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Abstract

Given a graph, the maximum clique problem (MCP) asks for determining a complete subgraph
with the largest possible number of vertices. We propose a new exact algorithm, called CliSAT, to
solve the MCP to proven optimality. This problem is of fundamental importance in graph theory
and combinatorial optimization due to its practical relevance for a wide range of applications.
The newly developed exact approach is a combinatorial branch-and-bound algorithm that exploits
the state-of-the-art branching scheme enhanced by two new bounding techniques with the goal of
reducing the branching tree. The first one is based on graph colouring procedures and partial
maximum satisfiability problems arising in the branching scheme. The second one is a filtering
phase based on constraint programming and domain propagation techniques. CliSAT is designed
for structured MCP instances which are computationally difficult to solve since they are dense and
contain many interconnected large cliques. Extensive experiments on hard benchmark instances,
as well as new hard instances arising from different applications, show that CliSAT outperforms
the state-of-the-art MCP algorithms by several orders of magnitude.
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1. Introduction

Let G be a simple undirected graph, we denote V (G) its set of n vertices and E(G) its set of m
edges. Two vertices u, v ∈ V (G) are called adjacent or neighbors if there is an edge {u, v} ∈ E(G).
A clique is a subset of pairwise adjacent vertices or, equivalently, a subset of vertices inducing a
complete graph. The maximum clique problem (MCP) calls for determining a clique of G with the
largest possible number of vertices, the size of which is known as the clique number ω(G). Figure 1
provides an example graph G with n = 8 vertices and m = 22 edges where ω(G) = 4. A maximum
clique is K = {v1, v2, v3, v4} (the red vertices of the figure), the edges of the complete graph
induced by these vertices are depicted with red lines. This graph contains multiple maximum
cliques, another maximum clique is, e.g., the set {v3, v4, v5, v6}.
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Figure 1: An example graph G with ω(G) = 4. In red, a maximum clique K = {v1, v2, v3, v4}.

The MCP is one of the most studied combinatorial optimization problems in graph theory. It is
known to be strongly NP-hard and also hard to approximate within any polynomial factor unless
P = ZPP [10]. The MCP finds numerous applications which span disciplines such as computer
vision [25, 22, 36], robotics [23], coding theory, network analysis and bioinformatics, see, e.g., [40].

In this work, we describe a new exact branch-and-bound (BnB) algorithm for the MCP that
we call CliSAT. This algorithm is designed for hard MCP instances with up to several tenths of
thousands of vertices. Hard MCP instances are those with many large interconnected cliques and
they are typically dense. For these instances, the state-of-the-art techniques are combinatorial
BnB algorithms (see, e.g., [44]) that employ bounding procedures based on graph coloring and
partial maximum satisfiability (SAT) problems arising in the branching scheme. Our new exact
algorithm is an enhancement of this class of algorithms that introduces new bounding procedures.
These procedures, combined with the state-of-the-art branching scheme, are very effective in
solving hard MCP instances as shown in the computational section. On the classical DIMACS set
of instances, CliSAT compares favorably with previous state-of-the-art exact algorithms; moreover,
on several new classes of hard instances CliSAT is the best performing algorithm, in some cases
by several orders of magnitude.

It is important to mention that solving the MCP on very sparse massive graphs is, in practice,
much easier than solving it for structured dense graphs. A different class of specialized algorithms
has been specifically proposed in the literature for the former setting. This family of algorithms
is based on tailored graph reduction techniques that are only effective for sparse instances (see
e.g., [30] and [42]). The proposed algorithm CliSAT, even if it is not designed for this type of
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instances, is competitive with the state-of-the-art algorithms also for sparse graphs with up to
150.000 vertices.

1.1. Basic notation and definitions

Given a simple graph G and a subset of its vertices W ⊆ V (G), we denote G[W ] the induced graph
by W , i.e., the graph with vertex set V (G[W ]) equal to W , and edge set E(G[W ]) containing
the subset of edges of E(G) with both endpoints in W . The complement graph, denoted G, has
the same vertex set of G and edge set E(G) = {u, v ∈ V (G) : {u, v} /∈ E(G), u 6= v}. A subset
I ⊆ V (G) of pairwise non-adjacent vertices is called an independent set and it corresponds to a
clique in G. Moreover, let N(u) =

{
v ∈ V (G) : {u, v} ∈ E(G)

}
denote the neighbourhood of a

vertex u ∈ V (G). A vertex coloring of a graph G is a partition of its vertex set into independent
sets, also referred to as color-classes. The vertex coloring problem (VCP) calls for determining the
minimum number of color-classes in any feasible vertex coloring, i.e., to determine the chromatic
number χ(G) of the graph. We refer the interested reader to [18] for further details on the VCP. A
(vertex) k-coloring of a graph G, which we denote Ck(G), is a partition of V (G) into k independent
sets; precisely: Ck(G) =

{
I1, I2, . . . , Ik

}
. Clearly, χ(G) provides an upper bound on the clique

number ω(G), see, e.g., [1], and, consequently, so is the value k of any k-coloring of the graph, i.e.,
ω(G) ≤ χ(G) ≤ |Ck(G)| = k. Given a subset of vertices W ⊆ V (G) and a partition of W into k
independent sets, the k-coloring Ck(G[W ]) is a called a partial vertex coloring of the graph G, i.e.,
a vertex coloring in which only the vertices of W are colored.

1.2. Reduction of the MCP to a partial maximum satisfiability problem

Given a graph G together with a k-coloring Ck(G), we describe in this section a reduction, first
proposed in [16], of the MCP to a partial maximum satisfiability problem (PMAX-SAT-P). A
boolean variable x ∈ {0, 1} is associated to two literals, a positive literal, denoted y and a negative
literal denoted ȳ. The positive literal is true if x = 1 and the negative literal is true if x = 0. A
clause is a finite collection of literals linked by logical operators (e.g., ∨ and ∧). A unit clause refers
to a clause with a single literal. Boolean formulas comprise clauses linked by logical operators. A
Boolean formula in conjunctive normal form (CNF) is a conjunction of clauses, where a clause is
a disjunction of literals.

The PMAX-SAT-P, associated to a MCP and a k-coloring, comprises two types of clauses
denoted hard clauses and soft clauses. It calls for satisfying the maximum number of soft clauses,
while satisfying all the hard ones. This PMAX-SAT-P features a vector of boolean variables
x ∈ {0, 1}|V (G)|, where each variable xv represents a vertex v ∈ V (G). Its |E(G)| hard clauses are
associated to the non-edges of G. They contain only negative literals and encode the fact that at
most one vertex from each pair of non-adjacent vertices of G can be part of a clique:(

ȳu ∨ ȳv
)
, ∀{u, v} ∈ E(G). (1)

The hard clauses form a CNF boolean formula modelling the feasibility part of the MCP. The k
soft clauses are associated to the independent sets of Ck(G). They contain only positive literals
and encode the fact that only one vertex from each independent set can be part of a clique:(

yv(I,1) ∨ yv(I,2) ∨ . . . ∨ yv(I,t)

)
, ∀I ∈ Ck(G). (2)

For each independent set I ∈ Ck(G), the function v(I, s) returns the vertex v ∈ V (G) associated
to the s-th vertex of I, and t = |I|. We denote I the collection of all the soft clauses (2), which
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form a CNF boolean formula modelling the objective function of the MCP, i.e., each satisfied
clause corresponds to inserting the vertex of its true positive literal in a MCP solution. We denote
PSAT(G,Ck(G)) the PMAX-SAT-P associated to the graph G together with the k-coloring Ck(G).

1.3. PMAX-SAT-P based upper bounds on the clique number

For a given graph G together with a coloring Ck(G), upper bounds on the clique number ω(G)
can be derived by reasoning and propagating the information of the hard clauses (1) and soft
clauses (2) of the associated PSAT(G,Ck(G)). It is straightforward to see that the existence of a
clique of size k in G requires that all the k soft clauses (2) are satisfied. A subset C ⊆ I of soft
clauses (2) where at most |C | − 1 of them can be satisfied, is called a conflict. A conflict-detection
procedure determines a conflict by setting to false literals, i.e., removing them from the hard and
soft clauses, while preserving logical entailment, until a clause becomes empty. A conflict logically
entails an empty clause, i.e., a clause that contains no literals and, by definition, evaluates to false.
If a conflict is found in PSAT(G,Ck(G)), a clique of size k cannot exist in G; accordingly, k − 1 is
in this case an upper bound on ω(G).

Unit Propagation (UP) is one of the main conflict-detection procedures, see [5]. It exploits the fact
that a unit clause can only be satisfied by fixing its literal to true and, consequently, removing the
negated literal from the remaining clauses. UP is applied iteratively after each removal until either
i) there are no more unit clauses, or (ii) an empty clause is found. In the latter case, the soft
clauses (2) in which a positive literal is set to true, together with the soft clause that becomes
empty, determine a conflict.

Strong upper bounds on ω(G) can be obtained if more than one conflict is determined, see, e.g.,
[12, 13]. A collection of conflicts P = {C1,C2, . . . ,C|P|} is denoted a proper set of conflicts if for
each pair of conflicts (Ca, Cb) in P , the set of soft clauses in (Ca ∪Cb) \ (Ca ∩Cb) is also a conflict.
In other words, the soft clauses that belong exactly to only one of the two conflicts also contain
a conflict. If a proper set of conflicts is found, then ω(G) ≤ k − |P|. Determining a proper set
of conflicts can be done iteratively, one conflict at a time, see, e.g., [12, 13]. We recall, in what
follows, the overarching idea of such procedures. For each conflict C found, the PSAT(G,Ck(G))
is modified in such a way that the set of clauses in C are satisfiable. Precisely, the graph G is
enlarged with |C | additional vertices, by inserting a new vertex per independent set associated
to the clauses of C . Each new vertex is connected to every vertex V (G) in the graph, except to
those vertices associated to the literals of its clause. In this way, we obtain a new graph called
the transformed graph of a conflict, which we denote G(C ). The new Ck(G(C )) is obtained from
the original Ck(G) by colouring each new vertex with the color class of its associated clause. In
addition, a new PSAT

(
G(C ), Ck(G(C ))

)
can be defined in which the relaxed clauses of C are

satisfiable. This problem is used to determine additional conflicts. A set of conflicts iteratively
determined in this way is, by nature, a proper set of conflicts.

In addition to UP, and when no unit clauses are available, the failed literal conflict-detection
procedure (FL), another well-established inference procedure used by SAT solvers, can be used in
this context to determine conflicts. A positive literal of a soft clause is denoted failed if an empty
clause is determined when it is set to true. If every literal in a clause is proven failed by successive
calls to FL, a conflict has been found. The soft clauses of this conflict are those in which a positive
clause is fixed to true by the different calls to FL together with the corresponding empty clauses.
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1.4. Literature review on exact MCP algorithms

A large amount of effort has been devoted to solving the MCP to proven optimality. We refer the
reader to [44] for a detailed survey on this topic. A complete overview of exact algorithms is out
of the scope of this work. In what follows, we describe what we consider the most relevant ones
together with their corresponding breakthroughs. One of the first successful BnB algorithms is
described in [3], where a tailored n-ary branching scheme for the MCP is proposed. A bounding
technique based on vertex colouring is described in [6], an idea almost universally employed by
modern exact MCP algorithms, see, e.g., [39, 26, 27, 24]. One of the major breakthroughs of the
last decade is the bounding technique proposed in [15, 16]. This family of upper bounds is based
on partial maximum satisfiability problems arising in the branching scheme. Thanks to this new
idea, the exact MCP algorithms have substantially improved their performance. Some of the
state-of-art algorithms of this type are, e.g., [28, 31, 12, 13]. Finally, bitstring optimizations are
known to be an additional source of efficiency, see, e.g., [26, 27, 24, 28, 31].

To the best of our knowledge, the more successful exact algorithm for hard dense MCP instances
is MoMC, which is described in [12]. In the computational section, we compare the performance of
our new algorithm CliSAT against MoMC, as well as several other efficient exact algorithms and
integer linear programming (ILP) models solved by a state-of-the-art commercial solver.

Another recent stream of research aims at determining the clique number of real and very sparse
massive graphs, such as those associated with social networks. Specialized algorithms exploit the
scale-free nature of such graphs, i.e., graphs whose degree distribution follow a power law. These
algorithms are able to solve the MCP to proven optimality in networks with millions of vertices,
see, e.g., [30, 42, 9]. The techniques employed to determine a maximum clique for these instances
are typically not effective for hard and dense MCP instances. For sparse massive instances, the
most successful exact algorithms are dOmega, proposed in [42], and BBMCSP, proposed in [30].
These two algorithms are compared against CliSAT in the computational section.

It is also worth mentioning that exact algorithms have been developed in recent years for variants
and generalization of the MCP. Efficient exact algorithms for the maximum vertex weighted clique
problem are described in [33, 11], while exact algorithms for the edge-weighted case are described
in [32, 35]. In addition, exact algorithms for vertex and edge interdiction variants of the MCP
have been described in [8] and [7]. Finally, a recent exact algorithm for the knapsack problem with
conflicts is described in [4]; this problem corresponds to the MCP with an additional knapsack
constraint.

1.5. Methodological contributions and outline of the article

The main contribution of this paper is the development and the extensive testing of a new exact
algorithm for the maximum clique problem. The algorithm, called CliSAT, is designed for hard
MCP instances and is built upon the state-of-the-art procedures of the best-performing MCP
algorithms in the literature. CliSAT integrates modern branching schemes with effective bounding
techniques to reduce the size of the branching tree. The two state-of-art bounding mechanisms
are based on graph colouring procedures and partial maximum satisfiability problems arising in
the branching scheme. Starting from these cutting-edge techniques, CliSAT exploits new routines
which are crucial for improving its performance to solve hard MCP instances.

Section 2 is entirely devoted to the presentation of the new algorithm. The first section §2.1
presents the state-of-the-art incremental branching scheme of CliSAT. This n-ary scheme employs
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the notions of branching and pruned sets of vertices and is described in §2.2. In §2.2.1 we present
the most effective state-of-the-art techniques employed by MCP algorithms to enlarge the pruned
set, which are based on PMAX-SAT-P-based upper bounds. In this context, the new SATCOL

procedure presented in §2.2.2 is the first methodological improvement of CliSAT. Its goal is to
further enlarge the pruned set by combining coloring-based and PMAX-SAT-P-based upper bounds.
A second important methodological contribution is the the filtering phase of CliSAT described in
§2.3. To the best of our knowledge, CliSAT is the first exact MCP algorithm to employ constraint
programming and domain propagation techniques to filter vertices from the branching set, i.e.,
to completely remove them from branching subtrees. To this end, two ad hoc procedures are
designed: the first one, denoted FiltCOL, is presented in §2.3.1; the second one, denoted FiltSAT,
is presented in §2.3.2. After explaining the incremental upper bounds also employed by CliSAT

in §2.4, the pseudocode for the algorithm is discussed in §2.5. Extensive experiments on hard
benchmark MCP instances, as well as new hard instances arising from different applications, are
presented in Section 3. Our computational campaign demonstrates the effectiveness of CliSAT on
solving hard MCP instances and demonstrates that CliSAT outperforms the state-of-the-art MCP
algorithms, for some classes of instances, by orders of magnitude. Section 4 concludes the paper
summarizing the principal algorithmic improvements of CliSAT and outlines several promising
lines of future research.

2. The new exact BnB algorithm: CliSAT

In this section, we describe the new BnB exact algorithm CliSAT for the MCP. CliSAT employs
an n-ary branching scheme of a constructive type that iteratively builds a clique by adding one
vertex at a time in a recursive fashion. We denote K̂ ⊆ V (G) the subproblem clique associated
to a branching node. Precisely, K̂ contains the vertices fixed during branching and added to the
subproblem clique in the nodes preceding the current one. Moreover, each branching node is
associated to a subproblem graph, denoted Ĝ. This graph contains the vertices which can be added
singularly to K̂, see §2.1. During its execution, CliSAT keeps track of the incumbent solution,
denoted Kinc. The size |Kinc| of the incumbent solution is denoted lb (a lower bound on ω(G)).
Moreover, if a larger clique is found during the branching, i.e., if the condition |K̂| > lb holds,
both Kinc and lb are updated accordingly. After the execution of CliSAT, Kinc corresponds to a
maximum clique of G and, accordingly, lb = ω(G).

The main idea of the branching scheme is to partition the set of vertices of the subproblem graph
Ĝ into two subsets: i) the branching set B and ii) the pruned set P (see §2.2). This idea has
been used in the state-of-the-art combinatorial BnB algorithms for the MCP and their variants,
see, e.g., [12, 13, 14, 24, 26, 27, 28, 31, 33, 32]. By definition of P , at least one vertex from
B = V (Ĝ) \ P is necessary to improve the incumbent solution Kinc. Accordingly, branching on
any of the vertices in P is not necessary in a given branching node, and the algorithm backtracks
when the set B is empty. After the pruned and branching sets are determined, CliSAT carries out
a |B|-ary branching operation, creating a branching node for every vertex in B by adding it to
the current subproblem clique K̂ (see §2.1).

We consider the vertex set V (G) of the input graph G sorted according to a given initial ordering
(v1, v2, . . . , vn), see §2.5 for further details on this topic. We denote Vi(G) ⊆ V (G) the subset
of vertices that comprises the first i ≤ n vertices of V (G); precisely: Vi(G) =

{
v1, . . . , vi

}
with

i = 2, . . . , n, and V1(G) = {v1}. Moreover, we denote V (vi, G) ⊆ V (G) the subset of vertices
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that comprises the first i vertices of V (G) intersected with the neighbourhood of the vertex vi;
precisely: V (vi, G) = Vi(G) ∩N(vi), i = 1, . . . , n. We then define |V (G)| graphs G(vi) as the ones
induced by the (non-empty) sets of vertices V (vi, G); precisely:

G(vi) = G[V (vi, G)], i = 1, . . . , |V (G)|. (3)

Figure 2 depicts the graphs G(v6) and G(v7) associated to the graph G of Figure 1. The vertices
v6 and v7 appear in red, V (G(v6)) and V (G(v7)) in green. The edges of both graphs are drawn as
thick black straight lines. The edges connecting vertex v7 to the vertices preceding it according to
the initial ordering are colored in blue. The edge that connects v7 to v8 appears as a dashed blue
line, indicating that v8 does not belong to E(G(v7)). The same information is shown for G(v6).
All the remaining edges in E(G) are shown as dashed black lines.

v1

v2

v3

v4

v5

v6

v7

v8

v1

v2

v3

v4

v5

v6

v7

v8

Figure 2: The graphs G(v6) (left part) and G(v7) (right part) associated to the graph G of Figure 1.

2.1. The incremental branching scheme of CliSAT

The input of the branching scheme of CliSAT corresponds to the family of graphs G(vi), i = 2, . . . , n.
CliSAT executes a BnB procedure for each one of these graphs, examining them in order. We
recall that Ĝ is the subproblem graph and K̂ is the subproblem clique associated to a branching
node. In the first level of the branching tree, Ĝ corresponds to one of the graphs G(vi) and K̂ is
the singleton {vi}. In order to determine the subproblem graphs Ĝ for subsequent child nodes,
CliSAT first partitions the vertex set V (Ĝ) into the pruned and branching sets P and B, i.e.,
V (Ĝ) = P ∪B and B ∩ P = ∅.

The pruned set P is a subset of vertices of V (Ĝ) respecting the following condition:

|K̂|+ ω
(
Ĝ[P ]

)
≤ lb, (4)

where ω
(
Ĝ[P ]

)
is any upper bound on the clique number of Ĝ[P ]. The entire left hand side of (4)

corresponds, de facto, to an upper bound on the clique number of the graph G[K̂ ∪ P ]. In other
words, the condition states that the graph induced by the vertices in K̂ ∪ P does not contain a
clique of size larger than lb = |Kinc|. Precisely, if a set P that respects the condition (4) is found,
it means that, in order to improve the incumbent solution Kinc, it is necessary to add to K̂ at
least one of the vertices in V (Ĝ) which is not in P . Consequently, we define the branching set B
as V (Ĝ) \ P . The specific way in which the P set is constructed by CliSAT, as well as the specific
upper bounds on the clique number it employs, are presented in §2.2.

7



Once the sets P and B are created, the vertices of these sets are ordered according to the initial
ordering (v1, v2, . . . , vn) and relabelled as follows:

P =
{
p1, p2, . . . , p|P |

}
and B =

{
b1, b2, . . . , b|B|

}
. (5)

CliSAT keeps track of the initial labels of the vertices v ∈ V (G) by establishing a mapping between
the vertices p ∈ P and b ∈ B and the corresponding vertices in V (G). This is done efficiently with
the help of its bitstring encoding of vertex sets in memory.

An example of the P and B sets is presented in the left part of Figure 3. Precisely, it shows the
partition of the vertex set {v1, v2, v4, v5, v6} of the subproblem graph G(v7) of Figure 2 (the original
graph G, we recall, is shown in Figure 1), into the sets P = {v2, v6} (grey) and B = {v1, v4, v5}
(black). The edges of G(v7) are depicted as thick black lines. In this example we assume G to be
the input graph, so K̂ = {v7} (v7 is shown in red). Since ω(Ĝ[{p1, p2}]) = 1, it follows that the
size lb of the incumbent solution must be equal to 2 for the condition (4) to hold. For the sake
of clarity, the vertices of the sets B and P are shown according to the relabelling established by
Equation (5), i.e., P = {p1, p2} and B = {b1, b2, b3}. In blue, the edges incident to v7 which are
involved in the branching. The vertices v3 and v8 are shown in white (without a label) since they
do not belong to G(v7), i.e., v3 is not adjacent to v7 and v8 comes after v7 in the initial ordering.
Finally, the incident edges to v3 and v8 are drawn as dashed lines.

b1

p1b2

b3

p2

v7

b1

p1b2

b3

p2

v7

b1

p1b2

b3

p2

v7

Figure 3: Left: the pruned and branching sets P and B for the subproblem graph G(v7) of Figure 2. Middle: the
subproblem graph G̃(b3). Right: the subproblem graph G̃(b1).

To create the subproblem graphs Ĝ of the child nodes associated to branching on the vertices of
the set B, we define a new family of graphs, called G̃. We denote Bj(Ĝ) ⊆ B, the subset of vertices

that comprises the first j ≤ |B| vertices; precisely: Bj(Ĝ) =
{
b1, . . . , bj

}
, with j = 2, . . . , |B|, and

B1(Ĝ) = {b1}. In addition, we denote V̂ (bj, Ĝ) ⊆ {P ∪B} the subset of vertices that comprises
the intersection between the set P , together with the first j vertices of B, with the neighbourhood
of the vertex bj; precisely: V̂ (bj, Ĝ) =

{
P ∪ Bj(Ĝ)

}
∩N(bj), j = 1, . . . , |B|. We then define |B|

graphs G̃(bj) as the graphs induced by the (non-empty) sets of vertices V̂ (bj, Ĝ); precisely:

G̃(bj) = Ĝ
[
V̂ (bj, Ĝ)

]
, j = 1, . . . , |B|. (6)

The graphs G̃(bj) become the subproblem graphs Ĝ in subsequent child nodes, and K̂ ∪ {bj} the
associated subproblem cliques. By construction, the vertices of G̃(bj) are connected to all the

vertices of K̂. CliSAT proceeds recursively until either all the vertices in B have been explored, or
B becomes the empty set.
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Figure 3 shows the graphs G̃(b3) (middle part) and G̃(b1) (right part) associated to the branching set
B. As in previous figures, the set of vertices of both graphs, i.e., {p2, b2} and {p1, p2} respectively,
are colored in green. By branching on the vertex b3 (resp. b1), K̂ becomes {v7, b3} (resp. {v7, b1})
and its unique edge, i.e., {v7, b3} (resp. {v7, b1}), is shown as a red line. In blue, the edges that
connect the vertices of G̃(b3) and G̃(b1) to the associated K̂. The edge set of G̃(b1) is empty, while
the edge set of G̃(b3) is the singleton {p2, b2} (drawn as a black line). The edge {b1, b2} is drawn
as a dashed blue line in the right part of the figure to indicate that b2 does not belong to V (G̃(b1)),
since b2 comes after b1 in the new labelling (see equation (5)). All the remaining edges of E(G)
are shown as dashed black lines.

We denote this way of branching incremental hereafter, as opposed to the more traditional
branching scheme that considers the child subproblems derived from the full neighbourhood of the
vertices selected for branching, see, e.g., [23, 28, 31]. Incremental branching has been employed by
the recent efficient algorithms MoMC[12] and IncMC2[13], and we have adopted this strategy for our
algorithm CliSAT. Finally, it is worth mentioning the relation between the incremental branching
of CliSAT and the Russian Doll Search (RDS) branching scheme described in the literature, see,
e.g., [41]. In RDS, the original problem is divided into hierarchical subproblems (dolls) that are
explored according to increasing order, i.e., the first doll contains a singleton, and the last doll
corresponds to the original problem. RDS has been employed successfully for the MCP in the well
known algorithm CLIQUER [20], also evaluated in this work. The subproblems determined by the
incremental branching scheme are reminiscent of doll subproblems, but the (doll) decomposition
occurs in every branching node, whereas in RDS it is restricted to the original problem.

2.2. Determining the pruned and branching sets

In this section we explain the techniques used by CliSAT to determine the branching and pruned
sets. We recall that the branching operations of CliSAT require determining a pruned set P ⊆ V (Ĝ)
respecting the condition (4). One such type of pruned set, which we denote PC , is determined by
a partial κ-coloring:

Cκ(Ĝ[PC ]) =
{
I1, I2, . . . , Iκ

}
, where κ = lb− |K̂|. (7)

The value κ corresponds to an upper bound ω(Ĝ[PC ]), and the κ-coloring is a collection of κ
independent sets (§1.1). CliSAT employs the greedy independent-set sequential colouring procedure
to compute a κ-coloring. This procedure is referred to as ISEQ, and was first proposed (in
connection with the MCP) in [26, 27]. We outline, in what follows, the main operations of ISEQ,
and refer the reader to the aforementioned papers for further details. Given a vertex ordering
(v1, v2, . . . , v|V (Ĝ)|) of V (Ĝ), each iteration of ISEQ builds an independent set processing the vertices
in order. At each step within an iteration, and starting from the empty set, a vertex is added to
the independent set under construction if it is not linked to any of its vertices. ISEQ continues
iterating until κ independent sets are determined. It is worth mentioning that CliSAT implements
ISEQ efficiently using a bitstring encoding of the vertex sets in memory, see [26].

We show the operations of ISEQ considering the subproblem graph Ĝ depicted in the left part
of Figure 4. This graph is chosen since it features a gap of one unit between its clique number
and its chromatic number, i.e., ω(Ĝ) = 4 and χ(Ĝ) = 5. In addition, Ĝ is considered associated
to a branching node with |K̂| = 1 and lb = 5, so κ = 4 according to equation (7). Given the
ordering (v1, v2, . . . , v7) of the vertex set V (Ĝ), ISEQ determines the following 4 independent sets
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in order: I1 = {v1}, I2 = {v2}, I3 = {v3, v4} and I4 = {v5, v6}. Each independent set is depicted
with a different color. The grey vertices in the right part of the figure correspond to the pruned set
PC = {p1, p2, . . . , p6}, shown after the relabelling according to Equation (5). The remaining vertex
b1 (depicted in black) becomes the branching set B. The edges incident to b1 are represented as
dashed lines.

v1

v2

v3

v4

v5

v6

v7

p1

p2

p3

p4

p5

p6

b1

Figure 4: To the left, a subproblem graph Ĝ associated to a branching node of CliSAT. The coloured vertices
correspond to the independent sets determined by ISEQ. To the right, the corresponding pruned set PC =
{p1, p2, . . . , p6} and the branching set B = {b1}.

In this example, the ISEQ procedure is not able to construct a pruned set PC = V (Ĝ), so branching
is necessary. The example illustrates the limits of using a (heuristic) vertex colouring procedure
to create the set P . Since χ(Ĝ) = 5, the branching node cannot be pruned even with an optimal
colouring.

2.2.1. Enlarging the pruned set with PMAX-SAT-P-based upper bounds

Given a κ-colouring Cκ(Ĝ[PC ]), defined in the previous §2.2, the set PC can be enlarged by adding
vertices from B = V (Ĝ) \ PC , one at a time, using the the PMAX-SAT-P upper bound presented
in §1.3. We describe in what follows the state-of-the-art procedure of this type employed by,
e.g., [12]. Hereafter, we denote for short PC ∪ {b} as Pb. A vertex b ∈ B can be added to PC if
an upper bound ω(Ĝ[Pb]) ≤ lb − |K̂| can be determined. To this end, a partition of V (Ĝ[Pb])
into κ + 1 color classes is created by assigning the vertex b to a new color class. Precisely,
Cκ+1(Ĝ[Pb]) = Cκ(Ĝ[PC ])∪{b} and the associated PSAT(Ĝ[Pb], Cκ+1(Ĝ[Pb])) can be used to prove
that ω(Ĝ[Pb]) = κ if the UP procedure determines a conflict C (starting from the unit clause of
{b}). If a conflict C is found, Pb becomes the new pruned set and b is removed from the branching
set B. In order to add more than one vertex from B to PC , it is necessary to find a proper set of
conflicts by iteratively building the transformed-graphs as explained in §1.2. The effect on the
branching tree is twofold: i) a node is fathomed if the branching set B becomes empty; ii) the
number of child nodes is reduced if the set PC is enlarged, see §2.1.

We illustrate this technique by referring again to the subproblem graph Ĝ in Figure 4 and C4(Ĝ[PC ]).
We recall that the branching set is B = {b1} and the pruned set is PC = {p1, p2, . . . , p6}, and
show how to obtain ω(Ĝ[Pb]) = 4 after determining C5(Ĝ[Pb]) as explained previously. Precisely,
the associated PSAT(Ĝ[Pb]), C5(Ĝ[Pb]) contains the 5 soft clauses: (yp1), (yp2), (yp3 ∨ yp4), (yp5 ∨
yp6), (yb1), and it is possible to determine a conflict by executing UP on the unit clause (yb1). The
reasoning is as follows: setting to true the literal yb1 removes the literals yp3 and yp6 (according
to the hard clauses (ȳb1∨, ȳp3) and (ȳb1∨, ȳp6)) so that both clauses (yp3 ∨ yp4) and (yp5 ∨ yp6)
become unit. Finally, setting to true the literal yp4 empties the other unit clause, resulting in the
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conflict {(yb1), (yp3 ∨ yp4), (yp5 ∨ yp6)}. Consequently, P = V (Ĝ), B = ∅ and the branching node
is fathomed. As can be seen, the PMAX-SAT-P-based upper bounds can be stronger than the
chromatic number.

2.2.2. Enlarging the pruned set with the SATCOL procedure

In what follows, we describe a new procedure, denoted SATCOL, that is employed by CliSAT to
(potentially) enlarge the pruned set PC by adding one independent set I ⊆ B at a time. Each
independent set is computed by one iteration of ISEQ on the vertices inB. We denote for short PC∪I
as PI . A larger pruned set PI is determined if a conflict C is found in PSAT(Ĝ[PI ], Cκ+1(Ĝ[PI ])),
where Cκ+1(Ĝ[PI ]) corresponds to the κ-colouring Cκ(Ĝ[PC ]) together with the independent set
I. In such a case, ω̄(Ĝ[PI ]) = κ, the new pruned set becomes PI , I is removed from B, and the
transformed-graph Ĝ[PI ](C ) is computed. To find a conflict C , SATCOL executes the procedure FL

on each of the literals associated to the vertices of I attempting to prove them failed, see §1.3. It
follows that, if C is found, the soft clause associated to I must be part of C . SATCOL continues
examining independent sets in B until it either fails to find a conflict, or the set B = ∅ and the
branching node is fathomed. When the procedure stops, the pruned set determined in this way is
denoted PS. The transformed-graphs are necessary to ensure that the set of conflicts determined
iteratively by SATCOL is a proper set of conflicts, see §1.2.

SATCOL presents a number of advantages with respect to prior state-of-the-art procedures that
examine vertices in B individually. In the first place, SATCOL, creates a single soft clause per
independent set I (if it is part of a conflict). An equivalent procedure that executes UP to find a
conflict for each of the vertices in I, generates |I| soft clauses and |I| transformed-graphs during
the reasoning. In addition, each transformation relaxes the clauses of the corresponding conflict
with an additional literal, see §1.3, so emptying these clauses becomes more difficult in subsequent
iterations. Keeping the number of soft clauses low (and of small size) is crucial for the overall
efficiency of SATCOL. In the second place, SATCOL can also determine larger pruned sets, since it
typically examines the vertices in B in a “better” order (according to independent sets) than the
initial order. We illustrate this behaviour by means of the following example.

v1

v2

v3

v4

v5

v6

v7

v8

v9

p1

p2

p3

p4

p5

p6

b1

b3

b2

Figure 5: To the left, a subproblem graph Ĝ associated to a branching node of CliSAT. The coloured vertices
correspond to the independent sets determined by ISEQ. To the right, the corresponding pruned set PC =
{p1, p2, . . . , p6} and branching set B = {b1, b2, b3}.

The left part of Figure 5 shows a new subproblem graph Ĝ associated to a branching node, with
|K̂| = 1 and lb = 4, so κ = 3 according to equation (7). The figure also shows the 3-colouring
C3(G[PC ]) determined by ISEQ. The right part of the figure depicts the relabelled vertices of the
pruned set PC = {p1, p2, . . . , p6} (grey) and the branching set B = {b1, b2, b3} (black). The edges
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with an endpoint in B appear dashed. SATCOL first examines the independent set I = {b1, b2} from
B, and the procedure FL determines a first conflict C1 = {(yp3 ∨ yp4), (yp5 ∨ yp6), (yb1 ∨ yb2)} in the

associated PSAT
(
Ĝ[PI ], C4(Ĝ[PI ])

)
, where, we recall, PI = PC ∪ I. Consequently, PI becomes the

enlarged pruned set, and I is removed from B. In the next and final iteration, SATCOL considers
the remaining vertex b3 in B and finds a second conflict C2 = {(yp1 ∨ yp2), (yp3 ∨ yp4 , z1), (yp5 ∨
yp6 ∨ z2), (yb3)} in the associated PSAT

(
Ĝ(C1), C5(Ĝ(C1))

)
. For completeness we provide its 5

(unsatisfiable) soft clauses: (yp1 ∨ yp2), (yp3 ∨ yp4 ∨ z1), (yp5 ∨ yp6 ∨ z2), (yb1 ∨ yb2 ∨ z3) and (yb3).

The added z literals correspond to the transformed-graph Ĝ(C1). As can be seen from the conflict
C2, the reasoning involves (besides the unit clause of b3) the soft clauses associated to the yellow,
blue and cyan color classes in the figure.
Alternatively, we now consider the operations of the UP procedure on the vertices in B following
the initial order, i.e., v7, v8 and v9 (also b1, b3 and b2). The first conflict determined by UP when
setting yb1 to true is C1 = {(yp3 ∨ yp4), (yp5 ∨ yp6), (yb1)}, and a second conflict, when setting yb3
to true, is C2 = {(yp1 ∨ yp2)(yp3 ∨ yp4 ∨ z1), (yb1 ∨ z3), (yb3)}. At this point, UP is unable to find

a third conflict in the associated PSAT
(
(Ĝ(C1))(C2), C6((Ĝ(C1))(C2))

)
. Its 6 soft clauses are:

(yp1 ∨ yp2 ∨ z′1), (yp3 ∨ yp4 ∨ z1 ∨ z′2), (yp5 ∨ yp6 ∨ z2), (yb1 ∨ z3 ∨ z′3), (yb3 ∨ z′4) and (yb2), where z and
z′ are the added literals corresponding to the conflicts C1 and C2 respectively. It is not difficult to
see that setting yb2 to true is unable to turn into unit any of the remaining (relaxed) clauses.

2.3. The filtering phase of CliSAT

We now describe one of the main algorithmic contributions of CliSAT. After the ISEQ procedure
terminates and computes a partial κ-coloring of a subproblem graph Ĝ, i.e., determines the pruned
set PC , CliSAT attempts to find a (κ+ 1)-colouring of Ĝ, Cκ+1(Ĝ), by checking if the branching
set B is an independent set. If this is the case, clearly B is the last color class of Cκ+1(Ĝ). CliSAT
exploits such a colouring to further reduce the branching tree.

A branching node where CliSAT is able to determine a (κ+1)-coloring of Ĝ, i.e., Ĝ is (κ+1)-partite,
is called a (κ+ 1)-partite branching node. In these “special” branching nodes it is necessary to
add to K̂ exactly one vertex from each of the κ+ 1 color classes in order to improve the lower
bound lb. This is true since, in (κ+ 1)-partite graphs, only one vertex from each of the κ+ 1 color
classes can make part of a clique.

The left part of Figure 6 shows a (κ+1)-partite subproblem graph Ĝ (associated to a (κ+1)-partite
branching node) with κ = 3 (assuming |K̂| = 1 and lb = 4). The ISEQ procedure determines
the 3 independent sets: I1 = {v1, v4, v5}, I2 = {v2, v6} and I3 = {v3} (shown with different colors
in the figure). Moreover, CliSAT is able to determine a 4-coloring of Ĝ, since the branching set
B = {v7, v8} forms an independent set. In the example, the 4-clique {v1, v2, v3, v7} improves the lb
value and, as can be seen, each of its vertices belongs to one of the color classes of the 4-colouring.

CliSAT exploits a (κ + 1)-partite subproblem graph Ĝ by discarding some vertices from V (Ĝ)
that cannot improve the incumbent solution. We call these operations of CliSAT the filtering
phase of the algorithm. To the best of our knowledge, no state-of-the-art MCP algorithm employs
filtering techniques, which are however extensively used for solving (Binary) Constraint Satisfaction
Problems, see, e.g., [34, 45]. Moreover, filtering is a core technique in state-of-the-art Constraint
Programming solvers, see e.g., [21]. Filtering vertices from V (Ĝ) can have a substantial impact
on the size of the branching tree, since, once a vertex is filtered, it is discarded from the entire
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branching subtree rooted in a (κ + 1)-partite branching node. In contrast, the vertices in the
pruned set can still make part of a solution in subsequent child nodes and thus cannot be discarded.

The general condition to filter a vertex of a (κ+ 1)-subproblem graph Ĝ is to prove that it cannot
make part of any clique of size (κ+ 1) contained in Ĝ. In practice, a necessary condition which
is easier to check is that the vertex is not linked to any of the vertices from another color class,
given a (κ+ 1)-coloring of Ĝ. To evaluate this condition efficiently, CliSAT employs the procedure
FiltCOL, which is described in §2.3.1. An alternative necessary condition is that the corresponding
literal of the vertex in the associated PSAT(Ĝ, Cκ+1(Ĝ)) is a failed literal. This is evaluated by a
second procedure FiltSAT presented in §2.3.2.

2.3.1. The FiltCOL filtering procedure

FiltCOL is the efficient color-based procedure employed by CliSAT to filter vertices. To better
explain the operations of FiltCOL, we first introduce some definitions and notation. We call
reference node the (κ+ 1)-partite root node of a subtree, and denote ĜR its associated subroblem
graph. We call reference (vertex) colouring, Cκ+1(ĜR), the κ-colouring computed by ISEQ, see
§2.2, together with the color class determined by the branching set B. The reference colouring
Cκ+1(ĜR) induces a colouring Cr

α(Ĝ), α < (κ+ 1), in any α-partite subproblem graph Ĝ of the
subtree rooted in the reference node. Precisely, Cr

α(Ĝ) is obtained when the vertices of Ĝ preserve
the color class of Cκ+1(ĜR). FiltCOL exploits the fact that Cr

α(Ĝ) differs from Cα(Ĝ) to filter
vertices of Ĝ.

v3

v2

v6

v1

v4

v5

v7

v8

v3

v2

v6

v1

v4

v7

Figure 6: On the left, a (κ+ 1)-partite subproblem graph Ĝ of a (κ+ 1)-partite branching node with κ = 3, together
with a 4-coloring. The independend sets I1 = {v1, v4, v5}, I2 = {v2, v6} and I3 = {v3} are the first 3 colours; the
branching set B = {v7, v8}, in black, is the 4-th colour. On the right part, the (κ+ 1)-partite subproblem graph
Ĝ, with κ = 2, resulting from branching on the vertex v7 in the reference node shown in the left part. Encircled
vertices are filtered: v6 (red) by FiltCOL and v4 (green) by FiltSAT.

We illustrate the above notions by again referring to the example of Figure 6. Precisely, we consider
its (κ+ 1)-partite subproblem graph, with κ = 3, to be the reference branching node ĜR. The
coloured vertices show the reference colouring C4(ĜR): I1(ĜR) = {v1, v4, v5}, I2(ĜR) = {v2, v6},
I3(ĜR) = {v3} and I4(ĜR) = {v7, v8} (left part). The right part of the figure depicts the (κ+ 1)-
partite child subproblem graph Ĝ = ĜR(v7), with κ = 2, which results from branching on the
vertex v7 ∈ GR (pink). The edges of Ĝ appear in black; in blue the edges with an endpoint in v7.
The induced colouring Cr

α(Ĝ), α = 3, is Ir1 = {v1, v4}, Ir2 = {v2, v6} and Ir3 = {v3}. The coloured
vertices correspond to C3(Ĝ), i.e. I1 = {v1, v4, v6} and I2 = {v2}, together with the branching set
B = {v3} = I3. As can be seen, Cr

3(Ĝ) 6= C3(Ĝ), since the vertex v6 (encircled in red) does not
belong to the same color class.
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In a nutshell, given a reference colouring Cκ+1(ĜR) and an α-partite subproblem graph Ĝ, α < κ+1,
FiltCOL computes the induced coloring Cr

α(Ĝ) while, at the same time, attempts to filter vertices
of Ĝ that do not belong to its associated color class in Cα(Ĝ). In detail, the operations of
FiltCOL are as follows. FiltCOL processes the vertices of Ĝ according to the initial order. At the
beginning of each iteration, FiltCOL starts with an empty independent set I. The first time a
vertex v ∈ V (Ĝ) is added to I, the procedure determines a correspondence between I and the
independent set I(ĜR) ∈ Cκ+1(ĜR) to which v belonged in the reference coloring, i.e., v ∈ I(ĜR).
Then, for each additional vertex w ∈ V (Ĝ) that can enlarge I, i.e., I ∪ {w} is an independent
set, FiltCOL checks if the correspondence with I(ĜR) is preserved, i.e., if w ∈ I(ĜR). If this is
the case, w is added to I. Alternatively, there are two possibilities: (a) the vertex w comes after
the last vertex of I(ĜR) according to the initial order, in which case it is filtered from Ĝ. This is
possible because w is not a member of I(ĜR) and is non-adjacent to all its vertices. (b) the vertex
w precedes the last vertex of I(ĜR), in which case w is skipped for future iterations. In this case
w cannot be filtered, since it could still be linked to other vertices of I(ĜR) that are also in Ĝ and
which have not yet been examined. The iteration ends when all the vertices in V (Ĝ) have been
considered. FiltCOL continues building independent sets until the induced colouring Cr

α(G̃) is
determined for the resulting reduced graph G̃.

Considering the suproblem graph Ĝ of Figure 6, FiltCOL is able to filter the vertex v6 (encircled
in red) in its first iteration with the following operations. Initially, I1 is the empty set and vertex
v1 is added to I1, establishing a correspondence with the independent set I1(ĜR) = {v1, v4, v5} of
the reference coloring C4(ĜR). Next, FiltCOL adds vertex v4 to I1 successfully, since v4 ∈ I1(ĜR).
Finally, v6 is selected to enlarge I1; however, since v6 /∈ I1(ĜR) and it has a higher index than the
last vertex of I1(ĜR), i.e., v5, it is filtered (removed) from the graph. In the remaining 2 iterations,
the independent sets I2 = {v2} and I3 = {v3} are determined. The vertices of the reduced graph
are V (G̃) = {v1, v2, v3, v4}.

Finally, we mention an important optimization related to FiltCOL. Once CliSAT executes both
filtering procedures (FiltCOL and FiltSAT), and before branching, it keeps track of the vertices
with the highest index from each of the α color classes of Cr

α(Ĝ). These α vertices, and not the
ones from the reference colouring, are used to determine if a vertex is skipped or filtered during the
execution of FiltCOL in the child nodes of G̃. In the example, and considering only the execution
of FiltCOL, the vertices stored would be v4, v2 and v3, for the independent sets I1, I2 and I3

respectively.

2.3.2. The FiltSAT filtering procedure

Upon termination of FiltCOL, CliSAT executes the second filtering procedure FiltSAT on the
reduced subproblem (κ + 1)-partite graph G̃, with κ + 1 = α, attempting to filter additional
vertices and, ultimately, fathom the node.

FiltSAT exploits the following observations concerning the associated PSAT(G̃, Cr
α(G̃)): i) if a

failed literal is found, its associated vertex cannot be part of an α-clique in G̃ and the corresponding
vertex can be filtered, i.e., removed from G̃; ii) if a conflict is found, an α-clique cannot exist in G̃
and, therefore, the node can be fathomed. The latter is true since, as explained in §1.3, a conflict
found in PSAT(G̃, Cr

α(G̃)) reduces the color-based upper bound w(G̃) = α by one unit. The
vertex associated to a failed literal can be filtered for similar reasons. FiltSAT attempts to filter
every vertex in V (G̃) by executing the procedure FL on the associated literals in PSAT(G̃, Cr

α(G̃)),
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starting from the vertices of the branching set B. Any literal proven failed by FL is filtered from
V (G̃). The procedure ends when all the vertices in V (G̃) have been examined or any one of the
PSAT(G̃, Cr

α(G̃)) α clauses becomes empty, in which case the node is fathomed.

We illustrate the operations of FiltSAT by referring again to the example from Figure 6. Precisely,
we consider the reduced subproblem graph G̃ that results from the execution of FiltCOL, where,
we recall V (G̃) = {v1, v2, v3, v4}. FiltSAT executes FL on the literals of PSAT(G̃, R3(G̃)), starting
with the literal associated to the branching set yv3 . In this case yv3 cannot be filtered, since it is
part of the solution {v1, v2, v3}, but yv4 is found to be a failed literal (v4 is non-adjacent to the
singleton vertex v2 of I2). Consequently, v4 (encircled in green in the figure) is removed from G̃.
The resulting graph G̃[{v1, v2, v3}] is a 3-clique, so the filtering is optimal.

Finally, it is worth mentioning that for the subproblem graph ĜR of the reference node, FiltCOL
is not executed since there is no reference coloring available. In this case only FiltSAT is run on
PSAT(ĜR, Cκ+1(ĜR)).

2.4. Incremental upper bounds

One of the advantages of the incremental branching scheme is that upper bounds on the large
subproblems can be efficiently computed based on upper bounds of previously examined smaller
subproblems. Such upper bounds, denoted incremental in [17], have been employed in recent
SAT-based algorithms for the MCP, see, e.g., [12, 13], and are also employed by the new algorithm
CliSAT. We briefly describe the incremental bound employed by CliSAT in what follows.

Let Ĝ = (V̂ , Ê) be a subproblem graph whose vertices are sorted according to the ordering
(v̂1, v̂2, . . . v̂|V̂ |). We define µ(Ĝ) = (µ[v̂1], µ[v̂2], . . . , µ[v̂|V̂ |]) as an ordered collection of |V̂ | values

associated to V̂ , such that each value µ[v̂i] is a valid upper bound on the clique number of the
graph induced by v̂i together with the set of adjacent vertices to v̂i that precede it in the ordering.
Precisely, this induced graph corresponds with a branching subproblem of CliSAT’s incremental
branching scheme. Furthermore, and owing to the hereditary nature of cliques, a valid value (upper
bound) µ[v̂i], 2 < i ≤ |V̂ |, can always be computed in O(|V̂ |), given the values of µ associated to
the vertices in V̂ preceding v̂i (µ[v̂1] = 1), as follows:

µ[v̂i] = 1 + max

{
µ[u] : u ∈ V̂i−1(Ĝ), (u, v̂i) ∈ Ê

}
, i = 2, . . . |V̂ |, (8)

where V̂i−1(Ĝ) is the set of vertices that precede v̂i in V̂ .

The values of µ(Ĝ) are dynamically updated during the execution of CliSAT according to Equation
8, taking into account as well the size of the incumbent solution obtained after examining the
corresponding subproblem. They provide a computationally cheap upper bounding condition
for reducing the number of branching child nodes for a given a branching set B. This condition
is evaluated just after the child subproblem is determined, and before the bounding techniques
described in the previous sections are executed. In practice, CliSAT considers the vertex ordering
(5), i.e., vertices in the pruned set P first, followed by the vertices in the branching set B, to
determine the values of µ in every node, as in [12]. The specific details concerning how the µ
values are employed by CliSAT to prune the branching tree are described in Algorithm 1.
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2.5. The algorithm CliSAT

The algorithm CliSAT produces a branching tree that interleaves the bounding procedures SATCOL,
FiltCOL and FiltSAT presented in the previous sections with the general branching scheme
described in §2.1. Pseudocode for CliSAT is presented in Algorithm 1. In the pseudocode, the
steps (1-3) correspond to the initial preprocessing phase of CliSAT, which is covered at the end
of this section. Branching takes place in the recursive call to FindMaxClique (step 7), and is
described in what follows.

Algorithm 1: CliSAT algorithm for the maximum clique problem

Input: A simple graph G = (V,E)
Output: A maximum clique K in G (lb = |K| = ω(G))

1 (v1, v2, . . . , vn) ← Sort(V )
2 K ← FindClique(V ), lb← |K|
3 Initialize µ(G)
4 for i← |K|+ 1 to n do

5 V̂ ← {v ∈ Vi−1(G) : {v, vi} ∈ E} . child subproblem

6 P ← {v̂1, v̂2, . . . , v̂|K|}
7 FindMaxClique(G[V̂ ], {vi}, P, µ(G))
8 µ[vi]← lb

9 FindMaxClique(Ĝ, K̂, P , µ)
10 µ̂← {µ[v] : v ∈ P}
11 B = {b1, . . . , b|B|} ← V̂ \ P
12 for l← 1 to |B| do
13 Compute µ̂[bl] . see Equation (8)

14 if µ̂[bl] + |K̂| ≤ lb . skip the l-th subproblem

15 then
16 P ← P ∪ {bl} and B ← B \ {bl}
17 else

18 Ṽ ← {P ∩N(bl)} ∪ {bj ∈ B : j < l, {bj , bl} ∈ Ê} . child subproblem

19 if Ṽ = ∅ then
20 if |K̂| > lb then lb← |K̂| and K ← K̂
21 return

22 if the current branching node is (κ+ 1)-partite . Section 2.3

23 then

24 (P̃ , B̃)← FiltCOL (Ṽ ) . Section 2.3.1

25 (P̃ , B̃)← FiltSAT (P̃ , B̃) . Section 2.3.2

26 else

27 (P̃ , B̃)← SATCOL (Ṽ ); . Section 2.2.2

28 if B̃ 6= ∅ then
29 FindMaxClique(Ĝ[Ṽ ], K̂ ∪ {bl}, P̃ , µ̂)

30 µ̂[bl]← min{µ̂[bl], lb− |K̂|}

At the end of its preprocessing phase, CliSAT branches on the vertices in V (according to the
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initial order established in step 1) starting from the |K|-th + 1 vertex (the first lb = |K| vertices
are skipped, since they cannot improve the initial clique by themselves). Then, for each vertex
vi ∈ V , i = lb+ 1, . . . , n, selected for branching, CliSAT determines the set of vertices V̂ of the
child subproblem, i.e., the adjacent vertices to vi that precede it in V (step 5), computes a trivial
Pruned Set P that comprises the first lb vertices in V̂ (step 6) and calls the recursive procedure
FindMaxClique to explore G(V̂ ) (step 7). On backtracking, the value of µ corresponding to the
branched vertex vi is updated with lb (step 8).

Inside a branching node, the sets P and B always store the vertices according to their index
number, the predetermined initial order of the vertices in G. This operation is done efficiently with
the help of bitsets. The first task executed by FindMaxClique is to compute the values of µ̂ for
the vertices in P . Since these vertices will not be branched on, preliminary tests established that
the best compromise between efficiency and pruning ability was to give them the corresponding
values in the father node (step 10). This efficient inheritance (originally described in [12], to the
best of our knowledge, in combination with incremental branching) is possible because, as stated
previously, the order of the vertices in P is preserved in every node. Since child subproblems are
always subsets of father subproblems, the upper bound values concerning the latter are also valid
for the former. In contrast, the values of µ̂ for each branching vertex in B are computed in step
13 according to Equation (8).

Pruning with the (upper bound) values of µ̂ occurs prior to the computation of each new child
subproblem in step 14. If the pruning is successful, the vertex bl ∈ B, l = 1 . . . |B| is added
to P and removed from B (and the corresponding subproblem is not explored); otherwise, the
child subproblem is determined in step 18. If the latter corresponds to a leaf node that improves
the current solution, the incumbent clique is updated in step 20; else the child node is either
processed according to the procedure SATCOL, or, in case the node is (κ+ 1)-partite, according to
the filtering procedures FiltCOL and FiltSAT (steps 22-27), see the Sections 2.2.2, 2.3.1 and 2.3.2
respectively. Finally, if at this point the child node has not been fathomed, CliSAT branches to
the child subproblem in a recursive fashion (step 29).

We conclude this section by presenting the initial preprocessing phase of CliSAT. This phase
comprises the following 3 operations executed in the first 3 steps of the algorithm: (i) an initial
ordering of the vertices (step 1); (ii) a clique is computed heuristically (step 2); (iii) the collection
of upper bound values µ is initialized (step 3). We describe the three operations in the following.

It is well established in the literature that the initial ordering of vertices plays an important role in
BnB algorithms for the MCP, see, e.g. [19]. More precisely, state-of-the-art exact MCP algorithms
employ two different orderings: (i) degenerate degree-based (DEG-SORT) and (ii) color-based
(COLOR-SORT). The term degenerate in (i) refers to the fact that the sorting criterium (vertex
degree) is dynamic, i.e., it is recomputed on the remaining unsorted vertices each time a vertex is
selected. These two orderings are briefly presented in what follows; for a more in-depth analysis
we refer the interested reader to [29].

The most frequently employed ordering is DEG-SORT, which can be traced back to [3]. In its basic
form, the degree-based ordering (v1, v2, . . . , vn) is such that vn is a vertex with smallest degree in
G, vn−1 is a vertex with smallest degree in the induced graph G[Vn−1(G)], and so on. A successful
color-based ordering for the MCP was first described in [17] to the best of our knowledge.
COLOR-SORT partitions V into k independent sets {I1, I2, . . . , Ik}, such that I1 is a maximum
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independent set in G, I2 is a maximum independent set in the induced subgraph G[V \ I1], and so
on. Moreover, CliSAT considers the following order within each independent set I: for any pair of
vertices (vi, vj) ∈ I such that 1 ≤ i < j ≤ n (vi precedes vj), the degree of vi is greater or equal to
the degree of vj. It is worth noting that finding partitions of maximum independent sets is as
computationally hard as the original problem. However, hard MCP instances are normally dense
or very dense, and, therefore, determining maximum independents sets is expected to be easy. In
practice, to determine COLOR-SORT we execute CliSAT on the complement graph and search for
maximum cliques with a fixed time limit.

Depending on the actual instance, CliSAT employs either DEG-SORT or COLOR-SORT. Extensive
preliminary tests carried out showed that, in the general case, COLOR-SORT improves the efficiency
of CliSAT when the size k of the independent set partition provides a tight upper bound on ω(G).
If this is not the case, DEG-SORT is to be preferred. This is consistent with the results found in
the literature, see, e.g., [29]. The procedure referred to as Sort(V) in step 1 of the pseudocode,
selects the concrete ordering and is adapted from [29]; we refer the reader to the latter for further
details. When Sort(V) terminates, the adjacency matrix of G is processed so that the vertex
order becomes the index order of the vertices in G, i.e., we compute an isomorphic graph to G
which becomes the new input graph to CliSAT. This optimization was originally described in the
bitstring algorithm [26] to the best of our knowledge.

To compute an initial clique Kinc (step 2 of the initial preprocessing phase), CliSAT executes the
multi-start tabu search heuristic AMTS [43] with a reduced time limit (see the computational
section §3), and sets lb accordingly, i.e., lb = |Kinc|. Finally, µ(G) is initialized in step 3 according
to Equation (8) (µ[v1] = 1). In addition, the first |Kinc| values of µ are bounded by lb, and
its remaining values are bounded by the size k of the independent set partition determined by
COLOR-SORT.

3. Computationals

In this section we assess the computational performance of the new BnB algorithm CliSAT

presented in this work. The goal of this computational study is twofold: i) to evaluate the
performance of CliSAT with respect to its main components, covered in §3.2; ii) to compare
CliSAT against the state-of-art algorithms in the literature, covered in §3.3 and 3.4.

3.1. Experimental setting and testbed of instances

All the experiments have been carried out on a 20-core Intel(R) Xeon(R) CPU E5-2690 v2@3.00GHz,
disposing of 128 GB of main memory and running a 64 bit Linux operating system. The source
code was compiled with gcc 5.4.0 and the -o3 optimization flag. The configuration parameters of
CliSAT are as follows. In all the runs, during CliSAT’s initial preprocessing phase the heuristic
AMTS is executed with a time limit of 0.05 seconds to determine an initial large clique. The time
limit to determine each maximum independent set required by COLOR-SORT is also fixed to 0.05
seconds (see the description of the initial preprocessing phase of CliSAT at the end of the previous
§2.5 for an explanation of this threshold).

For the tests, we have considered a testbed of 771 instances which comprises 501 structured
instances (see Table 1) and 270 uniform random instances (see Table 4). The choice of orders and
densities of the 270 random instances is in accordance with similar tests that can be found in the
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literature for exact MCP algorithms, see, e.g., Table 2 of [31]. The 501 structured instances can
be divided into the following 4 categories (datasets): (i) the 86 instances from the 2nd DIMACS
Challenge (http://dimacs.rutgers.edu/programs/challenge/); (ii) the 41 instances from the
BHOSHLIB dataset; (iii) 223 representative instances derived from binary constraint satisfaction
problems (BCSPs), which we denote the CSPLIB dataset and (iv) 151 hard MCP instances taken
from different sources, hereafter the miscellaneous dataset MISCLIB. The 501 structured instances
are publicly available in the github repository https://github.com/psanse/CliSAT. We consider
this extended dataset wrt typical clique benchmarks employed elsewhere an additional contribution
of this work, and hope it will stimulate further research in this field. Moreover, the repository also
contains additional comparison performance results of CliSAT that complement those reported in
this section.

The DIMACS and BHOSHLIB datasets are consistently employed in the literature to test exact MCP
algorithms. The instances of our CSPLIB dataset are obtained as follows: vertices represent specific
values of variable domains, and there is an edge between two vertices if the corresponding 2
values are compatible according to the constraints imposed on the original BCSP. It is worth
mentioning that all the instances from the BHOSHLIB dataset also derive from BCSPs, which has
motivated the choice of the CSPLIB. Last of all, the miscellaneous dataset MISCLIB comprises
4 families: (i) the 20 instances of the recent evil dataset [38], claimed to be harder than the
BHOSHLIB dataset ; (ii) 3 instances derived from monotone matrices (mon) [37]; (iii) 78 instances
(denoted vc) derived from the 200 vertex cover problems from the PACE Challenge (Track 1a)
(https://pacechallenge.org/2019/vc/). Precisely, we have included those instances from the
PACE Challenge with less than 8, 000 vertices; (iv) the first 50 (out of more than 49, 150) instances
of the Gordon Royle’s 17-clue Sudoku collection (https://github.com/t-dillon/tdoku/blob/
master/data.zip), and referred to as sud in the following. In the sud instances, vertices represent
a specific number and square of the 9× 9 Sudoku grid, and there is an edge between two vertices
if the corresponding (number, square) pairs are compatible according to the rules of the game. All
the instances of sud have 729 vertices and a unique maximum clique of order 81.

Table 1 shows information related to the number of instances (#inst.), order (|V |) and density
(d(G)) of the 501 dataset of structured instances classified by categories (datasets) and aggregated
by families. As can be seen from the table, the average density of the different families of instances
is high, i.e. with the exception of the family c-fat, the smallest average density is 0.49. Moreover,
in 15 out of the 24 families, the average density is greater than 0.75. It is also worth noting that
some of the instances were not solved by any of the algorithms tested and remain open.

3.2. Empirical analysis of the main components of CliSAT

In this section we evaluate the impact on the performance of CliSAT of its main components. For
this purpose we have selected 67 representative instances from the 501 structured instance dataset.
The collection covers most of the original families and has been chosen to be relatively easy for
CliSAT i.e., none of the instances take the algorithm more than 500 seconds to prove optimality;
the time limit for these experiments was fixed at 1, 800 seconds.
Table 2 summarizes the results obtained. The table shows the number of instances solved to
proven optimality (#opt), and the time (in seconds) spent by the different algorithmic variants
to prove optimality, i.e., those instances in which a time limit was reached are not included.
Specifically, we report performance results for the following procedures: (i) the algorithm CliSAT;
(ii) CliSAT without the SATCOL procedure (described in §2.2.2); (iii) CliSAT without the filtering
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Table 1: Information on the dataset of 501 structured MCP instances considered in this work.

number of vertices |V | edge density d(G)
category family #instances min avg max min avg max

DIMACS brock 12 200 466.7 800 0.50 0.67 0.75
C 7 125 1,410.7 4,000 0.50 0.79 0.90
c-fat 7 200 371.4 500 0.04 0.19 0.43
dsjc 7 250 678.6 1,000 0.10 0.50 0.90
gen 5 200 320.0 400 0.90 0.90 0.90
ham 6 64 448.0 1,024 0.35 0.78 0.99
john 5 28 208.8 496 0.56 0.78 0.91
keller 3 171 1,436.0 3,361 0.65 0.74 0.82
MANN 4 45 1,194.8 3,321 0.93 0.98 0.999
p hat 15 300 800.0 1,500 0.24 0.49 0.75
san 15 200 346.7 1,000 0.50 0.73 0.90

86

CSPLIB aim 48 472 909.8 2,016 0.91 0.93 0.96
B 25 529 627.0 729 0.72 0.74 0.75
comp 25 330 616.4 1,050 0.88 0.93 0.96
D 25 320 1,824.0 7,200 0.86 0.87 0.89
ehi 25 2,079 2,144.5 2,205 0.95 0.95 0.95
geom 25 1,000 1,000.0 1,000 0.88 0.90 0.91
lat 25 613 3,023.0 6,961 0.97 0.98 0.99
RB2 25 450 773.2 1,150 0.82 0.85 0.88

223

MISCLIB evil 20 120 182.6 253 0.87 0.94 0.98
mon 3 343 528.0 729 0.79 0.81 0.84
vc 78 153 1,501.8 7,400 0.82 0.96 0.9995
sud 50 729 729.0 729 0.63 0.63 0.63

151

BHOSHLIB frb 41 450 1,086.1 4,000 0.82 0.87 0.93

procedures FiltCOL (§2.3.1) and FiltSAT (§2.3.2) for (κ+ 1)-partite branching nodes, and (iv)
CliSAT without both components.

The table shows that CliSAT requires both of its components to solve to proven optimality the
67 instances of the dataset. Removing one or both of the components leads to a number of
instances remaining unsolved within the time limit. Specifically, if the filtering component, i.e., the
procedures FiltCOL and FiltSAT, is removed, only 40 instances out of the possible 67 are solved,
whereas if the component SATCOL is removed, 57 instances are solved. A first conclusion to be
drawn is, consequently, that the filtering component has more impact on the overall performance
of CliSAT than its counterpart SATCOL.

Furthermore, and according to the reported results, the impact of the filtering component of
CliSAT is smaller on the DIMACS dataset than on the other 3 datasets. This might be explained by
the fact that, in the instances tested from the DIMACS dataset, the average gap between the clique
number and the color-based bound is larger than in the other 3 datasets (with the exception,
possibly, of the keller instance). Consequently, the probability of finding (κ+ 1)-partite nodes
in the shallow levels of the branching tree is lower. It is worth noting, that the incremental
nature of CliSAT’s branching scheme also favours the appearance (κ + 1)-partite nodes and
might be one explanation for the “good” overall performance of CliSAT when combined with the
FiltCOL\FiltSAT component.

Table 2 also shows that the component SATCOL is not dominated by the FiltCOL\FiltSAT
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Table 2: Analysis of the main components of the algorithm CliSAT over a subset of 67 instances from the 501
dataset. The time limit (tl) was set to 1, 800 seconds.

CliSAT

CliSAT no SATCOL no FiltCOL\FiltSAT no both

categ. fam. #inst. #opt time [s] #opt time [s] #opt time [s] #opt time [s]

DIMACS dsjc 1 1 86.2 1 101.3 1 93.5 1 88.2
keller 1 1 23.1 1 111.4 1 208.3 1 293.7
MANN 1 1 5.5 1 89.3 1 7.7 1 75.9
p hat 2 2 42.5 2 216.6 2 56.3 2 187.9
san 1 1 39.1 1 60.4 1 44.6 1 51.2

6 6 6 6 6

CSPLIB aim 5 5 460.7 1 1,464.2 1 21.1 1 115.2
B 5 5 73.6 5 73.2 5 525.4 5 521.3
comp 5 5 0.1 5 0.1 5 0.1 5 0.1
D 5 5 222.6 5 259.4 4 532.4 4 529.2
ehi 5 5 37.4 1 1,796.2 0 tl 0 tl
geom 5 5 1.8 5 1.8 5 25.2 5 24.9
lat 5 5 208.1 5 209.6 0 tl 0 tl
RB2 5 5 15.6 5 15.7 4 33.6 4 33.7

40 40 32 24 24

MISCLIB evil 5 5 28.3 3 818.9 3 44.8 3 154.1
mon 1 1 148.7 1 229.4 1 224.5 1 276.2
vc 5 5 140.3 5 197.7 0 tl 0 tl
sud 5 5 0.7 5 0.7 2 759.3 2 748.0

16 16 14 6 6

BHOSHLIB frb 5 5 69.1 5 70.7 4 112.9 4 114.3

Total 67 67 57 40 40

component. For example, in the families MANN, p hat, aim and evil, removing SATCOL leads to a
degradation in the performance of CliSAT greater than if the other component is removed. It is
the combined effect of both components that causes the excellent performance of CliSAT regarding
the tested instances. In addition, removing both components can lead to a large degradation of
the performance of CliSAT. In the case of the family keller, this degradation is greater than
one order of magnitude. In the case of the families ehi, lat and vc, when both components are
removed (also when just the FiltCOL\FiltSAT component is removed) CliSAT is unable to solve
any instance within the time limit, whereas it solves all of them efficiently when both components
are executed. Finally, it is worth pointing out that in a small number of cases, such as, e.g., the
aim family, individual components may also have a negative effect in the overall performance of
the algorithm.

3.3. Comparison between CliSAT and MoMC over structured instances

We compare in detail the performance of CliSAT against the exact combinatorial BnB algorithm
MoMC [12]. MoMC is the most recent and successful SAT-based algorithm for the MCP to the
best of our knowledge. In this section, we consider for comparison purposes the 501 structured
instance dataset described in §3.1. The results obtained are reported in the Table 3. The tables
show aggregated results by families for the categories (datasets) DIMACS, CSPLIB, MISCLIB and
BHOSHLIB respectively, reporting the number of instances solved (#opt) and the average and
maximum times in seconds spent by the 2 algorithms to solve the instances to proven optimality.
We fixed the time limit to 15 days for families of instances which either had been consistently
employed in the recent literature for similar purposes, i.e., the DIMACS and BHOSHLIB datasets, or
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we considered relevant, i.e., evil, mon and vc. For example, the evil family is interesting because,
as mentioned in §3.1, the creators claim it to be harder than BHOSHLIB. For the CSPLIB dataset
and the Sudoku family (sud), the time limit was reduced to 1, 800 seconds for practical purposes.

Table 3: Performance comparison of the algorithms CliSAT and MoMC for the entire strucured dataset of 501
instances: i) 86 DIMACS instances (time limit 15 days); ii) 223 CSPLIB instances (time limit 1, 800 sec); iii) 151
MISCLIB instances (time limit 15 days for the evil, mon and vc families, 1, 800 sec for the sud family) ; iv) 41
BHOSHLIB instances (time limit 15 days).

CliSAT MoMC
time [sec] time [sec]

categ. family #inst. #opt avg. max. #opt avg. max.

DIMACS brock 12 12 827.7 3,652.2 12 500.7 1,867.1
C 7 3 9,263.2 27,660.5 3 11,689.1 34,936.7
c-fat 7 7 0.05 0.1 7 0.03 0.1
dsjc 7 5 17.5 86.2 5 22.9 112.3
gen 5 5 0.1 0.1 5 0.4 1.1
ham 6 5 0.1 0.1 5 5.0 24.5
john 5 3 0.10 0.2 3 0.03 0.1
keller 3 2 11.6 23.1 2 78.9 157.7
MANN 4 4 90,361.5 361,440.5 4 242,661.6 970,637.5
p hat 15 14 1,215.8 16,289.6 14 1,082.2 14,453.0
san 15 15 2.8 39.1 15 3.7 51.5

86 75 75

CSPLIB aim 48 47 133.5 1,459.7 20 215.8 1,620.4
B 25 25 33.3 146.5 25 82.1 349.0
comp 25 25 0.1 0.2 22 0.5 1.1
D 25 25 51.7 858.4 22 18.3 191.5
ehi 25 25 18.9 139.2 24 171.3 273.5
geom 25 25 0.4 4.9 25 2.7 12.0
lat 25 16 65.8 528.1 8 49.3 158.2
RB2 25 24 153.0 1,514.6 22 64.4 662.5

223 212 168

MISCLIB evil 20 20 4,176.4 54,828.4 17 13,721.2 165,792.0
mon 3 3 22,722.8 68,019.1 2 209.3 415.9
vc 78 76 7,262.6 406,912.1 63 62.9 1,463.0
sud 50 50 1.5 16.9 1 1.6 1.6

151 149 83

BHOSHLIB frb30-15 5 5 0.1 0.1 5 0.3 0.4
frb35-17 5 5 0.2 0.4 5 1.0 1.5
frb40-19 5 5 1.0 2.9 5 3.3 5.8
frb45-21 5 5 31.1 100.7 5 76.8 168.1
frb50-23 5 5 612.8 2,534.4 5 1,400.6 5,932.0
frb53-24 5 5 861.6 1,557.3 5 1,758.0 3,415.1
frb56-25 5 5 19,907.5 53,642.3 5 45,209.2 121,379.9
frb59-26 5 5 73,261.5 108,058.4 5 146,109.4 257,586.4
frb100-40 1 0 tl - 0 tl -

41 40 40

Total 501 476 366

According to Table 3, CliSAT consistently outperforms MoMC solving more instances than its
counterpart or spending less time, on average, when both algorithms solve the same number of
instances to proven optimality. It is worth mentioning that there is no family in which MoMC solves
more instances than CliSAT. In detail, CliSAT solves within the time limit 75 DIMACS instances
out of a possible 86, 212 CSPLIB instances out of a possible 223, 149 MISCLIB instances out of a
possible 151 and 40 out of the 41 instances of the BHOSHLIB dataset. Overall, it is able to solve to
proven optimality 476 instances out of a possible 501. In contrast, MoMC solves the same number
of instances as CliSAT from the DIMACS and BHOSHLIB datasets, but its performance drops to 168
instances from MISCLIB, and 83 from CSPLIB. Altogether, MoMC manages to solve within the time
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limit 366 instances out of the possible 501, i.e., 110 instances less than CliSAT.
One possible explanation for the difference in the number of instances solved from the CSPLIB

dataset, and also the evil and sud families (MISCLIB), is the pruning ability of the new filtering
component of CliSAT. This is because, in these instances, there is more probability of finding
(κ+ 1)-partite branching nodes in the shallow levels of the tree.

Also from the reported results in the Table, the evil family is much harder to solve than the
BHOSHLIB dataset for MoMC, in accordance with what is claimed in the literature, see [38]. However
this is not the case for CliSAT, which manages to solve the 20 evil instances within the time
limit. CliSAT also outperforms MoMC in the BHOSHLIB dataset, e.g., it is more than twice as fast in
the instances from the family frb59-26. With respect to the 50 Sudoku instances, the difference
in performance in favour of CliSAT is even more acute, solving all the instances in an average
time of 1.5 seconds, whereas MoMC is able to solve just one instance. In addition, Table 2 clearly
shows that the filtering component of CliSAT is the major cause of its good performance on the
sud family.

To end the section, we highlight that even though CliSAT outperforms MoMC in most of the families,
there are exceptions. Specifically, in the (hard) families brock and p hat from the DIMACS dataset,
MoMC significantly outperforms CliSAT. The brock family is very sensitive to initial pre-processing,
so it is difficult to relate the poor performance of CliSAT on this family with its algorithmic
components. In the case of p hat, the computing performance of CliSAT is reasonably close to
MoMC. The other 2 cases in which MoMC outperforms CliSAT are the family c-fat and 3 instances
of the family john. These are easy instances solved by both algorithms in less than 1 second, and
therefore not representative enough, in our opinion, to draw any conclusion.

3.4. Comparison between CliSAT and MoMC over uniform random instances

We also compare the algorithms CliSAT and MoMC over a set of 270 Erdös-Rényi random G(n, p)
graphs of different sizes (n = |V | ∈ {150, 200, 300, 500, 1000, 3000, 5000, 10000, 15000}) and edge
densities (see Table 4 for the specific density values tested). These uniform random graphs are
created according to a given probability (equal to the desired edge density value) of existence of an
edge between any pair of vertices. Similar graphs are commonly used for testing clique algorithms;
precisely, the testbed employed is the same as the one used in [31]. For each of the 27 different
classes of random graphs considered, we run 10 instances with similar features. All instances were
solved to optimality by both algorithms within the time limit, with the exception of the instances
from the class G(15000, 0.1), for which MoMC reported a memory problem in all 10 cases.

According to Table 4, CliSAT also outperforms MoMC in this testbed (even without taking into
account the class G(15000, 0.1)). In detail, CliSAT is, on average, faster than MoMC in 21 classes
out of a possible 27. The bigger differences in favour of CliSAT occur in the dense graphs of
order 300 and 500. For example, CliSAT is more than twice as fast in the classes G(300, 0.8) and
G(500, 0.7) than its counterpart. From the table, it can also be observed that the difference in
performance between both algorithms become less acute as the order of the graphs increase for
n ≥ 1000 (which have low densities).

3.5. Comparison with algorithms designed for sparse real-world graphs

As mentioned in the introductory section, the algorithm CliSAT is tailored to solve hard dense
graphs of small and medium order, i.e. |V | ≤ 25, 000. Existing algorithms for sparse large and
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Table 4: Comparison between the algorithms CliSAT and MoMC over 270 uniform random graphs. In all the instances
with 15, 000 vertices, MoMC reported a memory problem (indicated by “ ”).

clique number ω(G) time [sec]
|V | d(G) #inst. min. av. max. CliSAT MoMC

150 0.7 10 16.00 16.50 17.00 0.06 0.05
150 0.8 10 22.00 22.90 24.00 0.08 0.07
150 0.9 10 35.00 37.10 41.00 0.10 0.10
150 0.95 10 53.00 54.50 57.00 0.05 0.01

200 0.7 10 18.00 18.20 19.00 0.12 0.17
200 0.8 10 24.00 25.10 26.00 0.63 1.11
200 0.9 10 39.00 40.70 42.00 3.56 3.73
200 0.95 10 60.00 62.30 64.00 0.40 0.49
200 0.98 10 91.00 94.70 98.00 0.05 0.02

300 0.6 10 15.00 15.40 16.00 0.25 0.37
300 0.7 10 20.00 20.20 21.00 2.02 5.03
300 0.8 10 28.00 28.50 30.00 41.32 98.18

500 0.4 10 10.00 10.70 11.00 0.13 0.23
500 0.5 10 13.00 13.30 14.00 0.67 1.36
500 0.6 10 17.00 17.00 17.00 9.09 12.86
500 0.7 10 22.00 22.40 23.00 335.06 728.74
500 0.994 10 261.00 266.20 276.00 0.06 0.65

1,000 0.2 10 7.00 7.50 8.00 0.09 0.17
1,000 0.3 10 9.00 9.20 10.00 0.40 0.78
1,000 0.4 10 12.00 12.00 12.00 3.54 5.15
1,000 0.5 10 15.00 15.00 15.00 80.13 113.47

3,000 0.1 10 6.00 6.40 7.00 0.31 0.98
3,000 0.2 10 9.00 9.00 9.00 4.41 5.19

5,000 0.1 10 7.00 7.00 7.00 1.31 3.18
5,000 0.2 10 9.00 9.10 10.00 62.87 59.90

10,000 0.1 10 7.00 7.40 8.00 21.62 21.00

15,000 0.1 10 8.00 8.00 8.00 126.10 -

massive real-world graphs, such as, e.g., [42, 30, 9] (see also the introductory section), exploit
the specific topology of such networks, e.g. the fact that the clique number is usually “close” to
the graph’s degeneracy γ(G). We recall that the degeneracy of a graph G (also known as the
graph’s k-core) is the maximum integer γ(G) such that a subgraph G′ of G exists with minimum
degree δ(G′) greater or equal than γ(G). It follows that γ(G) + 1 is an upper bound on the clique
number ω(G) of the graph. Such algorithms rely heavily on kernelization, i.e., a pre-processing
stage in which the original input network is replaced by a smaller network called a kernel, and
other reduction techniques inspired in the vertex cover problem, see, e.g., [9], that are employed
in the nodes of a combinatorial branch-and-reduce tree.

The aim of this section is to establish an approximate (not exhaustive) performance comparison
between CliSAT and the state-of-the-art algorithms for real-world graphs. For this purpose, we
have selected the algorithms dOmega [42] and BBMCSP [30]. Both algorithms employ kernelization,
but while dOmega is a branch-and-reduce algorithm, BBMCSP is a branch-and-bound algorithm,
inspired in [26], that employs a tailored sparse bitstring encoding of the input graph.
The reported results are shown in the Tables 5 and 6. Table 5 presents results for the 86 instances
of the DIMACS dataset, while Table 6 studies 20 real-world networks with less than 150, 000 vertices.
The choice of instances in the latter case is motivated by the memory requirements of CliSAT,
which are too large for massive graphs since it stores the full adjacency matrix in memory to
operate efficiently with vertex neighbourhoods using bitmasks. Table 5 shows aggregated results
for each family of instances, including the number of instances solved to proven optimality (#opt)
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and the average and maximum times spent by the 3 algorithms. Table 6 shows the number of
vertices and edges, the degeneracy (γ(G)), the clique number(ω(G)) and the time spent by the 3
algorithms for the 20 instances reported. In all the tests the time limit was fixed at 1, 800 seconds.

Table 5: Performance comparison of the algorithm CliSAT with the algorithms BBMCSP and dOmega, designed for
real-world graphs, over the 86 instances of the DIMACS dataset. The time limit was set to 1, 800 seconds.

CliSAT BBMCSP dOmega
time [sec] time [sec] time [sec]

family #inst. #opt avg. max. #opt avg. max. #opt avg. max.

brock 12 9 164.8 1220.1 8 99.1 285.6 4 14.3 39.5
C 7 2 64.5 128.9 1 0.0 0.0 1 2.0 2.0
c-fat 7 7 0.1 0.1 7 0.0 0.0 7 0.0 0.0
dsjc 7 5 17.5 86.2 5 33.9 168.2 4 46.1 180.9
gen 5 5 0.1 0.1 2 0.6 0.8 2 1098.0 1470.3
ham 6 5 0.1 0.1 5 0.0 0.1 5 6.4 29.4
john 5 3 0.1 0.2 3 0.0 0.1 3 5.3 15.8
keller 3 2 11.6 23.1 1 0.0 0.0 1 3.6 3.6
MANN 4 3 1.9 5.5 3 78.8 236.1 3 12.6 37.3
p hat 15 13 56.2 629.6 12 149.2 1605.8 8 163.3 555.9
san 15 15 2.8 39.1 15 6.9 75.4 4 135.0 467.3

Total 86 69 62 42

The results are consistent with the expected behaviour of CliSAT. CliSAT clearly outperforms
both real-world algorithms, i.e, dOmega and BBMCSP, in the DIMACS dataset. Precisely, CliSAT
manages to solve 69 instances out of a possible 86 within the time limit, whereas BBMCSP solves 62
and dOmega is only capable of solving 42. On the other hand, CliSAT is outperformed by both
BBMCSP and dOmega in the 20 real-world instance dataset. According to Table 6, kernelization is
specially strong for the harder instances, i.e., the large networks with millions of edges such as, e.g.,
soc-BlogCatalog and soc-buzznet. It is also worth pointing out that the reduction techniques
employed by dOmega in the search tree would seem to be less efficient in those cases when the gap
between the graph’s degeneracy and its clique number is large, such as, e.g., soc-BlogCatalog,
soc-buzznet and soc-LiveMocha. In contrast, the algorithm BBMCSP is not affected by this fact,
possibly because it relies on standard maximum clique techniques during search tailored for sparse
graphs, see [30] for further details.

3.6. Comparison with additional MCP exact approaches

In order to provide a broader picture of the performance of CliSAT, we provide a comparison
against integer linear programming (ILP) formulations, solved by a general purpose ILP solver,
and 3 additional effective combinatorial branch-and-bound algorithms from the literature.

Let xv be a binary variable taking value 1 if and only if vertex v ∈ V (G) belongs to the maximum
clique. The natural ILP formulation for the MCP reads as follows:

ω(G) = max
∑
u∈V

xu (9a)

xu + xv ≤ 1, ∀(u, v) ∈ E(G), (9b)

xu ∈ {0, 1}, ∀u ∈ V (G). (9c)

The objective function (9a) corresponds to the total number of vertices of the maximum clique.
Constraints (9b) impose that at most one vertex from each pair of non-adjacent vertices is selected.
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Table 6: Performance comparison of the algorithm CliSAT with 2 state-of-the-art algorithms designed for real-world
networks, over a subset of 20 instances (with |V | < 150, 000) from the DIMACS10, SNAP and Social Networks

collections.

BBMCSP dOmega CliSAT
source name |V | |E| γ(G) ω(G) time [sec] time [sec] time [sec]

SNAP p2p-Gnutella24 26,518 65,369 5 4 0.0 0.0 0.1
SNAP Cit-HepTh 27,769 352,285 37 23 0.1 0.3 0.2
DIMACS10 delaunay n15 32,768 98,274 4 4 0.0 0.0 0.2
SNAP Cit-HepPh 34,546 420,877 30 19 0.2 0.2 0.2
DIMACS10 cond-mat-2005 40,421 175,691 29 30 0.0 0.0 0.2
DIMACS10 fe-body 45,087 163,734 6 6 0.0 0.0 0.3
DIMACS10 t60k 60,005 89,440 2 2 0.0 0.1 0.5
DIMACS10 wing 62,032 121,544 3 3 0.1 0.0 0.5
DIMACS10 delaunay n16 65,536 196,575 4 4 0.1 0.1 0.6
SNAP soc-Epinions1 75,879 405,740 67 23 0.2 0.6 0.9
DIMACS10 fe-tooth 78,136 452,591 7 5 0.2 0.3 1.1
SNAP soc-Slashdot0902 82,168 504,230 55 27 0.2 0.4 1.1
Social soc-BlogCatalog 88,784 2,093,195 221 45 3.9 186.5 236.8
DIMACS10 fe rotor 99,617 662,431 8 5 0.3 0.4 2.5
Social soc-buzznet 101,163 2,763,066 153 31 3.2 43.0 10.1
Social soc-LiveMocha 104,103 2,193,083 92 15 2.1 4.0 4.3
DIMACS10 598a 110,971 741,934 8 7 0.5 0.3 2.3
DIMACS10 delaunay n17 131,072 393,176 4 4 0.2 0.1 2.4
DIMACS10 fe-ocean 143,437 409,593 4 2 0.2 0.2 2.9
DIMACS10 144 144,649 1,074,393 9 7 0.7 0.6 4.6

Total 12.3 237.2 271.4

It is well known that the linear programming (LP) relaxation of this formulation provides a very
weak upper bound ≥ |V |/2. In line with what is typically done in the literature to strengthen
Constraints (9b), we consider a collection C of independent sets of the graph G, covering all the
pairs of non-adjacent vertices {u, v} ∈ E(G). We therefore can replace Constraints (9b) by:∑

u∈I

xu ≤ 1, ∀I ∈ C . (10)

Constraints (10) impose that no more than a single vertex is selected from each independent set
I ∈ C . Different heuristic procedures can be used for creating C ; we employ the one proposed in
[2].

We use the IBM CPLEX Optimizer version 12.8, one of the state-of-the-art commercial solvers,
to tackle the ILP model (9) enhanced by Constraints (10). According to extensive preliminary
experiments, these constraints have a positive impact on the performance of the solver. The
solver also generates several additional valid inequalities of type (10) (as well as several other
families of general purpose valid inequalities) during the execution of its branch-and-cut scheme
to further strengthen the LP relaxation of the formulation. For a fair comparison against the
branch-and-bound algorithms, the solver is run in single-thread mode (with default parameters).
We denote this methodology to solve the MCP based on an ILP formulation as CPLEX in the
remainder of this section.

We now briefly introduce 3 additional combinatorial branch-and-bound algorithms for the MCP
from the literature that are tested in this work:

• IncMC2[13]: An incremental SAT-based solver in the lines of MoMC, but which was developed
some time earlier.
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• BBMCX[28]: An incremental SAT-based solver, denoted infrachromatic (see also §1.2), whose
reasoning scheme is restricted to determining (a subset of) conflicting independent sets of
cardinality 3. The algorithm also employs a similar bit-encoding as CliSAT to represent the
graph and sets of vertices in memory.

• CLIQUER[20]: To the best of our knowledge, the first successful exact MCP solver that
employs the Russian Doll Search (RDS) branching scheme.

Figure 7: Performance profile of the algorithm CliSAT and other 5 state-of-the-art algorithms over the entire
dataset of 501 instances. The time limit was fixed at 1, 800 seconds.
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Figure 7 shows the performance profile of the 3 algorithms described above plus CPLEX, together
with CliSAT and MoMC, over the 501 structured instance dataset. The performance profile is
constructed in the following way. We compute the normalized time τ as the ratio of the computing
time of each algorithm (which is∞ if the instance is not solved to optimality within the time limit,
here set to 1, 800 seconds) over the minimum computing time spent considering the 6 algorithms
tested. For each value of τ on the horizontal axis, the vertical axis reports the percentage of
instances for which the corresponding algorithm spent at most τ times the computing time of the
fastest algorithm. The chart interpretation at both ends of the horizontal axis is as follows. At
τ = 1, the value of the curves is equal to the percentage of instances which the corresponding
algorithm solves to optimality in less time. At the right-end, i.e., the largest value of τ , each
curve corresponds to the percentage of instances solved to optimality by the specific algorithm.
Consequently, in the performance profile the best performance is achieved by those algorithms
whose curves appear highest in the chart, “wrapping” the other curves.

According to Figure 7, the best performing algorithm is, clearly, CliSAT, which is the fastest in
more than 63% of the instances (left-end of the figure), and also solves the largest amount, i.e.,
slightly over 90% (as shown by the intersection of its curve in the right-end). The algorithms MoMC
and IncMC2 are the second best performers according to the figure, MoMC solving to optimality 2
more instances (343) than its counterpart IncMC2 (341); this represents slightly more than 63% of
the 501 dataset in both cases. The fourth performer is CPLEX, which initially solves around 18%
of the instances, and shows the best slope as τ increases, solving more than 64% of the instances
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to optimality. The worst performing solvers according to the figure are BBMCX, which solves more
than 51% of the instances and, finally, CLIQUER, which manages to solve slightly over 24%.

We end the section by showing in Figure 8 the computing time boxplots of the 6 algorithms. The
figure plots the time (in logarithmic scale) spent by each algorithm through their quartiles; the
lines extending vertically from the boxes indicate the variability outside the upper and lower
quartiles. Above the upper quartile, the outliers (heterogeneous results) are plotted as individual
points. Figure 8 evidences the superior computing times of CliSAT, and is consistent with the
results reported in the performance profile.

Figure 8: Box plots of the performances of CliSAT and other 5 state-of-the-art algorithms over the entire dataset
of 501 instances. The time limit was fixed at 1, 800 seconds.
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4. Conclusions and future work

In this paper we present a very efficient combinatorial branch-and-bound exact algorithm CliSAT

for the maximum clique problem. CliSAT combines all the recent state-of-the-art techniques with
two new bounding procedures: (i) a filtering phase which exploits the notion of (κ+ 1)-partite
branching nodes, i.e., nodes that are associated to a (κ + 1)-partite graph and which require
precisely a (κ+ 1)-clique to improve the incumbent solution; (ii) a partial maximum satisfiability-
based procedure that prunes branching candidate vertices grouped according to independent
sets, instead of individually. Our implementation has been extensively tested over a dataset of
more than 700 instances from the literature, where it outperforms the state-of-the-art algorithms
sometimes by several orders of magnitude.

A number of conclusions may be drawn from the tests. To begin with, empirical evidence suggests
that the two new bounding techniques presented do not dominate each other and that the filtering
phase of CliSAT is more effective in those instances where the gap between the chromatic number
and the clique number is “small”. Another conclusion is that, contrary to what is suggested in
the recent paper entitled Why is Maximum Clique Often Easy in Practice? [42], the problem
remains very hard in practice, as witnessed by the instances that could not be solved to proven
optimality by any of the algorithms tested. Clearly, further breakthroughs will be required to
solve these very hard instances. An open question is whether these breakthroughs will come in
the form of new heuristics for partial maximum satisfiability or in some other form. Another open
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question is the impact that the incremental branching scheme of CliSAT has on the effectiveness
of its filtering phase. Intuitively, it would seem that incremental branching favours the appearance
of (κ+ 1)-partite branching nodes in the shallow levels of the branch-and-bound tree, which, in
turn, might be pruned with higher probability by the filtering phase of CliSAT.
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Appendix

Extended comparison with state-of-the-art algorithms

This section extends the performance comparison between the algorithms CliSAT and MoMC

reported in the computational section of the article, providing details for individual instances from
the DIMACS (Table 7) and BHOSHLIB (Table 8) datasets, as well as the evil family from MISCLIB

and the D family from CSPLIB (Table 9). All the tables report the number of steps (number of
recursive calls), and the time in seconds spent by both algorithms to prove optimality. Instances
with an entry of 0 steps indicate that the corresponding algorithm was able to prove optimality
during its initialization phase.

Table 7: Extended performance comparison between the algorithms CliSAT and MoMC over a subset of 38 DIMACS

representative instances.

CliSAT MoMC
name |V | d(G) ω(G) steps time [sec] steps time [sec]

brock200 1 200 0.75 21 6,459 0.2 72,181 0.6
brock400 1 400 0.75 27 4,781,237 137.6 10,462,110 112.8
brock400 2 400 0.75 29 2,560,166 76.7 8,521,285 93.5
brock400 3 400 0.75 31 851,004 34.0 8,357,671 67.4
brock400 4 400 0.75 33 303,585 14.8 2,384,115 19.0
brock800 1 800 0.65 23 107,277,894 3,652.2 235,564,546 1,828.2
brock800 2 800 0.65 24 66,145,240 2,929.1 223,408,604 1,867.1
brock800 3 800 0.65 25 49,625,642 1,867.4 108,221,563 752.3
brock800 4 800 0.65 26 24,581,677 1,220.1 175,510,646 1,266.8

C250.9 250 0.90 44 3,417,260 128.9 6,639,713 130.6
C2000.5 2,000 0.50 16 675,567,772 27,660.5 3,185,621 34,936.7

dsjc500.5 500 0.50 13 33,179 0.9 280,166 1.8
dsjc1000.5 1,000 0.50 15 3,029,020 86.2 17,047,147 112.3

gen400 p0.9 55 400 0.90 55 0 0.1 4,049 1.1
gen400 p0.9 65 400 0.90 65 1 0.1 3,154 0.4
gen400 p0.9 75 400 0.90 75 1 0.1 3,360 0.2

hamming10-2 1,024 0.99 512 0 0.1 131,840 24.5

keller5 776 0.75 27 222,737 23.1 7,821,773 157.7

MANN a45 1,035 0.996 345 19,130 5.5 83,195 8.7
MANN a81 3,321 0.999 1100 179,444,376 361,440.5 406,990,467 970,637.5

p hat300-3 300 0.74 36 2,555 0.2 9,336 0.3
p hat500-2 500 0.50 36 305 0.1 4,075 0.2
p hat500-3 500 0.75 50 75,644 6.6 372,329 9.3
p hat700-2 700 0.50 44 2,547 0.3 16,365 0.8
p hat700-3 700 0.75 62 650,084 78.4 2,678,530 100.5
p hat1000-1 1,000 0.24 10 5,244 0.2 66,268 0.4
p hat1000-2 1,000 0.49 46 132,244 13.6 749,907 17.7
p hat1000-3 1,000 0.74 68 110,015,398 16,289.6 358,413,660 14,453.0
p hat1500-1 1,500 0.33 12 79,771 2.0 498,585 3.1
p hat1500-2 1,500 0.25 65 3,580,545 629.6 14,955,067 565.9

san400 0.7 1 400 0.70 40 1,436 0.1 5,185 0.3
san400 0.7 2 400 0.70 30 1,006 0.1 882 0.2
san400 0.7 3 400 0.70 22 0 0.1 1,153 0.3
san400 0.9 1 400 0.90 100 1 0.1 6,591 0.3
san1000 1,000 0.50 15 2,196 0.2 17,651 1.3
sanr200 0.9 200 0.90 42 31,120 1.2 74,213 1.3
sanr400 0.5 400 0.50 13 8,228 0.2 62,483 0.4
sanr400 0.7 400 0.70 21 1,588,204 39.1 5,518,655 51.5
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Concerning the choice of the sorting procedure during the execution of the initial preprocessing
phase of CliSAT, we report the following. In the case of the instances reported from the BHOSHLIB

dataset (Table 8) and the D family (Table 9), CliSAT always selects the ordering of vertices
determined by COLOR-SORT. In the case of the DIMACS instances (Table 7), the choice is as follows:
(i) COLOR-SORT is selected in 4 instances out of the 9 brock instances reported; (ii) COLOR-SORT
is selected for the families gen and keller; (iii) DEG-SORT is selected in the remaining families,
i.e. c-fat, dsjc, hamming, MANN, p hat and san. Finally, in the case of the evil family (Table
9), DEG-SORT is invariably the choice.

Table 8: Extended performance comparison of the algorithms CliSAT and MoMC over the 41 instances of the
BHOSHLIB dataset.The time limit (tl) was set to 15 days.

CliSAT MoMC
name |V | d(G) ω(G) steps time [sec] steps time [sec]

frb30-15-1 450 0.82 30 0 0.1 918 0.3
frb30-15-2 450 0.82 30 0 0.1 985 0.3
frb30-15-3 450 0.82 30 0 0.1 1,095 0.4
frb30-15-4 450 0.82 30 0 0.1 1,155 0.4
frb30-15-5 450 0.82 30 126 0.1 981 0.4

frb35-17-1 595 0.84 35 0 0.1 2,158 1.2
frb35-17-2 595 0.84 35 643 0.4 2,928 1.5
frb35-17-3 595 0.84 35 0 0.1 1,409 0.7
frb35-17-4 595 0.84 35 102 0.1 1,427 0.7
frb35-17-5 595 0.84 35 221 0.2 1,727 0.9

frb40-19-1 760 0.86 40 0 0.1 2,816 2.1
frb40-19-2 760 0.86 40 121 0.1 1,700 1.3
frb40-19-3 760 0.86 40 0 0.1 2,660 2.2
frb40-19-4 760 0.86 40 4,140 2.9 10,881 5.8
frb40-19-5 760 0.86 40 1,938 1.8 8,399 5.0

frb45-21-1 945 0.87 45 2,434 2.0 102,403 94.0
frb45-21-2 945 0.87 45 42,513 28.1 61,069 60.4
frb45-21-3 945 0.87 45 19,794 15.1 29,443 34.1
frb45-21-4 945 0.87 45 13,243 9.8 26,477 27.6
frb45-21-5 945 0.87 45 113,072 100.7 158,421 168.1

frb50-23-1 1150 0.88 50 333,199 315.4 613,547 604.7
frb50-23-2 1150 0.88 50 117,948 142.0 214,297 268.2
frb50-23-3 1150 0.88 50 2,149,755 2,534.4 4,902,490 5,932.0
frb50-23-4 1150 0.88 50 6,401 4.3 12,354 14.8
frb50-23-5 1150 0.88 50 66,901 68.0 225,983 183.5

frb53-24-1 1272 0.88 53 1,271,221 1,557.3 1,981,396 3,415.1
frb53-24-2 1272 0.88 53 152,126 217.7 126,751 152.0
frb53-24-3 1272 0.88 53 747,174 800.8 977,570 1,511.1
frb53-24-4 1272 0.88 53 1,320,753 1,555.4 1,893,507 2,986.5
frb53-24-5 1272 0.88 53 168,563 177.1 428,286 725.4

frb56-25-1 1400 0.89 56 23,724,283 33,772.0 41,817,946 73,432.0
frb56-25-2 1400 0.89 56 1,290,189 1,275.9 1,355,963 1,982.4
frb56-25-3 1400 0.89 56 3,780,230 4,218.6 4,895,951 9,824.0
frb56-25-4 1400 0.89 56 4,668,820 6,628.6 13,978,117 19,427.5
frb56-25-5 1400 0.89 56 36,028,666 53,642.3 100,513,778 121,379.9

frb59-26-1 1534 0.89 59 62,599,285 107,239.4 138,978,307 257,586.4
frb59-26-2 1534 0.89 59 75,062,511 108,058.4 64,467,920 178,912.5
frb59-26-3 1534 0.89 59 35,806,103 56,605.6 53,434,151 112,232.2
frb59-26-4 1534 0.89 59 44,200,880 76,077.7 83,521,902 172,087.0
frb59-26-5 1534 0.89 59 15,343,706 18,326.1 4,451,221 9,729.0

frb100-40 4000 0.93 100 - tl - tl
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Table 9: Extended performance comparison between the algorithms CliSAT and MoMC over: i) the 20 instances of
the evil family (MISCLIB) with a time limit (tl) set to 15 days); ii) the 25 instances of the D family (CSPLIB) with
a time limit set to 1, 800 seconds.

CliSAT MoMC
name |V | d(G) ω(G) steps time [sec] steps time [sec]

evil-N120-p98-chv12x10 120 0.92 20 2,782 0.1 392,883 1.2
evil-N120-p98-myc5x24 120 0.97 48 47 0.05 1,505 0.02
evil-N121-p98-myc11x11 121 0.93 22 4,675 0.1 572,074 1.3
evil-N125-p98-s3m25x5 125 0.89 20 13,728 0.2 606,103 1.4
evil-N138-p98-myc23x6 138 0.87 12 82,781 0.6 983,869 2.6
evil-N150-p98-myc5x30 150 0.97 60 112 0.05 2,148 0.02
evil-N150-p98-s3m25x6 150 0.90 24 121,391 1.2 14,702,870 36.7
evil-N154-p98-myc11x14 154 0.94 28 109,508 1.2 17,449,596 54.2
evil-N180-p98-chv12x15 180 0.94 30 2,156,387 21.9 1,582,875,479 4,863.0
evil-N180-p98-myc5x36 180 0.97 72 115 0.06 3,259 0.04
evil-N184-p98-myc23x8 184 0.90 16 2,195,219 17.0 54,927,834 183.5
evil-N187-p98-myc11x17 187 0.95 34 1,838,267 19.5 1,371,470,102 5,115.4
evil-N200-p98-s3m25x8 200 0.92 32 8,425,011 101.3 976,980,140 3,491.2
evil-N210-p98-myc5x42 210 0.98 84 236 0.1 4,219 0.1
evil-N220-p98-myc11x20 220 0.95 40 78,774,365 889.3 - tl
evil-N230-p98-myc23x10 230 0.91 20 145,397,825 1,237.0 1,756,363,669 53,718.4
evil-N240-p98-chv12x20 240 0.95 40 1,160,983,608 13,353.0 - tl
evil-N240-p98-myc5x48 240 0.97 96 138 0.1 5,248 0.1
evil-N250-p98-s3m25x10 250 0.93 40 893,359,445 13,057.7 1,311,951,648 165,792.0
evil-N253-p98-myc11x23 253 0.95 46 4,643,934,432 54,828.4 - tl

rand-2-40-8-753-010-04 320 0.88 39 501 0.6 3,162 0.7
rand-2-40-8-753-010-32 320 0.89 40 0 0.1 2,144 0.4
rand-2-40-8-753-010-60 320 0.88 39 265 0.4 3,028 0.6
rand-2-40-8-753-010-88 320 0.88 39 615 0.8 4,528 1.1
rand-2-40-11-414-020-00 440 0.87 39 956 1.0 4,409 1.5
rand-2-40-11-414-020-28 440 0.87 39 828 0.8 5,363 1.5
rand-2-40-11-414-020-56 440 0.87 40 459 0.4 2,947 0.9
rand-2-40-11-414-020-84 440 0.87 40 246 0.2 1,902 0.6
rand-2-40-16-250-035-12 640 0.87 40 107 0.1 2,247 1.1
rand-2-40-16-250-035-40 640 0.87 39 3,979 2.3 7,657 4.6
rand-2-40-16-250-035-68 640 0.87 39 775 0.6 3,124 1.5
rand-2-40-16-250-035-96 640 0.87 39 2,634 1.6 5,873 4.1
rand-2-40-180-84-090-24 7200 0.88 40 311 13.7 - tl
rand-2-40-180-84-090-52 7200 0.88 40 147,375 858.4 - tl
rand-2-40-180-84-090-80 7200 0.88 39 91,718 191.7 - tl
rand-2-40-25-180-050-08 1000 0.86 40 638 0.5 2,904 2.9
rand-2-40-25-180-050-36 1000 0.86 40 3,578 1.5 6,005 5.0
rand-2-40-25-180-050-64 1000 0.86 39 872 0.5 2,603 3.2
rand-2-40-25-180-050-92 1000 0.86 40 474 0.4 3,235 2.8
rand-2-40-40-135-065-20 1600 0.87 40 179 0.8 2,497 7.0
rand-2-40-40-135-065-48 1600 0.87 40 2,599 2.5 4,079 9.3
rand-2-40-40-135-065-76 1600 0.87 39 6,188 4.9 13,064 18.5
rand-2-40-80-103-080-16 3200 0.87 39 47,252 137.8 38,205 191.5
rand-2-40-80-103-080-44 3200 0.87 40 74,117 61.8 9,158 93.2
rand-2-40-80-103-080-72 3200 0.87 40 739 9.9 5067 52.0
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