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Abstract

In this work, we establish the R-linear convergence rate of the inertial extragradient method
for solving strongly pseudo-monotone equilibrium problems with a new self adaptive step-size.
The linear convergence rate of the proposed methods is obtained without the prior knowledge of
the Lipschitz-type constants of the bifunction. We also discuss the application of the obtained
results to variational inequality problems involving strongly pseudomonotone and Lipschitz con-
tinuous mapping.
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1 Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H. Let f : H × H → R be a
bifunction with f(x, x) = 0 for all x ∈ C. The equilibrium problem for the bifunction f on C,
denoted by EP (f, C), is stated as follows:

Find x∗ ∈ C such that f(x∗, y) ≥ 0, ∀y ∈ C.

Equilibrium problem is also called the Ky Fan inequality due to his contribution to this field [6].
Mathematically, EP (f, C) is a generalization of many mathematical models including variational
inequality problems, optimization problems and fixed point problems, see [1, 11, 12, 19, 24, 30].
EPs have been considered by numerous scholars in recent years, e.g., see [3, 7, 8, 13, 14, 18, 22, 25,
26, 27, 28, 29] and the references therein. Some notable methods for EPs have been proposed such
as: proximal point methods (PPM) [17], auxiliary problem principle methods [15] and gap function
methods [16].

The PPM is often applied to solve monotone EPs and it based on a regularized equilibrium
problem which is strongly monotone and so that the unique solution is found easily. The auxiliary
problem principle was proposed in [5], which was also called the proximal-like method. Its con-
vergence was further investigated in [26] under different assumptions that equilibrium bifunction
is pseudomonotone and satisfies a Lipschitz-type condition. The methods in [5, 26] are also called
extragradient methods (EGM) due to the results of Korpelevich [10]. Under some suitable condi-
tions imposed on parameters and bifunctions, solution approximation sequences generated by the

∗Applied Analysis Research Group, Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi
Minh City, Vietnam. Email: duongvietthong@tdtu.edu.vn
†Mathematical Sciences School, University of Southampton, UK. Email: t.v.phan@soton.ac.uk

1



extragradient method are proved to be convergent to some solution of EP (f, C). In recent years,
the extragradient methods have recieved a great attention by many authors, see, e.g.,[2, 22, 27, 28].
The advantage of the extragradient method [26] is that the sub-problems are easier to solve than
the PPM sub-problems. Moreover, it can be applied to more general class of pseudomonotone
bifunctions.

The main drawback of EGM is that the chosen step-size depends on the Lipschitz-type con-
stants of the bifunctions [4, 13, 14, 17]. This requirement can make some restrictions in applications
because the Lipschitz-type constants are often unknown or difficult to estimate. In this work, we
propose a new inertial extragradient method for solving strongly pseudo-monotone equilibrium
problem and prove its linear convergence. An extragradient method with inertial effect for solving
EPs can be founded in [27] but no convergence rate was obtained. It is worth pointing out that the
proposed algorithm uses a new step-size rule which does not require the knowledge of the Lipschitz-
type constants of the bifunction as required in [27]. As a consequence, we obtain convergence rate
analysis for a modified extragradient method for solving variational inequality problems in Hilbert
spaces.

The paper is organized as follows: In Section 2, we collect some definitions and preliminary
results for further use. Section 3 presents the new algorithm and the convergence analysis. Finally,
we discuss the applications to variational inequalities in Section 4, following with some concluding
remarks.

2 Preliminaries

Let C be a nonempty closed convex subset of H. We begin with some concepts of monotonicity of
a bifunction [1, 19]. A bifunction f : H ×H → R is said to be:

(i) strongly monotone on C if there exists a constant γ > 0 such that

f(x, y) + f(y, x) ≤ −γ||x− y||2, ∀x, y ∈ C.

(ii) strongly pseudomonotone on C if there exists a constant γ > 0 such that

f(x, y) ≥ 0 =⇒ f(y, x) ≤ −γ||x− y||2, ∀x, y ∈ C.

(iii) satisfied Lipschitz-type condition on C if there exist two positive constants c1, c2 such that

f(x, y) + f(y, z) ≥ f(x, z)− c1||x− y||2 − c2||y − z||2, ∀x, y, z ∈ C.

From the definitions above, it is obvious that (i) =⇒ (ii).
The normal coneNC to C at a point x ∈ C is defined byNC(x) = {w ∈ H : 〈w, x− y〉 ≥ 0, ∀y ∈ C} .

For every x ∈ H, the metric projection PCx of x onto C is defined by PCx = arg min {‖y − x‖ : y ∈ C} .
Since C is nonempty, closed and convex, PCx exists and is unique.

For each x, z ∈ H, by ∂2f(z, x), we denote the subdifferential of convex function f(z, .) at x, i.e.,

∂2f(z, x) := {u ∈ H : f(z, y) ≥ f(z, x) + 〈u, y − x〉, ∀y ∈ H}.

In particular,
∂2f(z, z) = {u ∈ H : f(z, y) ≥ 〈u, y − z〉,∀y ∈ H}.

For proving the convergence of the new algorithm, we need the following basic lemma.
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Lemma 2.1. [23, Proposition 3.61] Let C be a nonempty closed convex subset of H and g : H →
R ∪ {+∞} be a proper, convex and lower semicontinuous function on H. Assume either that g is
continuous at some point of C, or that there is an interior point of C where g is finite. Then, x∗ is
a solution to the following convex problem min {g(x) : x ∈ C} if and only if 0 ∈ ∂g(x∗) +NC(x∗),
where ∂g(.) denotes the subdifferential of g and NC(x∗) is the normal cone of C at x∗.

3 Convergence Analysis

Now, we are in a position to present a modified version of inertial extragradient method in [5, 26]
for solving equilibrium problems.

Algorithm 3.1.
Initialization. Let u0, u1 ∈ H, λ1 > 0, ρ ∈ [0, 1), µ ∈ (0, 1). Let {τn} be a nonnegative real
numbers sequence such that

∑∞
n=1 τn < +∞.

Step 1. Given the current iterates un−1 and un (n ≥ 1), computetn = un + ρ(un − un−1),
vn = argmin

y∈C
{λnf(tn, y) + 1

2 ||y − tn||
2}.

If vn = tn the stop and vn is a solution. Otherwise, go to Step 2.
Step 2.Compute

un+1 = argmin
y∈C

{λnf(vn, y) +
1

2
||y − tn||2},

and

λn+1 =


min

{
µ

2

‖tn − vn‖2 + ‖un+1 − vn‖2

f(tn, un+1)− f(tn, vn)− f(vn, un+1)
, λn + τn

}
if f(tn, un+1)− f(tn, vn)− f(vn, un+1) > 0;

λn + τn otherwise.

(1)

Set n := n+ 1 and return to Step 1.

Remark 3.1. The adaptive step sizes {λn} is chosen as in (1) is allowed to increase from iteration
to iteration. This means that the adaptive step-size rule in Algorithm 3.1 is different to the other
adaptive step-size rules studied in the literature [7, 4, 20, 26, 27].

In order to establish the convergence of Algorithm 3.1, we assume that bifunction f : H×H → R
satisfies the following conditions.
Condition 1
(A1) f is γ-strongly pseudomonotone on C.
(A2) f satisfies Lipschitz-type condition on H with two constants c1 and c2.
(A3) f(x, .) is convex and lower semicontinuous on H for every fixed x ∈ H.
(A4) Either intC 6= ∅ or f(x, .) is continuous at some point in C for every x ∈ H.

Remark 3.2. From the condtions (A1) and (A2) we get f(x, x) = 0 for all x ∈ C. It is also known
that under Condition 1, the problem EP(f,C) has unique solution [21].
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Next, we will establish the convergence rate of Algorithm 3.1. We start with the following
lemmas which play an important role in proving the convergence of the proposed algorithm.

Lemma 3.1. ([31]) Let {λn} be a sequence generated by Algorithm 3.1. Then limn→∞ λn = λ ∈[
min{ µ

2 max{c1, c2}
, λ1}, λ1 + τ

]
, where τ =

∑∞
n=1 τn.

Lemma 3.2. For any λ > 0 and x ∈ C, let

z = argminy∈C {λf(x, y) +
1

2
‖y − x‖2}, (2)

then
λ (f(x, y)− f(x, z)) ≥ 〈x− z, y − z〉 ∀y ∈ C.

Proof: Since z is the unique solution of the strongly convex minimization problem (2). The
optimality condition (Lemma 2.1) implies that there exists s ∈ ∂2f(x, z) such that

0 ∈ λs+ z − x+NC(z),

where NC(z) denotes the normal cone to C at z. Hence, by definition of this cone, we obtain that

〈x− z − λs, y − z〉 ≤ 0 ∀y ∈ C. (3)

On the other hand, since s ∈ ∂2f(x, z), we have

f(x, y)− f(x, z) ≥ 〈s, y − z〉 ∀y ∈ C. (4)

Combining (3) and (4), we obtain

λ (f(x, y)− f(x, z)) ≥ 〈λs, y − z〉 ≥ 〈x− z, y − z〉 ∀y ∈ C.

Lemma 3.3. Let C be a nonempty closed convex subset of H and f : H ×H → R be a bifunction
satisfying Condition 1. Let u be the unique solution of EP (f, C). Then the following inequality
holds

‖un+1 − u‖2 ≤‖tn − u‖2 −
(

1− µ λn
λn+1

)
‖tn − vn‖2 −

(
1− µ λn

λn+1

)
‖un+1 − vn‖2

− 2λnγ‖vn − u‖2. (5)

Proof: From

un+1 = argmin
y∈C

{λnf(vn, y) +
1

2
‖y − tn‖2},

by Lemma 3.2, we get

λn(f(vn, y)− f(vn, un+1)) ≥ 〈tn − un+1, y − un+1〉 ∀y ∈ C.

Substituting y := u ∈ C, we obtain

λn(f(vn, u)− f(vn, un+1)) ≥ 〈tn − un+1, u− un+1〉. (6)

Since u is the unique solution of EP (f, C) and vn ∈ C, we have f(u, vn) ≥ 0. By the strong
pseudomonotonicity assumption of f , we obtain f(vn, u) ≤ −γ‖vn − u‖2. It implies from (6) that

−λnf(vn, un+1) ≥ 〈tn − un+1, u− un+1〉 − λnf(vn, u)

≥ 〈tn − un+1, u− un+1〉+ λnγ‖vn − u‖2. (7)
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Again, since

vn = argmin
y∈C

{λnf(tn, y) +
1

2
||y − tn||2},

Lemma 3.2 implies
λn(f(tn, un+1)− f(tn, vn)) ≥ 〈tn − vn, un+1 − vn〉. (8)

Adding (7) and (8) we get

2λn(f(tn, un+1)− f(tn, vn)− f(vn, un+1))

≥ 2〈tn − vn, un+1 − vn〉+ 2〈tn − un+1, u− un+1〉+ 2λnγ‖vn − u‖2

= (‖tn − vn‖2 + ‖un+1 − vn‖2 − ‖un+1 − tn‖2)+
+ (‖tn − un+1‖2 + ‖un+1 − u‖2 − ‖tn − u‖2) + 2λnγ‖vn − u‖2

= ‖tn − vn‖2 + ‖un+1 − vn‖2 + ‖un+1 − u‖2 − ‖tn − u‖2 + 2λnγ‖vn − u‖2.

This implies that

‖un+1 − u‖2 ≤‖tn − u‖2 − ‖tn − vn‖2 − ‖un+1 − vn‖2 + 2λn(f(tn, un+1)

− f(tn, vn)− f(vn, un+1))− 2λnγ‖vn − u‖2. (9)

On the other hand, from the definition of the sequence λn we get

2(f(tn, un+1)− f(tn, vn)− f(vn, un+1)) ≤
µ

λn+1

(
‖tn − vn‖2 + ‖un+1 − vn‖2

)
. (10)

Substituting (9) into (10) we obtain

‖un+1 − u‖2 ≤‖tn − u‖2 −
(

1− µ λn
λn+1

)
‖tn − vn‖2 −

(
1− µ λn

λn+1

)
‖un+1 − vn‖2

− 2λnγ‖vn − u‖2.

In the following theorem we will show that the sequence {un} generated by Algorithm 3.1
converges strongly to the unique solution u with a R-linear rate.

Theorem 3.1. Let C be a nonempty closed convex subset of H. Let f : H×H → R be a bifunction
satisfying Condition 1 and be γ-strongly pseudomonotone on C. Let θ ∈ (0, 1) be arbitrary and ρ
be a real number such that

0 ≤ ρ ≤ wε

wε+ 2w + ε
, (11)

where w := 1−min

{
(1− µ)θ

2
, γλ

}
and ε :=

1

2
(1−µ)(1−θ)θ. Then the sequence {un} is generated

by Algorithm 3.1 converges in norm to the unique solution u of the problem EP(f,C) with a R-linear
rate.

Proof: First, we show that there exists N1 ∈ N such that

‖un+1 − u‖2 ≤ω‖tn − u‖2 − ε‖un+1 − tn‖2 ∀n ≥ N1. (12)

Indeed, since limn→∞ λn = λ > 0, there exists N > 0 such that(
1− µ λn

λn+1

)
> 0 ∀n ≥ N.
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Thanks to (5) and θ ∈ (0, 1), we have for all n ≥ N that

‖un+1 − u‖2 ≤‖tn − u‖2 −
(

1− µ λn
λn+1

)
‖vn − tn‖2 −

(
1− µ λn

λn+1

)
(1− θ)‖un+1 − vn‖2

− 2λnγ‖vn − u‖2

=‖tn − u‖2 −
(

1− µ λn
λn+1

)
θ‖vn − tn‖2

−
(

1− µ λn
λn+1

)
(1− θ)

[
‖vn − tn‖2 + ‖un+1 − vn‖2

]
− 2λnγ‖vn − u‖2

≤‖tn − u‖2 −
(

1− µ λn
λn+1

)
θ‖vn − tn‖2 −

1

2

(
1− µ λn

λn+1

)
(1− θ)‖un+1 − tn‖2

− 2λnγ‖vn − u‖2, (13)

where we have used the Cauchy-Schwartz inequality in the last estimation. Moreover, we get

lim
n→∞

1

2

(
1− µ λn

λn+1

)
(1− θ) =

1

2
(1− µ)(1− θ) ≥ 1

2
(1− µ)(1− θ)θ,

lim
n→∞

(
1− µ λn

λn+1

)
θ = (1− µ)θ ≥ 2 min

{
(1− µ)θ

2
, γλ

}
,

lim
n→∞

λnγ = λγ ≥ min

{
(1− µ)θ

2
, γλ

}
.

Using the definition of the limit there exists N1 ∈ N and N1 ≥ N , such that for all n ≥ N1

1

2

(
1− µ λn

λn+1

)
(1− θ) ≥ 1

2
(1− µ)(1− θ)θ,(

1− µ λn
λn+1

)
θ ≥ 2 min

{
(1− µ)θ

2
, γλ

}
,

and

λnγ ≥ min

{
(1− µ)θ

2
, γλ

}
.

Using (13) we obtain for all n ≥ N1 that

‖un+1 − u‖2 ≤‖tn − u‖2 − 2 min

{
(1− µ)θ

2
, γλ

}
‖vn − tn‖2 −

1

2
(1− µ)(1− θ)θ‖un+1 − tn‖2

− 2 min

{
(1− µ)θ

2
, γλ

}
‖vn − u‖2

=‖tn − u‖2 −
1

2
(1− µ)(1− θ)θ‖un+1 − tn‖2

− 2 min

{
(1− µ)θ

2
, γλ

}
(‖vn − tn‖2 + ‖vn − u‖2)

≤‖tn − u‖2 −
1

2
(1− µ)(1− θ)θ‖un+1 − tn‖2 −min

{
(1− µ)θ

2
, γλ

}
‖tn − u‖2

=

(
1−min

{
(1− µ)θ

2
, γλ

})
‖tn − u‖2 −

1

2
(1− µ)(1− θ)θ‖un+1 − tn‖2

≤
(

1−min

{
(1− µ)θ

2
, γλ

})
‖tn − u‖2 −

1

2
(1− µ)(1− θ)θ‖un+1 − tn‖2

=ω‖tn − u‖2 − ε‖un+1 − tn‖2.
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Next, we show that the sequence {un} converges strongly to the unique solution u of the problem
EP(f,C). Indeed, we have

‖tn − u‖2 = ‖(1 + ρ)(un − u)− ρ(un−1 − u)‖2

= (1 + ρ)‖un − u‖2 − ρ‖un−1 − u‖2 + ρ(1 + ρ)‖un − un−1‖2

and

‖un+1 − tn‖2 = ‖un+1 − un − ρ(un − un−1)‖2

= ‖un+1 − un‖2 + ρ2‖un − un−1‖2 − 2ρ 〈un+1 − un, un − un−1〉
≥ ‖un+1 − un‖2 + ρ2‖un − un−1‖2 − 2ρ‖un+1 − un‖‖un − un−1‖
≥ ‖un+1 − un‖2 + ρ2‖un − un−1‖2 − ρ‖un+1 − un‖2 − ρ‖un − un−1‖2

= (1− ρ)‖un+1 − un‖2 − ρ(1− ρ)‖un − un−1‖2.

Combining these inequalities with (12) we obtain

‖un+1 − u‖2 ≤ ω(1 + ρ)‖un − u‖2 − ωρ‖un−1 − u‖2 + ωρ(1 + ρ)‖un − un−1‖2

− ε(1− ρ)‖un+1 − un‖2 + ερ(1− ρ)‖un − un−1‖2 ∀n ≥ N1,

or equivalently

‖un+1 − u‖2 − ωρ‖un − u‖2 + ε(1− ρ)‖un+1 − un‖2

≤ω
[
‖un − u‖2 − ρ‖un−1 − u‖2 + ε(1− ρ)‖un − un−1‖2

]
− (ωε(1− ρ)− ωρ(1 + ρ)− ερ(1− ρ)) ‖un − un−1‖2 ∀n ≥ N1.

Setting
Σn := ‖un − u‖2 − ρ‖un−1 − u‖2 + ε(1− ρ)‖un − un−1‖2,

since ω ∈ (0, 1), we can write

Σn+1 ≤‖un+1 − u‖2 − ωρ‖un − u‖2 + ε(1− ρ)‖un+1 − un‖2

≤ωΣn − (ωε(1− ρ)− ωρ(1 + ρ)− ερ(1− ρ)) ‖un − un−1‖2 ∀n ≥ N1.

Now, using (11) we show that

ωε(1− ρ)− ωρ(1 + ρ)− ερ(1− ρ) ≥ 0.

Indeed, from (11) we get ρ ∈ [0, 1), thus we obtain 1 + ρ ≤ 2 and ρ(1− ρ) ≤ ρ, hence

ωε(1− ρ)− ωρ(1 + ρ)− ερ(1− ρ) ≥ ωε(1− ρ)− 2ωρ− ερ
= ωε− ρ(ωε+ 2ω + ε) ≥ 0.

Therefore
Σn+1 ≤ ωΣn ∀n ≥ N1.

Next, we show that Σn ≥ 0 for all n. Indeed, from (11) we get

ρ ≤ wε

wε+ 2w + ε
≤ wε

wε+ 2w
=

ε

2 + ε
,
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this implies that ρ ≤ ε(1−ρ)
2 , using this fact, we obtain

Σn = (1− ε(1− ρ))‖un − u‖2 + ε(1− ρ)
(
‖un − u‖2 + ‖un − un−1‖2

)
− ρ‖un−1 − u‖2

≥ (1− ε(1− ρ))‖un − u‖2 +
ε(1− ρ)

2
‖un−1 − u‖2 − ρ‖un−1 − u‖2

≥ (1− ε(1− ρ))‖un − u‖2 ≥ 0.

Hence
Σn+1 ≤ ωΣn ≤ ... ≤ ωn−N1+1ΣN1 .

‖un − u‖2 ≤
ΣN1

ωN1−1ω
n,

which means that {un} converges R-linearly to u.

Remark 3.3. Using the similar technique in [27, 31], one can obtain the weak convergence of
Algorithm 3.1 under conditions: f is pseudomonotone on C; f(·, y) is weakly upper semicontinuous
on C, Conditions (A2), (A3), (A4) are satisfied and the solution set EP (f, C) 6= ∅. Hence, we
omit the proof here.

4 Application to Variational Inequalities

In this Section, we discuss the applications of the main result obtained in Section 3 for solving
variational inequality problems in Hilbert spaces. Let f(x, y) = 〈Fx, y − x〉 ∀x, y ∈ C, where
F : H → H is a continuous mapping. Then the equilibrium problems becomes the variational
inequality problem, i.e., find x∗ ∈ C such that

〈Fx∗, y − x∗〉 ≥ 0 ∀y ∈ C. (14)

The solution set of (14) is denoted by Sol(F,C). Moreover, we have

vn = argmin
y∈C

{λnf(tn, y) +
1

2
||y − tn||2} = PC(tn − λnF (tn)).

We recall that the mapping F is δ-strongly pseudomonotone on C if there exists a constant δ > 0
such that

〈Fx, y − x〉 ≥ 0 =⇒ 〈Fy, y − x〉 ≥ δ‖x− y‖2 ∀x, y ∈ C.

If F is Lipschitz-continuous and strongly pseudomonotone, then the conditions (A1)-(A4) hold for

f with c1 = c2 =
L

2
(see, e.g. [26]). Note that, under these assumption, Sol(F,C) is nonempty and

singleton [9]. For solving variational inequality (14), we propose the following algorithm.

Algorithm 4.1.
Initialization. Let u0, u1 ∈ H, λ1 > 0, ρ ∈ [0, 1), µ ∈ (0, 1). Let {τn} be a nonnegative real
numbers sequence such that

∑∞
n=1 τn < +∞.

Step 1. Given the current iterates un−1 and un (n ≥ 1), compute{
tn = un + ρ(un − un−1),
vn = PC(tn − λnFtn).
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If vn = tn or Ftn = 0 then the stop and tn is a solution of VI (14). Otherwise, go to Step 2.
Step 2.Compute

un+1 = PC(tn − λnFvn), (15)

and

λn+1 =


min

{
µ

2

‖tn − vn‖2 + ‖un+1 − vn‖2

〈Fvn − Ftn, un+1 − vn〉
, λn + τn

}
if 〈Fvn − Ftn, un+1 − vn〉 > 0;

λn + τn otherwise.

Set n := n+ 1 and return to Step 1.

The following theorem is a direct consequence of Theorem 3.1.

Theorem 4.1. Assume that F : H → H is L-Lipschitz continuous on H and δ-strongly pseudo-
monotone on C. Let θ ∈ (0, 1) be arbitrary and ρ be a real number such that

0 ≤ ρ ≤ wε

wε+ 2w + ε
,

where w := 1−min

{
(1− µ)θ

2
, γλ

}
and ε :=

1

2
(1−µ)(1−θ)θ. Then the sequence {xn} is generated

by Algorithm 4.1 converges in norm to the unique solution x∗ of the problem Sol(F,C) with a
R-linear rate.

Remark 4.1. As a consequence of Remark 3.3 we can also obtain the weak convergence of Algo-
rithm 4.1 under the following condition conditions: F is pseudomonotone and L-Lipschitz continu-
ous on C; F is sequentially weakly continuous on H and the solution set Sol(F,C) 6= ∅. Moreover,
the second projection in (15) can be replaced by an explicit projection onto a half-space as in the
subgradient extragradient method [2].

5 Conclusions

The paper presented a linear convergence analysis of the inertial extragradient method for approx-
imating solutions of equilibrium problems in Hilbert spaces under the strongly pseudomonotone
and Lipschitz assumptions imposed on equilibrium bifunctions. Application of our main result for
solving variational inequality problems in Hilbert spaces is also investigated.
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