β∈I(n,d)

fβ
∑

α:0≤α≤β

r|α|xα
n∏
i=1

S(βi, αi).

Therefore,

rdBr(f)(x) = rdf(x) +
∑

β∈I(n,d)

fβ
∑

α:0≤α≤β,α 6=β

r|α|xα
n∏
i=1

S(βi, αi),

and thus

rd(Br(f)(x)− f(x)) = −(rd − rd)f(x) +
∑

β∈I(n,d)

fβ
∑

α:0≤α≤β,α 6=β

r|α|xα
n∏
i=1

S(βi, αi).

Using (4), we have f(x) ≥ minβ∈I(n,d) fβ
β!
d! and fβ

β!
d! ≤ maxβ′∈I(n,d) fβ′

β′!
d! , which permits to derive

the following inequality:

rd(Br(f)(x)− f(x)) ≤

−(rd − rd) min
β∈I(n,d)

fβ
β!

d!
+ max
β∈I(n,d)

fβ
β!

d!


∑

β∈I(n,d)

d!

β!

∑
α:0≤α≤β,α 6=β

xαr|α|
n∏
i=1

S(βi, αi)︸ ︷︷ ︸
σ

 .
(13)
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It now suffices to upper bound the right handside of the inequality (13) and to show that the inner
summation σ is equal to rd − rd. Indeed,

σ =
∑

β∈I(n,d)

d!

β!

∑
α:0≤α≤β,α 6=β

xαr|α|
n∏
i=1

S(βi, αi)

=
∑
α∈Nn

xαr|α|
∑

β∈I(n,d):β≥α,β 6=α

d!

β!

n∏
i=1

S(βi, αi)

=

d−1∑
k=1

∑
α∈I(n,k)

xαr|α|

 ∑
β∈I(n,d):β≥α

d!

β!

n∏
i=1

S(βi, αi)


=

d−1∑
k=1

rk
∑

α∈I(n,k)

xα
(
k!

α!
S(d, k)

)
[using Lemma 4]

=

d−1∑
k=1

rkS(d, k)(
∑
i

xi)
k =

d−1∑
k=1

rkS(d, k) = rd − rd. [using Lemma 3]

Using this identity for the summation σ in the inequality (13) we obtain

rd
(

min
x∈∆n

Br(f)(x)− f
)
≤ rd max

x∈∆n
{Br(f)(x)− f(x)} ≤ (rd − rd)

(
max

β∈I(n,d)
fβ
β!

d!
− min
β∈I(n,d)

fβ
β!

d!

)
.

By combining with Theorem 3 we obtain the claimed inequalities of Theorem 8 and this concludes
the proof. ut

Combining Theorem 8 with Lemma 1, we obtain the following error bound, which was first shown
in [11, Theorem 1.3].

Corollary 5 For any polynomial f ∈ Hn,d and r ≥ 1, one has

f∆(n,r) − f ≤
(

1− rd

rd

)(
2d− 1

d

)
dd(f − f).

Example 5 We consider here the problem of minimizing the polynomial f =
∑n
i=1 x

d
i (n ≥ 2) over

the simplex for any degree d ≥ 2, thus extending the case d = 2 considered in Example 2 and
the case d = 3, n = 2 considered in Example 3. As f is convex on Rn+ it follows that f = 1 and
f = 1

nd−1 .
We now compute the minimum over the regular grid ∆(n, r). As in Example 2 set r = kn + s

where k, s ∈ N with s ≤ n−1. We show that f∆(n,r) is attained at any point x having s components

equal to k+1
r and n− s components equal to k

r , so that

f∆(n,r) = s

(
k + 1

r

)d
+ (n− s)

(
k

r

)d
.

For this pick a minimizer x of f over ∆(n, r) and it suffices to show that xi−xj ≤ 1
r for all i, j ∈ [n].

If (say) x2 − x1 > 1
r then we claim that f(x1 + 1

r , x2 −
1
r , x3, . . . , xn) < f(x1, x2, x3, . . . , xn),
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which contradicts the minimality assumption on x. One can see the above claim as follows: set
σ = 1 −

∑n
i=3 xi, consider the function φ(t) = td + (σ − t)d for t satisfying 0 ≤ t < 1

2 (σ − 1
r ), and

verify (using elementary calculus) that φ(t+ 1
r ) < φ(t) for any such t. Therefore, we have

f∆(n,r) − f = (n− s)
(
k

r

)d
+ s

(
k + 1

r

)d
− n

nd

= (n− s)

((
k

r

)d
− 1

nd

)
+ s

((
k + 1

r

)d
− 1

nd

)

=
n− s
nd

((
1− s

r

)d
− 1

)
+

s

nd

((
1− s− n

r

)d
− 1

)

=
s(n− s)
nd

d∑
i=2

(
d

i

)
(n− s)i−1 + (−1)isi−1

ri
.

Using the fact that s, n− s ≤ n, for any r ≥ n we can bound the above summation as follows:

d∑
i=2

(
d

i

)
(n− s)i−1 + (−1)isi−1

ri
≤ 2

n

d∑
i=2

(
d

i

)(n
r

)i
≤ 2

n

(n
r

)2 d∑
i=2

(
d

i

)
≤ 2

n

(n
r

)2
2d =

2d+1n

r2
.

Combining with the bound s(n− s) ≤ n2

4 , we deduce that

f∆(n,r) − f ≤
n2

4

1

nd
2d+1n

r2
=

2d−1

nd−3r2
.

Therefore,

f∆(n,r) − f
f − f

≤ 2d−1

nd−3r2
nd−1

nd−1 − 1
=

2d−1

r2
n2

nd−1 − 1
≤ 2d

r2
for any r ≥ n ≥ 2 and d ≥ 3. (14)

Hence we see that for any degree d ≥ 3 the ratio is in the order 1
r2 . Recall that for degree d = 2 it

was observed in Example 2 that it can be in the order 1
r for certain values of r (e.g., for r = 3n

2 ).

6 Concluding remarks

Nesterov [16] proposed an alternative probabilistic argument for estimating the quality of the bounds
f∆(n,r). He considered a random walk on the simplex ∆n, which generates a sequence of random

points x(r) ∈ ∆(n, r) (r ≥ 1). Thus the expected value E(f(x(r))) of the evaluation of a polynomial
f ∈ Hn,d at x(r) satisfies:

f∆(n,r) ≤ E(f(x(r))).

Nesterov’s approach goes as follows. Let x ∈ ∆n and let ζ be a discrete random variable taking
values in {1, . . . , n} distributed according to the multinomial distribution with n categories and
where the probability of the i-th category is given by xi. That is,

Prob(ζ = i) = xi (i = 1, . . . , n). (15)
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Consider the random process:

y(0) = 0 ∈ Rn, y(r) = y(r−1) + eζr (r ≥ 1)

where ζr are independent random variables distributed according to (15). In other words, y(r) equals
y(r−1) + ei with probability xi. Finally, define

x(r) =
1

r
y(r) ∈ ∆(n, r) (r ≥ 1).

For a given α ∈ I(n, r), the probability of the event y(r) = α is given by

Prob(y(r) = α) =
r!

α!
xα,

by the properties of the multinomial distribution. Thus one also has Prob(x(r) = α/r) = r!
α!x

α, and
it immediately follows that

E(f(x(r))) =
∑

α∈I(n,r)

Prob(x(r) = α/r)f(α/r) =
∑

α∈I(n,r)

r!

α!
xαf

(α
r

)
= Br(f)(x).

In this sense, the approach of our paper using Bernstein approximation is equivalent to the analysis
of Nesterov [16] (although the equivalence is not obvious a priori). On the other hand, in [16] the
link with Bernstein approximation is not made, and the author calculated the values E(f(x(r)))
from first principles for polynomials up to degree four and for square-free polynomials. Based on
this Nesterov [16] gave the error bounds from Theorems 4 and 6 for the quadratic and square-free
cases. However he did not consider the general case. Thus the analysis in this paper completes
the analysis in [16] by placing it in the well-studied framework of Bernstein approximation and
clarifying the link to the multinomial distribution.

We conclude with a general comment regarding a further interpretation of the upper bound
Br(f)(x) (where x ∈ ∆n) for the minimum f∆(n,r) over the regular grid, within the general frame-
work introduced by Lasserre [14] based on reformulating polynomial optimization problems as
optimization problems over measures. A basic, fundamental idea of Lasserre [14] to compute the
minimum of a polynomial f over a compact set K ⊆ Rn is to reformulate the problem as a mini-
mization problem over the setM(K) of (Borel) probability measures on the set K. (We assume K
compact for simplicity but Lasserre’s idea works for K closed). Namely,

min
x∈K

f(x) = min
µ∈M(K)

Eµ(f),

setting Eµ(f) =
∫
K
f(x)µ(dx). The above identity is simple. As f(x) ≥ minx∈K f(x) for all x ∈ K,

one can integrate both sides with respect to any measure µ ∈ M(K), which gives the inequality
minx∈K f(x)≤minµ∈M(K)Eµ(f). For the converse inequality, let µ be the Dirac measure at a global
minimizer x of f over K, so that Eµ(f) = minx∈K f(x).

Applying this idea to polynomial minimization over the regular grid ∆(n, r), one has

f∆(n,r) = min
µ∈M(∆(n,r))

Eµ(f).

Thus in order to upper bound f∆(n,r) it suffices to choose a suitable probability measure on the reg-
ular grid ∆(n, r) and, according to our discussion above, this is precisely what the bound Br(f)(x)
boils down to.
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Indeed, by considering the multinomial distribution with n categories and with probability xi
for the i-th category, after r independent trials we get a probability distribution over I(n, r) where
α ∈ I(n, r) is picked with probability r!

α!x
α. This in turn gives a probability distribution µr on

∆(n, r) = 1
r I(n, r) where α

r is picked with the same probablity r!
α!x

α. Now, as was shown above,
Eµr (f) = Br(f)(x) is thus an upper bound on f∆(n,r).

A final comment concerns the asymptotic convergence rate of the sequence

ρr(f) =
f∆(n,r) − f
f − f

r = 1, 2, . . .

for a given polynomial f ∈ Hn,d. In all the examples presented in this paper, one has ρr(f) =
O(1/r2); see Examples 2, 3, 4 and 5. It remains an open problem to determine the asymptotic
convergence rate in general.
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A Proof of Theorem 7

In this Appendix, we give a self-contained proof for Theorem 7, which provides an explicit description of the moments
of the multinomial distribution in terms of the Stirling numbers of the second kind (and as a direct application the
explicit formulation for the Bernstein approximation on the simplex from Corollary 4).

Given x ∈ ∆n, we consider the multinomial distribution with n categories and r independent trials, where the
probability of drawing the i-th category is given by xi. Hence, given α ∈ I(n, r), the probability of drawing αi
times the i-th category for each i ∈ [n] is equal to r!

α!
xα and, for any β ∈ Nn, the β-th moment of the multinomial

distribution is given by

mβ
(n,r)

:=
∑

α∈I(n,r)
αβ

r!

α!
xα. (16)

Our objective is to show the following reformulaton of the β-th moment in terms of the Stirling numbers of the
second kind:

mβ
(n,r)

=
∑

α∈Nn:α≤β
r|α|xα

n∏
i=1

S(βi, αi). (17)

Our proof is elementary in the sense that we will obtain the moments of the multinomial distribution using its
moment generating function. One of the ingredients which we will use is the fact that the identity (17) holds for the
case n = 2 of the binomial distribution when β ∈ N2 is of the form β = (β1, 0). Namely, the following identity is
shown in [13] (see Theorem 2.2 and relation (3.1) there).

Lemma 5 [13] Given β1 ∈ N and x1 ∈ R such that 0 ≤ x1 ≤ 1, one has

m
(β1,0)
(2,r)

=

r∑
α1=0

αβ11

( r
α1

)
xα1
1 (1− x1)r−α1 =

β1∑
α1=0

rα1xα1
1 S(β1, α1).

This implies that the identity (17) holds for the moments of the multinomial distribution when the order β has a
single non-zero coordinate, i.e., β is of the form β = βiei with βi ∈ N.

Corollary 6 Given βi ∈ N and x ∈ ∆n, one has

m
βiei
(n,r)

=

βi∑
αi=0

rαix
αi
i S(βi, αi).

Proof By (16), we have

m
(βiei)
(n,r)

=
∑

α∈I(n,r)
α
βi
i

r!

α!
xα =

r∑
αi=0

αi
βi

r!

αi!(r − αi)!
x
αi
i

 ∑
α∈I(n−1,r−αi)

(r − αi)!
α!

xα


=

r∑
αi=0

αi
βi
( r
αi

)
x
αi
i

∑
j 6=i

xj

r−αi =

r∑
αi=0

αi
βi
( r
αi

)
x
αi
i (1− xi)r−αi ,

which is equal to
∑βi
αi=0 r

αix
αi
i S(βi, αi) by Lemma 5. ut
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In order to determine the moments of the multinomial distribution we use its moment generating function

t ∈ Rn 7→Mr
x(t) :=

(
n∑
i=1

xie
ti

)r
.

Then, for β ∈ Nn, the β-th moment of the multinomial distribution is equal to the β-th derivative of the moment
generating function evaluated at t = 0. Namely,

mβ
(n,r)

=
∂|β|Mr

x(t)

∂tβ11 · · · ∂t
βn
n

∣∣∣∣∣
t=0

. (18)

By Corollary 6 we know that, for any βi ∈ N,

m
(βiei)
(n,r)

=
∂βiMr

x(t)

∂t
βi
i

∣∣∣∣∣
t=0

=

βi∑
αi=0

S(βi, αi)r
αix

αi
i . (19)

Next we show an analogue of the above relation (19) for the evaluation of the βiei-th derivative of the moment
generating function at any point t ∈ Rn.

Lemma 6 For x ∈ ∆n, βi ∈ N and t ∈ Rn, one has

∂βiMr
x(t)

∂t
βi
i

=

βi∑
αi=0

S(βi, αi)r
αix

αi
i eαitiMr−αi

x (t).

For the proof we will use the following recursive relation for the Stirling numbers of the second kind.

Lemma 7 For any integers β ≥ 0 and α ≥ 1, one has

S(β + 1, α) = S(β, α− 1) + αS(β, α). (20)

Proof This well known fact can be easily checked as follows. By definition, S(β + 1, α) counts the number of ways
of partitioning the set {1, . . . , β, β + 1} into α nonempty subsets. Considering the last element β + 1, one can either
put it in a singleton subset (so that there are S(β, α − 1) such partitions), or partition {1, . . . , β} into α nonempty
subsets and then assign the last element β+1 to one of them (so that there are αS(β, α) such partitions). This shows
the result. ut

Proof (of Lemma 6) To simplify notation we set Mr = Mr
x(t). We show the result using induction on βi ≥ 0. The

result holds clearly for βi = 0 and also for βi = 1 in which case we have

∂Mr

∂ti
= rxie

tiMr−1. (21)

We now assume that the result holds for βi and we show that it also holds for βi + 1. For this, using the induction
assumption, we obtain

∂βi+1Mr

∂t
βi+1
i

=
∂

∂ti

∂βiMr

∂t
βi
i

=
∂

∂ti

 βi∑
αi=0

S(βi, αi)r
αix

αi
i eαitiMr−αi

 =

βi∑
αi=0

S(βi, αi)r
αix

αi
i

∂

∂ti
(eαitiMr−αi ).

(22)
Now, using (21), we can compute the last term as follows:

∂

∂ti
(eαitiMr−αi ) = αie

αitiMr−αi + (r − αi)xie(αi+1)tiMr−αi−1.
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Plugging this into relation (22), we deduce

∂βi+1Mr

∂t
βi+1
i

=

βi∑
αi=0

αiS(βi, αi)r
αix

αi
i eαitiMr−αi +

βi∑
αi=0

S(βi, αi)r
αi+1x

αi+1
i e(αi+1)tiMr−αi−1

=

βi∑
αi=0

αiS(βi, αi)r
αix

αi
i eαitiMr−αi +

βi+1∑
α′i=1

S(βi, α
′
i − 1)r

α′ix
α′i
i eα

′
itiMr−α′i

=

βi∑
αi=0

(αiS(βi, αi) + S(βi, αi − 1)︸ ︷︷ ︸
=S(βi+1,αi) by (20)

)rαix
αi
i eαitiMr−αi + rβi+1x

βi+1
i e(βi+1)tiMr−βi−1

=

βi+1∑
αi=0

S(βi + 1, αi)r
αix

αi
i eαitiMr−αi ,

which concludes the proof. ut

We now extend the result of Lemma 6 to an arbitrary derivative of the moment generating function.

Theorem 9 For any x ∈ ∆n, β ∈ Nn and t ∈ Rn, one has

∂|β|Mr
x(t)

∂tβ11 · · · ∂t
βn
n

=
∑

α∈Nn:α≤β
r|α|xαM

r−|α|
x (t)

(
n∏
i=1

eαitiS(βi, αi)

)
.

Proof We show the result using induction on the size k of the support of β, i.e., k = |{i ∈ [n] : βi 6= 0}|. The
result holds clearly for k = 0 and, for k = 1, the result holds by Lemma 6. We now assume that the result holds
for k and we show that it also holds for k + 1. For this, consider the sequences β′ = (β1, . . . , βk, βk+1, 0, . . . , 0) and
β = (β1, . . . , βk, 0, 0, . . . , 0) ∈ Nn, where β1, . . . , βk+1 ≥ 1. By the induction assumption we know that

∂|β|Mr

∂tβ11 · · · ∂t
βk
k

=
∑

0≤α≤β
r|α|xαMr−|α|

(
n∏
i=1

eαitiS(βi, αi)

)
, (23)

setting again Mr = Mr
x(t) for simplicity. Using (23), we obtain

∂|β
′|Mr

∂tβ11 · · · ∂t
βk+1

k+1

=
∂βk+1

∂t
βk+1

k+1

∂|β|Mr

∂tβ11 · · · ∂t
βk
k

=
∂βk+1

∂t
βk+1

k+1

 ∑
0≤α≤β

r|α|xαMr−|α|

(
n∏
i=1

eαitiS(βi, αi)

) . (24)

Note that αk+1 = 0 since αk+1 ≤ βk+1 and βk+1 = 0. Hence, Mr−|α| is the only term containing the variable tk+1

and thus (24) implies

∂|β
′|Mr

∂tβ11 · · · ∂t
βk+1

k+1

=
∑

0≤α≤β
r|α|xα

(
n∏
i=1

eαitiS(βi, αi)

)
∂βk+1Mr−|α|

∂t
βk+1

k+1

. (25)

We now use Lemma 6 to compute the last term:

∂βk+1Mr−|α|

∂t
βk+1

k+1

=

βk+1∑
θk+1=0

S(βk+1, θk+1)(r − |α|)θk+1x
θk+1

k+1 e
θk+1tk+1Mr−|α|−θk+1 . (26)
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Plugging (26) into (25) we obtain

∂|β
′|Mr

∂tβ11 · · · ∂t
βk+1

k+1

=
∑

0≤α≤β
r|α|xα

 βk+1∑
θk+1=0

S(βk+1, θk+1)(r − |α|)θk+1x
θk+1

k+1 e
θk+1tk+1Mr−|α|−θk+1

( n∏
i=1

eαitiS(βi, αi)

)

=
∑

0≤α≤β

βk+1∑
θk+1=0

r
|α|+θk+1xα+ek+1θk+1S(βk+1, θk+1)eθk+1tk+1Mr−(|α|+θk+1)

(
n∏
i=1

eαitiS(βi, αi)

)

=
∑

0≤α′≤β′
r|α
′|xα

′
Mr−|α′|

(
n∏
i=1

eα
′
itiS(β′i, α

′
i)

)
,

after setting α′ = α+ ek+1θk+1. This concludes the proof of Theorem 9. ut


