The Multiple Checkpoint Ordering Problem

Philipp Hungerlénder* Kerstin Maier'
November 19, 2017

Abstract

The multiple Checkpoint Ordering Problem (mCOP) aims to find an op-
timal arrangement of n one-dimensional departments with given lengths
such that the total weighted sum of their distances to m given checkpoints
is minimized. In this paper we suggest an integer linear programming
(ILP) approach and a dynamic programming (DP) algorithm, which is
only exact for one checkpoint, for solving the mCOP. Our computational
experiments show that there is no clear winner between the two methods.
While the ILP approach is hardly influenced by increasing the number of
checkpoints or the length of the departments, the performance of our DP
algorithm deteriorates in both cases.

Keywords: Combinatorial optimization, dynamic programming, integer
linear programming, row layout problems.

1 Introduction

In this paper we introduce and analyze the multiple Checkpoint Ordering Prob-
lem (mCOP), which is a new variant of a row layout problem. An instance of
the mCOP consists of n one-dimensional departments D := {1,2,...,n} with
given positive lengths ¢1,...,¢,, m checkpoints C' := {n +1,...,n + m} with
given positions and pairwise weights w;;, ¢ € D, j € C. We are looking for
a non-overlapping placement of the departments without gaps between them,
where the weighted sum of the distances of all departments to all checkpoints
is minimal. The corresponding optimization problem can be written down as

mp 3

ieD, jeC
where II,, is the set of permutations of the departments D and zj; is the dis-
tance between the center of Department ¢ and Checkpoint j with respect to a
particular permutation w € II,,.

*Alpen-Adria Universitat Klagenfurt, Austria, philipp.hungerlaender@aau.at
T Alpen-Adria Universitit Klagenfurt, Austria, kerstin.maier@aau.at

mailto:philipp.hungerlaender@aau.at
mailto:kerstin.maier@aau.at

The Multiple Checkpoint Ordering Problem 2

Hungerldander [3] introduced and analyzed the Checkpoint Ordering Problem
(COP), which is the special case of the mCOP with m = 1. The COP is weakly NP-
hard, while the complexity of the mCOP is still open. The mCOP has connections to
other combinatorial optimization problems like the Single-Row Facility Layout
Problem (SRFLP) and scheduling on m identical parallel machines with the
objective of minimizing the sum of weighted completion times that is defined as
follows: We are given a set of jobs J that have to be scheduled on m identical
parallel machines. Fach Job j € J is specified by its processing time p; > 0 and
by its weight w; > 0. Every machine can process at most one job at a time, and
every job has to be processed on one machine in an uninterrupted fashion. The
completion time of Job j is denoted by C;. The goal is to minimize the total
weighted completion time) .., w;C;. In the standard classification scheme of
Graham et al. [2] this scheduling problem is denoted by P|| > w;C; for m part
of the input, and by Pm||)" w;C; for constant m. The key differences between
the mCOP and the weakly NP-hard [5] Pm|| > w;C; are the following ones:

1. For the mCOP the sum of the lengths of the departments that are placed to
the left and to the right of the checkpoints are predetermined through the
positions of the checkpoints as there are no spaces allowed between the
departments. E.g. for the COP with a centered checkpoint the sums of the
lengths of the departments to the left and to the right of the checkpoint
have to be equal. Contrary to that for the Pm|| >~ w;C; there are typically
no capacity restrictions imposed on the machines.

2. The checkpoints must not lie exactly at a splitting point of two depart-
ments, but they can also be covered by departments. I.e. the checkpoints
do not necessarily define a partition of the departments. When consid-
ering a scheduling set-up, the COP can be described as follows: We are
given two machines and it is allowed to split an arbitrary job into two
parts at any point and then the two parts have to be scheduled first on
the two machines. The mCOP with m > 2 cannot be formulated in this
scheduling set-up anymore because the distances of the departments to all
checkpoints are relevant in the objective.

Due to these differences it is not possible to directly carry over complexity and
polyhedral results, dynamic programming (DP) algorithms and integer linear
programming (ILP) models and their corresponding approximation results from
scheduling on identical parallel machines [4] to the mCOP.

In this paper we propose two solution approaches for the mCOP and compare
them in a computational study, where we observe that the mCOP seems much
harder to solve in practice than the related SRFLP and Pm|| > w;C;. There is
no clear winner between our two methods. While the ILP approach is hardly
influenced by the department lengths and number of checkpoints considered, the
performance of the DP algorithm, which is only exact for one checkpoint, deterio-
rates for increasing department lengths and an increasing number of checkpoints.

The paper is structured as follows. In Sections [2] and [3] we suggest an ILP
approach and a DP algorithm for solving the mCOP and in Section [4] we conduct

Hungerldnder and Maier 3

computational experiments, indicating the practical applicability and limita-
tions of the approaches suggested. For future research it would be interesting
to design more sophisticated exact approaches and heuristics for the mCOP. Fur-
thermore it is still an open question if the mCOP is weakly or strongly NP-hard.

2 An ILP Formulation for the mCQOP

In this section we propose an integer linear programming (ILP) approach for
solving the mCOP with an arbitrary but fixed number of checkpoints that is a
generalization of the ILP for the COP suggested in [3]. First we define S as the
sum of the lengths of all departments

s=Yt 1)

i€eD
The locations of the m checkpoints are defined by p; € [0,1], j € C, where S-p;

gives the position of Checkpoint j.
Next we introduce binary ordering variables z;;, i € D, j € DUC, i < j,

1, if Department ¢ lies to the left of
Tij = Department respectively Checkpoint j,

0, otherwise,

to relate the positions of the n departments to each other and to the m check-
points. To ensure transitivity on these variables, we use the 3-cycle inequalities

0< 25 +xjp — g < 1, ,j€D, ke DUC, i<j <k, (2)

which are sufficient for guaranteeing that there is no directed cycle.

Now we are able to express the distances of the departments from the m
checkpoints as quadratic terms in ordering variables. The position d; of the
center of Department ¢ € D is given as the sum of the lengths of the departments
left of 4 plus ¢;/2. The difference d; —d;, i € D, j € C, gives the distance of the
center of Department 7 to Checkpoint j, if Department ¢ is located to the left of
the checkpoint. If Department 7 is located to the right of the checkpoint, this
difference is minus the distance of the center of Department i from Checkpoint
j. Therefore we multiply d; —d;, i € D, j € C, by the term (2z;; —1) that is 1,
if the center of Department i lies to the left of Checkpoint j and —1 otherwise:

Zij = (2.%1']' — 1) (d] - di), 1€ D, jeC, (3)
l; . .
di:§+ Z L + Z le(l =), i€ D, dj=8-p;, jeC,

keD, k<i keD, k>i

Expanding and simplifying yields

li . .
zij = (2345 — 1)(S'pj -5 Z Crag; — Z (1 —xik)), 1€ D, jeC.
% =

(4)

The Multiple Checkpoint Ordering Problem 4

The multiplication of (d; — d;) with (2z;; — 1) ensures a correct calculation of
all distances through the following constraints:

ZijZO, iED,jEO. (5)

To model the mCOP as an ILP, we apply standard linearization and introduce
new variables for all products of ordering variables in :

Yijki = Ti5(1 — zix), 1 <k, Yijki = TijThis 1 > K,

where i,k € D, j € C. Now can be further rewritten as:

4
Zij Z(Ql‘ij — 1) (S “pj — 2) + Z Xk

keD
k<i (6)
+ > b1 —wiw) =2 leyijri, i€D, jeC.
keD keD
k> [

Moreover we use the following standard constraints to relate the ordering vari-
ables and their products:

Yijki < Tij, Yijhi <1 — x4, 1 <K, Yijki < Thi, 1>k, (7)

Yijki = Tij — Tik, 1 <k, Yijki = Tij + T — 1, @ >k,

where i,k € D, j € C. Overall we obtain the following ILP model for the mCOP:

min Z W;ij2ij
ieD, jeC

st. (@, @, @) - @,
zi; €{0,1}, i€ D, jeDUC, i<}y,
yijkiE{O,l}, ,keD, jeC, i#j.

3 A Dynamic Programming Algorithm for the
mCOP

In [3] an exact dynamic programming (DP) algorithm for solving the COP was
proposed. In this section we suggest how to extend this algorithm to the mCOP.
As our extension is not exact for m > 2, it is still an open question if the mCOP
with m > 2 is weakly or strongly NP-hard. Note that Pm||) w,C; is weakly
NP-hard as it can be solved in pseudopolynomial time by a DP approach [5].
Now let us give a brief outline of our DP algorithm. In an optimal layout
departments that are positioned to the left or to the right of all checkpoints
adhere to the well-known V-shaped property [I], i.e. they are arranged in non-
increasing order from the leftmost or rightmost checkpoint to the border of the

layout with respect to their relative weights (Zjec wij) /¢i, 1 € D. Contrary

Hungerldnder and Maier 5

to that departments with a high relative weight that are located between two
checkpoints should not necessarily be positioned close to a checkpoint. This
is why we arrange departments between two checkpoints k£ and k£ + 1 in non-
increasing order regarding the ratio (Zfzn i wij) / (Z;j,?jrl 'LUij), i € D.
Unfortunately the obtained arrangements may not be optimal for m > 2. In
fact the approach is not even guaranteed to find a feasible solution. Nonetheless
our DP algorithm proves to be a good heuristic for the mCOP, in particular if m
is small.

At the heart of our approach lies a recursive relation that is used to decide
where Department j should be placed with respect to the checkpoints. For one
checkpoint the recursion tells us whether to assign Department j to the left or
to the right of the checkpoint:

Y
Fj(s) =]?w] + min {Fj_l(s +4;)+ (s+ Ei)wj; Fi_1(s)+ (M —s+ éi)wj} ,

where s indicates the remaining free space to the left of the checkpoint, M
gives the overall remaining free space either to the left or to the right of the
checkpoint, c is the center department covering the checkpoint and £} (¢2) is the
length of the part of the center department left (right) to the checkpoint.

A detailed description of our DP algorithm, including in particular a dis-
cussion of the general recursive relation for m > 2 checkpoints, is omitted in
this short paper due to space limitations and will be provided in a forthcoming

paper.

4 Computational Experiments

All experiments were performed on a Linux 64-bit machine equipped with In-
tel(R) Xeon(R) CPU e5-2630 v3@2.40GHz and 128 GB RAM. The algorithms
were implemented in C (DP) and Gurobi 6.5 (ILP) respectively. To generate
mCOP instances, we utilized benchmark instances from row layout literature by
simply randomly choosing m + n departments from these instances and us-
ing them as our n departments and m checkpoints. Accordingly we took the
corresponding pairwise connectivities in these instances as our mCOP weights
Wij, 1€ D, jEC

In our computational study we consider two different instance sets from
the literature. AnKeVa80 consists of 80 departments with department lengths
between 1 and 60. HuRe40 contains 40 departments with department lengths
between 1 and 10. Each of our mCOP instances consists of 10-30 departments and
has 4 checkpoints. We choose the checkpoint positions dependent on the number
of checkpoints considered, but independent from the number of departments.
All instances can be downloaded from http://tinyurl.com/layoutlib.

In Tables [I] and [2] we respectively state the results of our ILP approach
and our DP algorithm. We observe that the mCOP with m > 2 is already very
hard to solve to optimality for instances of moderate size. In particular the mCOP

http://tinyurl.com/layoutlib

The Multiple Checkpoint Ordering Problem 6

seems much harder to solve in practice than the closely related strongly NP-hard
Single-Row Facility Layout Problem and the weakly NP-hard Pm||) w;C;.

The performance of the ILP approach is hardly influenced by increasing the
number of checkpoints or the length of the departments. Contrary to that the
performance of our DP algorithm deteriorates both for an increasing number
of checkpoints and for larger department lengths. Note that on the AnKeVa80
instances the DP algorithm does not provide any feasible solution when con-
sidering all 4 checkpoints. Nonetheless for each number of checkpoints there
are instances for which the DP algorithm provides better solutions than the ILP
approach.

References

[1] S. Eilon and I. G. Chowdhury: Minimising Waiting Time Variance in the
Single Machine Problem. Management Science, 23(6):567-575, 1977.

[2] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.R. Kan: Optimization
and approximation in deterministic sequencing and scheduling: a survey. In:
P.L. Hammer, E.L. Johnson, and B.H. Korte (eds.) Discrete Optimization
11, volume 5 of Annals of Discrete Mathematics, pages 287 — 326. Elsevier
1979.

[3] P. Hungerliander: The checkpoint ordering problem. Optimization, 1-14,
2017.

[4] M. Queyranne and A.S. Schulz: Polyhedral approaches to machine schedul-
ing. Technical report, 2004.

[5] M.H. Rothkopf: Scheduling Independent Tasks on Parallel Processors. Man-
agement Science, 12(5):437-447, 1966.

’ # Checkpoints H 1 H 2 ‘
Instance Best solution | Gap [%| | Time Best solution | Gap [%] | Time
AnKeVa80setddeplh 2042.00 0.0 00:10:21 7280.50 0.0 00:53:25
AnKeVa80set4ddep20 2280.50 20.3 12:00:00 10802.00 34.6 12:00:00
AnKeVa80setddep25 3663.00 60.9 12:00:00 19273.00 65.6 12:00:00
AnKeVa80setddep30 5594.00 96.2 12:00:00 25929.00 96.3 12:00:00
HuRe40set4depl5 259.50 0.0 00:01:31 894.75 0.0 00:06:22
HuRe40setddep20 303.00 0.0 00:02:56 1169.50 0.0 01:53:40
HuRe40setddep25 324.50 0.0 00:05:15 2084.50 15.9 12:00:00
HuRe40set4dep30 1116.00 37.9 12:00:00 3529.75 64.2 12:00:00
’ # Checkpoints H 3 H 4
Instance Best solution | Gap [%] | Time || Best solution | Gap [%] | Time
AnKeVa80setddepl5 7662.25 0.0 05:01:40 976.20 0.0 07:20:14
AnKeVa80setddep20 14017.00 61.7 12:00:00 22402.50 73.2 12:00:00
AnKeVa80setddep25 25523.50 78.1 12:00:00 34161.00 86.7 12:00:00
AnKeVa80setddep30 34290.00 99.9 12:00:00 44552.50 97.4 12:00:00
HuRe40setddepl5 1176.50 0.0 00:35:10 1718.50 0.0 02:17:54
HuRe40set4dep20 1486.50 27.3 12:00:00 3757.30 53.4 12:00:00
HuRe40setddep25 2685.50 44.1 12:00:00 4655.80 81.2 12:00:00
HuRe40set4dep30 3952.50 97.3 12:00:00 9037.90 94.5 12:00:00

Table 1: Results obtained by our ILP approach using Gurobi 6.5 restricted to one thread with a time limit of 12h. The running
times are given in hh:mm:ss.

IOTRTA PUR IOpUR[IDSUNH

’ # Checkpoints H 1 H 2
Instance Best solution | DP vs. ILP Time Best solution | DP vs. ILP Time
AnKeVa80setddepl5 2280.50 0.00 00:00:02 7280.50 0.00 12:00:00
AnKeVa80set4dep20 2042.00 -10.46 00:00:01 10899.00 0.89 12:00:00
AnKeVa80setddep25 3663.50 0.00 00:00:06 20482.00 6.27 12:00:00
AnKeVa80setddep30 5584.00 -0.17 00:00:08 25885.00 -0.17 12:00:00
HuRe40set4deplb 259.50 0.00 00:00:01 894.75 0.00 00:00:14
HuRe40set4dep20 304.00 0.00 00:00:01 1187.50 1.54 00:02:22
HuRe40set4dep25 324.50 0.00 00:00:01 2118.50 1.66 00:07:26
HuRe40set4dep30 1115.00 -0.09 00:00:01 3544.25 0.41 00:20:44
’ # Checkpoints H 3 H 4
Instance Best solution | DP vs. ILP Time Best solution | DP vs. ILP Time
AnKeVa80setddepl5 8651.75 12.91 12:00:00 - - 12:00:00
AnKeVa80setddep20 15419.00 10.00 12:00:00 - - 12:00:00
AnKeVa80setddep25 - - 12:00:00 - - 12:00:00
AnKeVa80set4dep30 - - 12:00:00 - - 12:00:00
HuRe40set4depl5 1176.50 0.00 01:08:56 1719.50 0.06 12:00:00
HuRe40set4dep20 1517.50 2.09 12:00:00 4074.90 8.45 12:00:00
HuRe40setddep25 2681.50 -0.01 12:00:00 5226.60 12.26 12:00:00
HuRe40set4dep30 4022.50 1.77 12:00:00 8859.30 -1.98 12:00:00

DP wvs. ILP we compute

Solution of DP - Solution of ILP

Solution of DP

Table 2: Results obtained by our DP algorithm with a time limit of 12h. The running times are given in hh:mm:ss. In column
, hence in case of a negative entry the DP gave a better solution than the ILP.

we[qo1d Surepl() jurodypay)) o[dimyy oYL,

	Introduction
	An ILP Formulation for the mCOP
	A Dynamic Programming Algorithm for the mCOP
	Computational Experiments

