
KABCROMUNGSHO0

Self-healing distributed systems

Dissertation

for the degree of
Doctor of Natural Sciences (Dr. rer. nat.)

submitted to the
Department of Computer Science

of the University of Augsburg

presented by

Benjamin Satzger

in 2008

Examiner: Prof. Dr. rer. nat. Theo Ungerer
Co-examiner: Prof. Dr. rer. nat. Bernhard Bauer

Date of oral examination: 2008-12-18

Abstract

The growing complexity of distributed systems demands for new ways of
control. This work addresses self-healing in distributed environments. The
term self-healing represents a quite new area of research and is used in a
fairly broad way, but can be seen as dynamic fault tolerance. This work
proposes generic concepts and algorithms to build self-healing systems.

The detection of node failures in distributed environments is a non-trivial
problem. Failure detectors are an important component of many fault tol-
erant distributed systems. In this work a new failure detection algorithm is
proposed with noteworthy features like a high flexibility and good perfor-
mance. Furthermore an approach is presented to save the message overhead
of failure detectors.

New grouping algorithms are introduced in this work to enable a scalable
self-monitoring property. This allows an autonomous installation of moni-
toring relations in complex large scale distributed systems.

A failure recovery engine based on automated planning, which manages a
distributed system according to user-defined objectives, is proposed. It is
able to generate and execute plans to autonomously recover a system from
unwanted states.

Finally, ideas for a generic self-healing architecture for highly complex dis-
tributed systems are presented. The design is based on psychological and
sociological concepts.

i

Zusammenfassung

Aufgrund der zunehmenden Komplexität verteilter Systeme werden neue
Steuerungs- und Administrierungsmethodiken benötigt. Die vorliegende
Arbeit befasst sich mit der Thematik der Selbstheilung in verteilten Umge-
bungen. Der Begriff Selbstheilung stellt einen relativ neuen Forschungs-
bereich dar und wird thematisch breit benutzt, kann jedoch als dynami-
sche Fehlertoleranz aufgefasst werden. Diese Arbeit schlägt generische
Konzepte zur Erstellung selbstheilender Systeme vor.

Das Erkennen von Knotenausfällen in verteilten Systemen ist ein nicht-
triviales Problem. Fehlerdetektoren sind eine wichtige Komponente vieler
fehlertoleranter verteilter Systeme. Diese Arbeit führt einen neuen, beson-
ders flexiblen Fehlerdetektionsalgorithmus mit guten Erkennunsraten ein.
Zusätzlich wird ein Ansatz präsentiert, der den Einsatz von Fehlerdetek-
toren effizienter gestaltet.

Es werden neue Gruppierungsalgorithmen eingeführt, die eine skalier-
bare Selbstüberwachung ermöglichen und Überwachungsbeziehungen au-
tonom aufbauen.

Eine Fehlerbehebungskomponente basierend auf einem automatischen
Planungsansatz wird vorgestellt, die ein verteiltes System gemäß be-
nutzerdefinierter Ziele verwaltet. Sie ist in der Lage, Pläne zu gener-
ieren und auszuführen, um selbständig einen spezifizierten Systemzustand
wiederherzustellen.

Den Abschluss dieser Arbeit bilden Ideen einer generischen Architektur für
hochkomplexe selbstheilende Systeme, basierend auf psychologischen und
soziologischen Konzepten.

iii

Acknowledgements

First, I would like to thank my adviser Prof. Dr. Theo Ungerer for his
excellent mentoring. I have not only learnt about computer science, but
also about performing research, organising things, and communicating with
others.

I would also like to thank my co-chair Prof. Dr. Bernhard Bauer for his
dedication to my writing and Prof. Dr. Elisabeth André for accepting my
request for being examiner.

This is a great opportunity to thank all my colleagues at the University of
Augsburg for their support, discussions, and comments on my work.

I would like to thank all members of the Organic Computing research com-
munity for inspiring me with their excellent research.

I am grateful for my sources of funding: the priority program 1183 “Organic
Computing” of the German Research Foundation (DFG) and the Bavarian
state government.

Finally, I wish to thank my wife Melanie Lucas-Satzger who is a great help
in anything but computer science.

v

Dedicated to my family

Contents

Abstract i

Zusammenfassung iii

Acknowledgements v

1 Introduction 1
1.1 Terminology . 2
1.2 Related work . 3
1.3 Challenges . 6
1.4 Contributions and outline . 7
1.5 Publications . 8

2 Failure detection 9
2.1 Introduction . 9
2.2 Distributed systems . 10

2.2.1 Communication . 11
2.2.2 Synchrony . 11
2.2.3 Failure models . 12

2.3 Taxonomy, definitions, and survey of failure detectors 13
2.3.1 Unreliability . 13
2.3.2 Quality of Service . 15
2.3.3 Monitoring strategy . 16
2.3.4 Adaptiveness . 17
2.3.5 Laziness . 18
2.3.6 Accrualty . 18

2.4 The failure detector . 19
2.4.1 Design . 19
2.4.2 Basic idea of the algorithm 21
2.4.3 The algorithm in detail 23

2.5 Extensions and variations of the algorithm 25
2.5.1 Variation for partially synchronous systems 25
2.5.2 Self-adjusting failure detector 27
2.5.3 Freshness point strategy 29
2.5.4 Sampling window . 30

ix

x Contents

2.6 Evaluation . 38
2.6.1 Qualitative Evaluation 38
2.6.2 Quantitative Evaluation 40
2.6.3 Discussion of the evaluation results 69

2.7 Lazy monitoring . 70
2.7.1 Lazy monitoring approach 71
2.7.2 Message selection strategy 77
2.7.3 Evaluation . 79
2.7.4 Processing delays . 80

2.8 Conclusions . 87

3 Monitoring groups 89
3.1 Introduction . 89
3.2 Related work . 90
3.3 Contribution . 93
3.4 Problem statement . 93
3.5 Grouping algorithms . 96
3.6 Evaluation . 105

3.6.1 Scalability . 106
3.6.2 Suitability . 109
3.6.3 Failure tolerance . 113

3.7 Conclusions and future work 117

4 Failure recovery 119
4.1 Introduction . 119
4.2 Related work . 120
4.3 Introduction to Automated Planning 121

4.3.1 Formal representation 122
4.3.2 Planning techniques . 127

4.4 Failure recovery engine . 137
4.4.1 POP algorithm . 137
4.4.2 Planning language . 142
4.4.3 Failure recovery process 146
4.4.4 Extensions . 155

4.5 Evaluation . 171
4.5.1 Production cell scenario 172
4.5.2 Smart Doorplate scenario 175

4.6 Conclusions and future work 182

5 Towards an architecture for highly complex systems 185
5.1 Introduction . 185
5.2 Survey of psychological and sociological concepts 185

5.2.1 Psychological concepts 186
5.2.2 Sociological concepts . 189

5.3 Architecture . 190

Contents xi

5.3.1 Sensory filter . 193
5.3.2 Reflexes . 193
5.3.3 Organisation, identification, and classification of stimuli194
5.3.4 Memory . 195
5.3.5 Decision-making . 195
5.3.6 Learning . 196
5.3.7 Cooperation . 196

5.4 Conclusions . 197

6 Conclusions 199

Bibliography 201

List of Figures 215

List of Tables 219

List of Algorithms 221

1
Introduction

The complexity of today’s computer systems is steadily rising. Especially
distributed systems interconnect growing numbers of more and more com-
plex heterogeneous devices. IBM has identified this trend which they call
complexity crisis as one of the major obstacles for the progress in the IT in-
dustry [Hor01]. Therefore, new ways have to be found to manage modern
computer systems. This research area has recently gained much attention
and is considered as “hot topic” in the industrial and academic sector.

IBM’s vision of its initiative Autonomic Computing (AC) [Hor01] is to design
computing systems which can manage themselves given high level objec-
tives from administrators. The human autonomic nervous system is the
inspiration for the term AC, as it is adjusting vital low-level functions such
as heart rate and body temperature, allowing our brain to deal with other
tasks. The AC initiative introduced the demand on future systems to self-
configure, self-heal, self-optimise, and self-protect in order to be manage-
able.

The Organic Computing (OC) initiative [ACE+03], a priority program funded
by the German Research Foundation (DFG), also addresses the growing
complexity of computing systems as major threat. OC includes the targets of
AC, but has its focus not on management of data centres like IBM’s initiative
but the development of generic control mechanisms for technical systems.

The Recovery-Oriented Computing (ROC) project [PBB+02] is a joint re-
search project of University of California at Berkeley and Stanford Uni-
versity investigating novel techniques for building highly-dependable In-
ternet services. ROC takes the perspective that hardware faults, software

1

2 Introduction

bugs, and operator errors are facts to be coped with, not problems to be
solved. A large amount of administration time needs to be dedicated to sys-
tem failures. A survey of total cost of ownership for cluster-based services
[GAKM02] suggests that a third to a half result from repairing failures. Ex-
perienced experts able to manage such complex systems are becoming more
and more rare. Furthermore, these systems continue to rise in size and com-
plexity while the demands on the availability and reliability of IT services
are by no means decreasing.

The solution for the described issues is to make complex systems self-healing.
This means the ability to detect failures and compensate for them if possible,
and adapt to a changing environment as well as to changing objectives. And
all this at runtime. Helping to achieve these requirements is the aim of this
dissertation.

The next section introduces necessary terms and definitions, Section 1.2 pro-
vides an overview of related work. Then, Section 1.3 highlights the chal-
lenges for this work and Section 1.4 the contributions and structure of this
work. Finally, Section 1.5 gives information about previous publications in-
corporated into this work.

1.1 Terminology

The terms introduced in this section are mostly based on the work of Avizie-
nis et al. [ALR04] who provide definitions related to dependability.

A system is an entity that interacts with its environment, i.e. other systems,
users, and so on. A functional specification describes what a system is in-
tended to do, while the behaviour of a system describes what the system is
actually doing. A system provides correct service if it is behaving according
to the functional specification. A deviation of a service from the specifica-
tion is called service failure or just failure. The port of the state of a system
that may lead to its subsequent system failure is called error. The cause of
an error is a fault. A fault is active when it causes an error, otherwise it is
dormant.

The dependability of a system is the ability to avoid failures which are unac-
ceptable for users. Some attributes are [ALR04]:

Availability: Readiness for correct service.

Reliability: Continuity of correct service.

Safety: Absence of catastrophic consequences on the users and the environ-
ment.

According to [ALR04] there are four means to attain dependability:

1.2 Related work 3

Fault prevention: Prevent the occurrence or introduction of faults.

Fault tolerance: Avoid failures in the presence of faults.

Fault removal: Reduce the number and severity of faults.

Fault forecasting: Estimate the present number, the future incidence, and
the likely consequences of faults.

In contrast to the definitions introduced so far, the term “self-healing”
stands for a quite new area of research and is used rather broadly. In
this work it is argued that self-healing deals with fault tolerance for dy-
namic systems. Therefore, it is necessary to detect incorrect service and to
find ways to repair the system. Self-healing implies that this is performed
mainly automatically and autonomously by the system itself. Gosh et al.
[GSRU07] define self-healing systems as being able to perceive that it is not
working correctly and to make the necessary adjustments to restore itself.
Self-healing systems should be able to dynamically adapt their behaviour
in response to changes in their environment. At runtime, they should have
the ability to deal with situations not anticipated in design-time. Important
aspects for self-healing capabilities in distributed systems are fault/failure
detection by run-time monitoring, planning and execution of repair actions,
and both regarding scalability issues.

1.2 Related work

Gosh et al. [GSRU07] argue that most self-healing concepts are still in their
infancy. The research labelled with the term “self-healing” has various
facets and applications areas. Furthermore, systems and methods which
could be called “self-healing” do not stress this term. The aim of the follow-
ing is to report on selected research applying interesting techniques for self-
healing, reconfiguration, or adaptation, and on reference architectures.

Figure 1.1 shows the AC reference architecture as proposed by IBM [IBM06].
The lowest layer contains the system components, or managed resources.
The next layer incorporates consistent, standard manageability interfaces
for accessing and controlling the managed resources. Layers three and
four automate some portion of the IT process using an autonomic manager.
These managers implement a control loop to enable self-configuration, self-
healing, self-optimisation, and self-protection. They can be orchestrated to
deliver system wide autonomic capability.

4 Introduction

Figure 1.1: Autonomic computing reference architecture

Figure 1.2: MAPE cycle of an autonomic manager

Figure 1.2 shows details of an autonomic manager, mainly the intelligent
MAPE loop consisting of the following four steps:

1.2 Related work 5

Monitor: Collection, aggregation, and filtering of information.

Analyse: Analysis of the gathered information.

Plan: Construction of actions needed to achieve goals and objectives.

Execute: Execution of such actions.

In [BMMSP06], Branke et al. propose a generic observer/controller architec-
ture for OC, illustrated in Figure 1.3. Its working principle is similar to the

Figure 1.3: Observer/controller architecture

MAPE cycle of AC. The observer component monitors the system and thus
has the ability to detect flaws. In such cases, the controller takes corrective
actions. The system which is managed by such an observer/controller is
called system under observation and control (SuOC). The user can manipulate
the system behaviour by defining goals.

Prothmann et al. [PRT+08] propose a novel architecture for traffic light con-
trollers, shown in Figure 1.4, which have the ability to adapt to the current
traffic situation. Their approach can be seen as an instance of the architec-
ture presented in [BMMSP06]. A standard traffic light controller (TLC) is ex-
tended by a two-layered observer/controller component that reconfigures
the TLC depending on the current traffic. Layer 1 of the observer/controller
component is responsible for the selection of TLC parameters based on the
monitored data. This is performed by a learning classifier system (LCS) se-
lecting appropriate rules from a rule base. On Layer 2 an offline generation
of new rules is performed aiming to optimise the existing rule base.

There are interesting publications in the area of dynamic software architec-
tures. In a position paper [And98], Andersson proposes a technique where
rule-based agents monitor the architecture and perform simple reconfigura-
tions. Oreizy et al. [OGT+99] argue that self-adaptive software will provide
the key to applications that retain full plasticity throughout their life cycle
and that are as easy to modify in the field as they are on the drawing board.

6 Introduction

Figure 1.4: Organic Traffic Control Architecture

They identify observation, detection of events, monitoring, and planning as
vital parts of self-adaptive systems.

1.3 Challenges

The approach to this work is to identify key research challenges related to
the construction of self-healing distributed systems and middleware and to
propose methods of resolution for them.

The first question addressed is how to detect node failures in distributed
systems. In such an environment failed nodes are often indistinguishable
from some functional nodes. A failure detector in such a sense is an oracle
that can intelligently suspect nodes or processes to have failed. For a run-
time failure detection and a consequent healing, failure detection services
are needed. Thus, failure detection algorithms deliver necessary monitor-
ing information and form a basis for a self-healing capability in distributed
systems.

In complex distributed systems, the issue of scalability is of particular im-
portance for any technique applied there. Therefore, an important aspect for
self-healing systems is the formation of nodes into groups to apply a kind
of divide and conquer strategy in order to achieve scalability.

Self-healing systems should perform recovery and reconfiguration actions
and adapt to changing environments and user needs during runtime. There-

1.4 Contributions and outline 7

fore, they are in need of more intelligence than traditional fault-tolerant sys-
tems in order to find ways to recover a system. This enables systems to
autonomously adapt their behaviour to a given functional specification.

1.4 Contributions and outline

The contributions contained in this dissertation can be classified as falling
into three areas: detection of node failures, group formation algorithms, and
autonomous system recovery. These concepts are an approach towards self-
healing distributed systems and middleware with self-healing capabilities
addressing the above stated challenges.

In Chapter 2, a new failure detection algorithm is presented. It adapts to
changing network conditions and outputs suspicion values within a con-
tinuous scale instead of Boolean values. Experiments compare the new al-
gorithm to well-known failure detectors and attest an excellent detection
performance at low computational demands. Furthermore, a technique is
devised to decrease the message overhead of a class of failure detectors.

Chapter 3 gives a formal problem statement of group formation tailored
to self-healing distributed systems. Three instances of such grouping algo-
rithms are proposed. These algorithms are compared regarding their ability
to install monitoring relationships within the nodes of a distributed system.
Together with failure detectors, this allows a scalable mutual monitoring of
nodes even in environments with many nodes.

While the chapters mentioned above mainly deal with components for
the observation of a system, in Chapter 4 a generic controlling technique
for self-healing systems is presented based on an automated planning ap-
proach.

Chapter 5 discusses ideas for a generic self-healing architecture for highly
complex distributed systems, mainly based on psychological and sociologi-
cal concepts. It can be seen as an outline of future work for this thesis.

The dissertation ends with Chapter 6 which summarises this work.

The main chapters 2 to 5 all touch different areas of research and are organ-
ised such that they are quite self-explanatory and separately readable.

8 Introduction

1.5 Publications

Parts of the contents of this dissertation appear in previous publications:

[SPTU07a] Benjamin Satzger, Andreas Pietzowski, Wolfgang Trumler, and
Theo Ungerer. A new adaptive accrual failure detector for depend-
able distributed systems. In SAC 2007: Proceedings of the 22nd ACM
symposium on Applied computing, pages 551–555, New York, NY, USA,
2007. ACM.

[SPTU07b] Benjamin Satzger, Andreas Pietzowski, Wolfgang Trumler, and
Theo Ungerer. Variations and evaluations of an adaptive accrual fail-
ure detector to enable self-healing properties in distributed systems.
In ARCS 2007: Proceedings of the 20th International Conference on Archi-
tecture of Computing Systems, volume 4415 of Lecture Notes in Computer
Science, pages 171–184. Springer, 2007.

[SPTU08a] Benjamin Satzger, Andreas Pietzowski, Wolfgang Trumler, and
Theo Ungerer. A lazy monitoring approach for heartbeat-style failure
detectors. In ARES 2008: Proceedings of the 3rd IEEE International Con-
ference on Availability, Reliability and Security, IEEE Transactions, pages
404–409. IEEE Computer Society, 2008.

[SPTU08b] Benjamin Satzger, Andreas Pietzowski, Wolfgang Trumler, and
Theo Ungerer. Using automated planning for trusted self-organising
organic computing systems. In ATC 2008: Proceedings of the 5th Inter-
national Conference on Autonomic and Trusted Computing, volume 5060
of Lecture Notes in Computer Science, pages 60–72. Springer, 2008.

[SU08] Benjamin Satzger and Theo Ungerer. Grouping algorithms for scal-
able self-monitoring distributed systems. In Autonomics 2008: Proceed-
ings of the 2nd ACM/ICST International Conference on Autonomic Com-
puting and Communication, 2008.

Chapter 2 includes material from [SPTU07a], [SPTU07b], and [SPTU08a].
Some basic principles of Chapter 4 are presented in [SPTU08b] and Chap-
ter 3 is largely based on [SU08].

2
Failure detection

2.1 Introduction

The detection of failures in distributed environments is a crucial part for de-
veloping dependable, robust, and self-healing systems. The term failure in
this context refers to a node outage. In this chapter a new failure detection
algorithm is introduced which is characterised by flexibility, low overhead,
and high detection quality. Instead of outputting whether a component has
failed or not, it outputs a level of confidence. These features allow to design
generic failure detection services based on the proposed failure detector.
Furthermore, some variations of the basic algorithm are introduced to fur-
ther improve its performance. An evaluation is provided for all algorithms
using message delay and loss models of the Internet. The results attest the
introduced failure detector a very good detection quality compared to other
algorithms, especially in the case of message losses.

Section 2.2 provides a short introduction to distributed systems, Section 2.3
gives an overview of failure detectors and related work. Section 2.4 presents
the proposed failure detection algorithm and Section 2.5 introduces some
extensions of this basic algorithm. Then, Section 2.6 describes the conducted
evaluations. Finally, Section 2.8 concludes the chapter.

9

10 Failure detection

2.2 Distributed systems

This work follows the definition of Barbosa [Bar96] who defines a distributed
system as an interconnected collection of autonomous computers, processes,
or processors. To refer to these interconnected elements the most common
terms are node or process - in the context of failure detection process is more
common. Barbosa calls processes autonomous if they are at least equipped
with an own private control. Following Flynn’s taxonomy [Fly72] a dis-
tributed system is generally recognised to be a MIMD architecture. Fur-
thermore, the nodes in a distributed system do not share a single address
space but make calls to other address spaces, possibly on other machines
[KWWW94].

Basically, information in distributed systems can be exchanged either by
message-passing or by using a distributed shared memory (DSM) [TvS02]. As
the message-passing model is more general and DSM systems are normally
built upon sending messages, we will consider the information exchange in
distributed systems to be based on message-passing.

Thus one can define a distributed system as a set of processes Π =
{p1, . . . , pn} where pi ∈ Π is able to communicate with pj ∈ Π if they are
connected by a communication channel. Unless otherwise noted it is assumed
that the communication channels connecting the processes are bidirectional.
Therefore, if pi can send messages to pj then also pj can send messages to
pi. Because of these assumptions a distributed system can be modelled as a
bidirectional graph G = (V, E) where the processes are represented by the
vertices and the channels are represented by the edges of G.

The graph of a distributed system is called network topology. Some special
topologies exist which play an important role in practical systems. Amongst
these are:

Star: A star denotes a network with one central node that is connected to
all other nodes. Let G = (V, E) be the corresponding graph and n the
number of vertices. Then the number of edges is n− 1 and all edges
are connected to the central vertex.

Ring: The graph of a ring has n edges and is connected. This means a path
between any two nodes exists.

Clique: In a clique a communication channel exists between any two nodes.
Thus its graph is complete.

If not stated otherwise in this work it is assumed that a distributed system
is always connected.

2.2 Distributed systems 11

2.2.1 Communication

The communication system used in this work is modelled similar to
[DLS88]. Each process has a buffer. This buffer contains the messages that
have been sent to the process, but not yet received. Each process p can per-
form one of the following two sending primitives:

Send(m, q): Sends a message m over the communication channel and
places it in q’s buffer.

Receive: Removes all messages from p’s buffer and delivers the messages
to p.

The process of sending a message from p to q is illustrated in Figure 2.1.

Figure 2.1: Communication model

2.2.2 Synchrony

Synchrony describes assumptions of timing aspects. In distributed systems
the most important are the time it takes to send a message over a communi-
cation channel and the time taken by a processing device to execute a piece
of code [LAF99].

The timing assumptions can be classified as follows [DLS88, LAF99]:

Synchronous: A timing attribute is synchronous if a fixed upper bound exists
that is known a priori.

Asynchronous: A timing attribute is asynchronous if no fixed upper bound
exists.

Partially synchronous: A timing attribute is partially synchronous if it is nei-
ther synchronous nor asynchronous.

An example for partial synchrony is a timing attribute with an upper bound
that is not known a priori. Another example is a communication system
that is delivering messages with a known upper bound, but is unreliable
and looses messages sometimes.

12 Failure detection

Note that different definitions of synchrony exist. Often an operation is
called synchronous if it blocks a process till the operation is completed. An
asynchronous operation does not block the process and only initiates the
operation. But in this work the above introduced meaning of synchrony is
applied.

2.2.3 Failure models

Unfortunately, in distributed systems failures can occur. A failure model
describes the type of failures that might happen. While there are slight dis-
crepancies in literature regarding their definitions, in this work the follow-
ing failure models are defined:

Fail-stop: Processes are considered to execute their programs correctly. If a
failure happens at a certain time the failed process stops permanently.
This models a crash of a process that never recovers. However, in the
fail-stop model the failure of a process is detectable. Faulty processes
answer that they have crashed when asked.

Crash: Similar to the fail-stop model, but failed processes stop to send any
messages and do not indicate their failure.

Crash-recovery: Processes can crash but may recover afterwards to the cor-
rect state before crashing.

Crash-omission: The crash-omission model includes the crash model but
additionally communication channels may loose messages while
sending.

Crash-recovery-omission: This model includes the crash-recovery model
with additional message losses of communication channels.

Byzantine: In the Byzantine model no assumptions about the behaviour of
a failed process are made. This arbitrary failure model is the most
general one and includes denial of service attacks, pretending to be
another process, and so on. But failures need not to be meant ill and
might just be e.g. a program bug.

The presented models refer to failures on the level of processes. However,
a failure of a process does not imply a failure on system level. It is indeed
one goal of self-healing systems to avoid failures on lower levels to cause
failures on higher levels.

2.3 Taxonomy, definitions, and survey of failure detectors 13

2.3 Taxonomy, definitions, and survey of failure
detectors

In this section the taxonomy and definitions are given that are necessary to
talk reasonably about failure detectors. Normally, distributed failure detec-
tors are considered in systems with crash failures where each process has
access to a local failure detector [CT96]. Each local failure detection module
monitors a subset of the processes in the system maintaining a suspect list.
This is a list of processes that are currently suspected to have crashed.

2.3.1 Unreliability

Several impossibility studies [CHT96, Lyn89, FLP85] show that perfect fail-
ure detectors cannot exist in asynchronous distributed systems. The major
reason is the impossibility to distinct with certainty whether a process has
failed or the communication network is just slow. The most famous impossi-
bility result is related to the Consensus problem where each process proposes
a value and the processes that do not crash have to agree (termination) on
the same value which has to be one of the proposed values (safety). One
instance for this problem is the Transaction commit problem in distributed
database systems [DS82, GM82]. The problem is for all the data manager
processes which have participated in the processing of a particular transac-
tion to agree on whether to install the transaction’s results in the database or
to discard them. The latter action might be necessary if some data managers
were unable to carry out the required transaction processing. Whatever de-
cision is made, all data managers must make the same decision in order to
preserve the consistency of the database. It has been shown that this appar-
ently simple problem actually has no deterministic solution as soon as even
only one process can crash [FLP85].

Chandra et al. [CT96] introduced the idea of failure detectors as an unre-
liable distributed oracle at which it is possible that (1) a process has failed
but is not suspected as well as (2) a process is suspected but has not failed.
Moreover a failure detector can change its mind - for example stopping to
suspect a process it previously suspected. In consequence, the authors of
[CT96] characterise failure detectors by specifying their properties regard-
ing completeness and accuracy. Completeness refers to failure detectors
eventually suspecting crashed processes, while accuracy restricts the mis-
takes that a failure detector can make.

14 Failure detection

In the following the definitions of the two completeness and four accuracy
properties are given [CT96]:

Strong completeness: Eventually every process that crashes is perma-
nently suspected by every correct process.

Weak completeness: Eventually every process that crashes is permanently
suspected by some correct process.

Strong accuracy: No process is suspected before it crashes.

Weak accuracy: Some correct process is never suspected.

Eventual strong accuracy: There is a time after which correct processes are
not suspected by any correct process.

Eventual weak accuracy: There is a time after which some correct process
is never suspected by any correct process.

Based on their properties regarding completeness and accuracy, failure de-
tectors can be categorised into eight classes. The resulting classes and cor-
responding notations are given in Table 2.1, according to Chandra et al.
[CT96].

Completeness
Accuracy

Strong Weak Eventual Strong Eventual Weak

Strong
Per f ect Strong Eventually Per f ect Eventually Strong
P S ♦P ♦S

Weak
Weak Eventually Weak

Q W ♦Q ♦W
Table 2.1: Classes of failure detectors regarding accuracy and completeness

It is highly desirable that failure detectors satisfy completeness and accuracy
properties because then the above mentioned impossibility results change.
It is shown that it is for instance possible to solve Consensus using each
one of the eight classes of failure detectors [CT96]. Also Atomic broadcast
[CASD85], another problem that cannot be solved in asynchronous systems
without demands on failure detectors, now can be solved.

A broadcast protocol is called atomic if it holds the following properties for
a time constant ∆, the so-called broadcast termination time [CASD85]:

Atomicity: If any correct process delivers an update at time U on its clock,
then this update was initiated by some process and is delivered by
each correct process at time U on its clock.

Order: All updates delivered by correct processes are delivered in the same
order by each correct process.

2.3 Taxonomy, definitions, and survey of failure detectors 15

Termination: Every update whose broadcast is initiated by a correct pro-
cess at time T on its clock is delivered at all correct processes at time
T + ∆ on their clocks.

An atomic broadcast protocol can be used to implement the abstraction of
a synchronous replicated storage. This denotes a distributed storage where
every correct process has the same value for the replicated data. An update
of the replicated data is limited by the broadcast termination time ∆.

Another interesting result is that every failure detector that satisfies weak
completeness also satisfies strong completeness [CT96]. In asynchronous
systems however it is impossible to implement a failure detector that be-
longs to one of the classes shown in Table 2.1.

2.3.2 Quality of Service

Chen et al. [CTA00] studied the quality of service (QoS) of failure detectors.
QoS in this context means measures that indicate (1) how fast a failure de-
tector detects actual failures, and (2) how well it avoids false detections. To
quantify the QoS, the authors of [CTA00] propose a set of metrics. They
divide these metrics into primary metrics and derived metrics:

Primary metrics

Defining the metrics we assume two processes p and q where p is monitor-
ing q.

Detection time (TD): TD is the time that elapses from q’s crash to the time
when q starts to suspect p permanently.

Mistake recurrence time (TMR): The mistake recurrence is the time be-
tween two consecutive mistakes. The term mistake stands for the er-
roneous suspicion of a process.

Mistake duration (TM): This measures the time it takes the failure detector
to correct a mistake.

For applications some other aspects of failure detectors may be interesting,
too. That is why Chen et al. [CTA00] propose four other accuracy metrics
that are derivable from the primary metrics but provide meaningful infor-
mation.

16 Failure detection

Derived metrics

Average mistake rate (λM): The average mistake rate is the rate at which
a failure detector makes mistakes.

Query accuracy probability (PA): This denotes the probability that the out-
put of the failure detector at a random time is correct.

Good period duration (TG): If the failure detector makes no mistakes dur-
ing a certain period, this period is called good. This metric measures
the time of a good period.

Forward good period duration (TFG): This represents the time that elapses
from a random time at which p trusts q to the next time where the
output changes to “suspecting q”.

2.3.3 Monitoring strategy

Two main monitoring approaches for failure detectors exist: push and
pull.

Assuming process p has a failure detector monitoring q. Using a push fail-
ure detector q has to send heartbeat messages to p. This information is used
by p to draw conclusions about q’s status. A simple failure detection algo-
rithm using the push approach works as follows: q sends heartbeat mes-
sages at regular time intervals ∆i to p. When p receives a heartbeat message
it trusts q for a certain period of time ∆to. If this period elapses without re-
ceiving a newer heartbeat, p starts to suspect q (see Figure 2.2). Due to the
use of heartbeat messages, failure detectors that are based on a push mecha-
nism are also called heartbeat-style failure detectors. An algorithm that uses
a push failure detector can be found in [CTA00].

In systems with a pull failure detection (e.g. [HK97]) the monitored node
adopts a passive role. p monitors q by sending “are you still alive”-messages
every ∆i. If p does not receive an answer from q within a certain period of
time ∆to, p is suspecting q (see Figure 2.3).

i i

to to to suspect

q

p

Figure 2.2: push failure detection

Failure detectors using the push paradigm have some benefits compared
to pull failure detectors. They need only half the messages for an equiva-

2.3 Taxonomy, definitions, and survey of failure detectors 17

i i

to to to suspect

q

p

Figure 2.3: pull failure detection

lent failure detection quality. Furthermore it is rather hard to determine the
timeout ∆to as two messages have to be taken into account which are both
sent over the network and subject to network delays.

2.3.4 Adaptiveness

Implementing failure detectors for practical systems, it is a crucial part to
determine parameters like ∆i and ∆to. If for instance the timeout ∆to is short,
then failures are detected fast but the probability for false detections is high.
A long timeout results in a longer detection time but fewer false detections.
These trade-offs have to be considered. Another aspect that should influ-
ence the values for the parameters is the underlying network and its speed,
latency, bandwidth, load, etcetera.

Adaptive failure detectors [FRT01, CTA00, HDYK04] are able to adjust to
changing network conditions. The behaviour of a network can be signifi-
cantly different during high traffic times as during low traffic times regard-
ing the probability of message loss, the expected delay for message arrivals,
and the variance of this delay. Adaptive failure detectors arrange their pa-
rameters in order to meet the current conditions of the system. Thus adap-
tive failure detectors are highly desirable.

Chen et al. [CTA00] propose a well-known adaptive failure detection ap-
proach based on a probabilistic analysis of network traffic. The protocol
uses sampled arrival times to compute an estimation of the arrival time of
the next heartbeat. The timeout is set according to this estimation plus a
constant safety margin, and is recomputed after each arrival of a new heart-
beat.

Bertier et al. [BMS02] combine Chen’s estimation with another estimation
developed by Jacobson [Jac88] for a different context. Their approach is
similar to Chen’s - however they do not use a constant safety margin but
compute it with Jacobson’s algorithm.

18 Failure detection

2.3.5 Laziness

Lazy failure detection algorithms [FRT01] try to reduce the networking
overhead that arises e.g. from sending heartbeat messages. To do so, they
use the application messages of communicating processes in order to save
failure detection messages. Only when two processes are not communicat-
ing, failure detection messages are used. Thus, if they are exchanging mes-
sages frequently the failure detector might have to send no single message.
Hence, these algorithms are closely related to the actual communication be-
haviour of the processes.

In Section 2.7, lazy failure detectors are discussed in more detail and a new
approach for lazy monitoring is introduced.

2.3.6 Accrualty

The principle of an accrual failure detector, introduced by Hayashibara et al.
[HDYK04], is not to output whether a process is suspected to have crashed
or not. Rather they give a suspicion information on a continuous scale while
higher values indicate a higher probability that the monitored process has
failed.

Hayashibara et al. motivate the benefits of accrual failure detectors over
conventional Boolean failure detectors. As principal merit they indicate that
accrual failure detectors favour a nearly complete decoupling between ap-
plication requirements and the monitoring environment. As accrual failure
detectors output a suspicion probability information, it is left to the appli-
cation to interpret this information and choose appropriate actions. To il-
lustrate the benefits of accrual failure detectors they quote an example of
an application with one master and some working processes. The master
assigns jobs to the workers and holds a list of available worker processes. If
workers are idle, it sends them new jobs and collects the results after compu-
tation. Assuming that the workers might crash, the master has to be able to
detect this and take appropriate actions, otherwise the system might block
forever. With an accrual failure detector some low crash probability could
be set to stop sending jobs to this worker when this probability is reached.
When another higher probability is reached the master could cancel all un-
finished jobs that have been assigned to this worker and resubmit them to
other workers. When reaching a high probability, then the master could fi-
nally remove the process from the list of available workers. To implement
this behaviour traditional failure detectors are inappropriate.

Hayashibara et al. [HDYK04] propose a so-called ϕ failure detector that is
based on an estimation of inter-arrival times of heartbeats assuming that

2.4 The failure detector 19

inter-arrivals follow a normal distribution. A suspicion value is basically
computed as follows: The monitoring process stores the receipt times of the
heartbeats in a sampling window of a fixed size. Based on this data amongst
others the mean and variance of heartbeat inter-arrival times are computed.
The authors assume the inter-arrival times following a normal distribution
and use this information to compute the probability that starting from now
another heartbeat will arrive. This probability is transformed using a loga-
rithmic function and the result is then outputted as suspicion value.

2.4 The failure detector

In this section a new failure detection algorithm that can be described as an
adaptive accrual algorithm is presented. It has been designed for flexible
generic usage as a basis to realise failure detection services. After the de-
scription of the algorithm that is given in the following, Section 2.5 discusses
extensions and variations of it. Then, the evaluation results are presented in
Section 2.6.

2.4.1 Design

A distributed system consisting of a set of n processes Π = {p1, p2, . . . , pn}
is considered. Each pair of processes is connected by a communication chan-
nel that can be used to send and receive messages. Communication primi-
tives are assumed as described in 2.2.1.

The failure detector uses a push-style monitoring approach, i.e. the mon-
itored processes have to send heartbeat messages to the monitoring pro-
cesses every time step ∆i. Failure detectors using the push paradigm have
some benefits compared to pull failure detectors which have been cited in
the corresponding part in Section 2.3. The heartbeats are sent in uniform
intervals, the shorter the interval the better the detection quality but the
higher the network and computation overhead. Different intervals can be
used for different processes to allow for more important services to be mon-
itored closer and to detect failures faster. The effects of the lengths of the
heartbeat intervals should become clearer within the rest of this chapter.

Whenever a heartbeat message from a process is received by the failure de-
tector it stores the time that has elapsed from the arrival of the last heartbeat
message. This time is called inter-arrival time and its value is stored in a
sampling window. A sampling window typically has a fixed size; if the lat-
est heartbeat inter-arrival time exceeds this size limitation the oldest sample
is removed in order to insert the latest one. The size of the sampling win-

20 Failure detection

dow has a strong effect on the behaviour of the failure detector. A small
sampling window causes the failure detector to adapt fast to changing con-
ditions, whereas a big sampling window results in the failure detector to
factor long term experience into the failure detection process. A separate
sampling window for each monitored process exists, containing the respec-
tive heartbeat inter-arrival times.

The monitoring process, i.e. the process that has access to the failure detec-
tor, has nothing to do with the monitoring at all. It only has to be aware of a
simple interface. The monitoring process can ask the failure detector for an
approximation of the probability Pf ail(x) that a certain monitored process
x has failed whereupon a probability value within [0, 1] is returned. This
value represents the probability that the monitored process has failed based
on the observations made by the failure detector so far.

Figure 2.4: Design of the failure detector

2.4 The failure detector 21

The design of the failure detector is illustrated in Figure 2.4 which shows a
process p1 monitoring p2, p3, and p4. The monitored processes have to send
heartbeats in certain intervals ∆i to p1. The failure detector of p1 maintains a
sampling window for each monitored process containing the corresponding
heartbeat inter-arrival times. The failure detector offers an interface to p1 re-
turning the current failure probability for the particular process. The failure
detection algorithm calculates a failure probability based on the values in
the sampling windows.

Having introduced the basic features of the failure detector, in the following,
the underlying algorithm is explained.

2.4.2 Basic idea of the algorithm

The basic concepts will be made clear with an example: Assuming
two processes, p and q, p is monitoring q, and q sends heartbeat mes-
sages to p every ∆i = 1 second. Process p1 manages a sampling
window S with information about the inter-arrival times of the last
1000 heartbeats it received. At a certain point during runtime S =
[1.083s, 0.968s, 1.062s, 0.993s, 0.942s, 2.037s, 0.872s, . . .]. Furthermore p stores
the time of the last received heartbeat called freshness point f . Based on the
sampled inter-arrival times and f the algorithm estimates the probability
that q has failed. Figure 2.5 shows the values of S as a histogram.

The shape of the histogram depends mainly on ∆i and the communication
channel connecting q and p. In this particular example ∆i is one second. The
communication channel has a message loss rate of 10% and a certain fluctu-
ating message sending delay. The peak at two seconds arises from one lost
heartbeat message, the peak at three seconds arises from two consecutive
lost heartbeat messages, and so forth.

This histogram can be seen as an approximation of the probability density
function of the distribution of the inter-arrival times. Based on this his-
togram the cumulative frequencies of the values in S are easily computable.
The cumulative frequencies in turn can be seen as an approximation of the
corresponding cumulative distribution function. A cumulative distribution
function (CDF) completely describes the probability distribution of a real-
valued random variable, in our case the inter-arrival times of the heartbeat
messages. The CDF F(t∆) = P(X ≤ t∆) represents the probability that an
inter-arrival time takes on a value less than or equal to t∆. The values of the
CDF are also a reasonable indicator for the crash of q: Assume p is waiting
since time t for the next heartbeat from q. F(t∆) = x means “p is waiting

1“Process p” is used synonymously to “process p’s failure detector” for a shorter nomen-
clature.

22 Failure detection

time in seconds

F
re

qu
en

cy

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
2

4
6

8
10

12

Figure 2.5: Histogram of the sampled inter-arrival times in S

for the next heartbeat message since t∆ seconds and the probability that no
further heartbeat message arrives is x”. The longer p is waiting for the next
heartbeat the higher are the values of F.

Figure 2.6 shows the cumulative frequencies of the values in S. We use these
cumulative frequencies as an estimation of the real CDF of the inter-arrival
times and to compute a suspicion value for the failure of q.

Finally, the mathematical function Pf ail, the failure detector uses to compute
a suspicion value for q, is specified. It represents an estimation of the CDF
of the values in S. The function simply computes the percentage of elements
in S that are smaller than or equal to t∆. It is easy to see that this function
generates a graph like in Figure 2.6, given the above histogram.

Pf ail(t∆) =
|St∆ |
|S| (2.1)

where

• |S| is the number of elements in S,

• t∆ is the time that has elapsed since the last freshness point

• St∆ = {x ∈ S | x ≤ t∆}
• |St∆ | is the number of elements in St∆

2.4 The failure detector 23

1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Figure 2.6: Cumulative frequencies of the sampled inter-arrival times in S. An
approximation of the CDF by Pf ail .

2.4.3 The algorithm in detail

Algorithm 1 shows the failure detection algorithm in detail. Again two pro-
cesses p and q are considered where q is monitored by p and its only task is
to send heartbeat messages to p every ∆i seconds. p’s failure detector has
the variables f , S, and η. f is the freshness point - in our case always the
time when p received the last heartbeat message. S is the list of the heart-
beat message inter-arrival times. η is the maximal size of S - the so called
sample window size. Whenever p receives a heartbeat, the failure detector
appends t∆ = t− f (t is the current time) to S and sets f = t afterwards. p
removes the head of S if the list grows to a size of η + 1 in consequence of
appending the latest inter-arrival time.

If p wants to know the current suspicion value of q, the failure detector
counts the number of elements in St∆ (St∆ = {x ∈ S | x ≤ t∆}) and returns its
normalised value |S

t∆ |
|S| , where |S| is the current size of S. This computation

of the suspicion value is based on the estimation of the CDF of the inter-
arrival times using their cumulative frequencies.

A point that should be mentioned here is that a consecutively numbered
message-id is appended to every heartbeat message to ensure that the heart-

24 Failure detection

beats are processed in the right order. If the monitoring process receives a
heartbeat with a lower message-id than any id it previously received, then
this obsolete message is just ignored. It makes no sense to set the current
freshness point according to this outdated heartbeat regarding it as a new
“life sign” from the monitored process. The use of message-ids to deal with
message disorder is omitted in the specification of the failure detection al-
gorithm but however assumed to be applied.

Algorithm 1 Basic failure detection algorithm
1: Process q:
2: send heartbeat message to p every ∆i
3:
4:
5: Process p:
6:
7: f = −1 . freshness point
8: S = nil . S is initialised as empty list
9: η . max size of S (e.g. 1000)

10:
11: procedure RCV HB(mj, t) . receiving heartbeat mj at time t
12: if f = −1 then
13: f = t
14: else
15: t∆ = t− f
16: f = t
17: append t∆ to S
18: if size of S > η then
19: remove head of S
20: end if
21: end if
22: end procedure
23:
24: function Pf ail(t) . returns suspicion value of q at time t
25: t∆ = t− f
26: |St∆ | = number elements in S that are lower or equal t∆
27: |S| = number of elements in S
28: return |S

t∆ |
|S|

29: end function
30:

In the following, extensions and variations of the introduced algorithm are
presented.

2.5 Extensions and variations of the algorithm 25

2.5 Extensions and variations of the algorithm

2.5.1 Variation for partially synchronous systems

Now a variation of the basic algorithm is presented that mainly aims for
proving that the modified algorithm implements a failure detector of ♦P in
partially synchronous systems [CT96, DLS88] with a crash failure model.
Therefore, the completeness and accuracy properties have to be investi-
gated. The partial synchrony used in the following evolves from the exis-
tence of an upper bound on communication, but this bound is not known a
priori. For deeper insights of the used partial synchrony model it is referred
to [DLS88]. The modified algorithm is shown in Algorithm 2.

The modification of the algorithm is based on the introduction of a new vari-
able β that is initialised with 0. The value of β is added to every inter-arrival
sample before inserted to the sampling window S. Additionally, β is incre-
mented by 1 every time the failure detector experiences a failure probability
of 1 for the monitored process but receives a newer heartbeat later on from
this process.

It is now shown that the above specified failure detection algorithm imple-
ments an eventually perfect (♦P) failure detector in partially synchronous
systems. For this, the strong completeness and the eventual strong accuracy
have to be shown to be satisfied.

Chandra et al. [CT96] prove that any given failure detector that satisfies
weak completeness can be transformed into a failure detector that satisfies
strong completeness. Furthermore they prove that, if the failure detector
satisfies one accuracy property, the transformed also does. In this way it is
sufficient to show that the algorithm implements weak completeness and
eventual strong accuracy.

Without loss of generality it can be assumed that a process is suspected to
have crashed if its failure probability is 1. The determination of a value
that indicates the threshold after which a process is suspected to have failed
is necessary for the following proofs. This is due to the classification of
failure detectors assuming traditional algorithms which do suspect or do
not suspect a process to have crashed.

Definition 1. A failure detector has the property weak completeness if even-
tually every process that crashes is permanently suspected by some correct
process.

Theorem 1. Assuming p is correct, q has crashed and p is monitoring q. Then
the algorithm described in Algorithm 2 ensures that p eventually suspects q per-
manently.

26 Failure detection

Algorithm 2 A failure detection algorithm of class ♦P
1: Process q:
2: send heartbeat message to p every ∆i
3:
4:
5: Process p:
6:
7: f = −1 . freshness point
8: S = nil . S is initialised as empty list
9: η . max size of S (e.g. 1000)

10: β = 0 . added to the inter-arrival times before inserted into S
11:
12: procedure RCV HB(mj, t) . receiving heartbeat mj at time t
13: if f = −1 then
14: f = t
15: else
16: t∆ = t− f
17: t∆ = t∆ + β
18: f = t
19: append t∆ to S
20: if size of S > η then
21: remove head of S
22: end if
23: end if
24: end procedure
25:
26: function Pf ail(t) . returns suspicion value of q at time t
27: t∆ = t− f
28: |St∆ | = number elements in S that are lower or equal t∆
29: |S| = number of elements in S
30: return |S

t∆ |
|S|

31: end function
32:
33: if suspicion value reaches 1 and further heartbeat is received then
34: β = β + 1
35: end if
36:

Proof. After q has crashed it stops to send heartbeat messages to p. Let t
denote the time after the last heartbeat that has been sent by q to p has
been received. Let tmax be the maximal inter-arrival time in the sampling
window S. According to Algorithm 2 the suspicion value Pf ail becomes 1
after t ≥ tmax. Because of the partial synchrony the condition t ≥ tmax will

2.5 Extensions and variations of the algorithm 27

hold within a finite time after q’s crash. Thus p will eventually suspect q. As
q has crashed, p will not receive a further message from q. Therefore p will
eventually suspect q permanently.

Definition 2. A failure detector has the property eventual strong accuracy if
there is a time after which correct processes are not suspected by any correct
process.

Theorem 2. Within a partially synchronous system the algorithm described in
Algorithm 2 ensures that there is a time t after which no correct process is suspected
to have crashed by a correct process.

Proof. Let p1, . . . , pn be n processes where any two processes are monitoring
each other. Let pi and pj be two random chosen correct processes where
i 6= j and pi is monitoring pj. With every false suspicion of pj, the process
pi increments β. Therefore, pi cannot suspect pj infinitely often. As pi only
may suspect pj finitely often and pj is a correct process, eventually pi will
receive a further heartbeat and stop to suspect pj permanently.

Theorem 1 and Theorem 2 show that the modified algorithm implements
a failure detector of class ♦P. The modifications of the algorithm that has
been proposed in this paragraph cause a better accuracy at the expense of
a longer failure detection time. This modification is particularly useful for
systems where it must be ensured that the failure detector eventually makes
no false detections. For the unmodified basic algorithm, only the strong
completeness property holds.

2.5.2 Self-adjusting failure detector

The variation of the failure detector proposed in this section reconsiders
previously computed failure prognoses based on the actual events. This
information is used to adjust the failure detector online, in order to deliver
better results.

More precisely, it records the average suspicion value out∅ of all requests
it answered so far together with the total number of requests outnum. Fur-
thermore it counts the number of all errors outerr it made, i.e. all occasions
where it outputted a suspicion value greater than 0 and recognised later on
that the monitored service did not fail. Whenever out∅ > 1− outerr

outnum
holds,

β is incremented by a small value σ, e.g. σ = ∆i
104 and out∅ is reset to 0.

This modification of the basic algorithm, as shown in Algorithm 3, avoids
an overestimation of failure probabilities at the cost of a fast failure detec-
tion. Overestimated suspicions are often considered to be the bigger prob-
lem in real systems, where an overestimation could result in costly repair

28 Failure detection

mechanisms which might also be difficult to undo later on. Furthermore it
is well-suited for environments where failures and recoveries of nodes oc-
cur frequently which enables a better evaluation of the correctness of the
computed suspicion values.

Algorithm 3 Self-adjusting failure detector
1: Process q:
2: send heartbeat message to p every ∆i
3:
4: Process p:
5: f = −1 . freshness point
6: S = nil . S is initialised as empty list
7: η . max size of S (e.g. 1000)
8: β = 0 . added to inter-arrival times before inserted into S
9: σ = ∆i

104 . the incrementation factor of β
10: out∅ . average of computed suspicion values
11: outerr . number of errors
12: outnum . number of outputted suspicion values
13:
14: procedure RCV HB(mj, t) . receiving heartbeat mj at time t
15: if f = −1 then
16: f = t
17: else
18: t∆ = t− f
19: t∆ = t∆ + β
20: f = t
21: append t∆ to S
22: if size of S > η then
23: remove head of S
24: end if
25: end if
26: if out∅ > 1− outerr

outnum
then

27: β = β + inc
28: out∅ = 0
29: end if
30: end procedure
31:
32: function Pf ail(t) . returns suspicion value of q at time t
33: t∆ = t− f
34: |St∆ | = number elements in S that are lower or equal t∆
35: |S| = number of elements in S
36: outnum = outnum + 1
37: out∅ = average of |S

t∆ |
|S| since last error

38: return |S
t∆ |
|S|

39: end function
40:

2.5 Extensions and variations of the algorithm 29

2.5.3 Freshness point strategy

The variation of the basic failure detection algorithm presented in the fol-
lowing abolishes the dependence of the suspicion values on the arrival
times of past heartbeats. This negative property of many failure detectors
is addressed by Chen et al. [CTA00]. The techniques of heartbeat sampling
and the freshness point strategy, as used in Algorithm 1, entail the depen-
dence of the failure probability on the previous heartbeat. Assuming again
p is monitoring q and p is waiting for the i-th heartbeat from q, then the fail-
ure probability of q not only depends on the arrival time of the i-th heartbeat
mi, but also on the past receipt time of the (i− 1)-th heartbeat mi−1. In fact,
this time has a big influence on the current failure probability. If mi−1 has
arrived “fast” then p is waiting a longer time for mi since the last freshness
point which is the receipt time of mi−1 has been set early. Hence, the failure
probability will become higher as if mi−1 had arrived “late”. In the latter
case the freshness point is set later and therefore the failure probability is
lower.

To circumvent this dependency it is proposed to use a different concept of
freshness points and inter-arrival times. Freshness points should not be set
according to the arrival time of heartbeat messages, which is subject to net-
work variation, to avoid the above mentioned drawbacks. A better choice is
to use the sending time according to the sender’s local clock instead. Then,
however, the inter-arrival times have to be computed differently, too. Let
mi denote the arrival times of heartbeats according to p’s local clock and
si its corresponding sending times according to q’s clock. The inter-arrival
times used in the basic algorithm can be computed as mi − mi−1. Inter-
arrival times appropriate for the new freshness point strategy are calculated
as mi − si−1.

Table 2.2 illustrates an example of four heartbeat messages with correspond-
ing sending times si, receiving times mi, actual freshness point f , and sam-
pling window S according to the common freshness point strategy. Table 2.3
represents the same example using the new strategy. The values of S in Ta-
ble 2.3 are generally higher because the sending times are included in the
inter-arrival times. But this has no negative influence on the failure detec-
tion process as only the variations of these values are crucial. In the first
table it is noticeable that the previous heartbeat greatly influences the inter-
arrival times. For example, the fourth heartbeat arrives rather early. In Ta-
ble 2.3 this results in a rather small inter-arrival time of 103. In Table 2.2,
however, this resulted in a comparatively much smaller value because the
fourth heartbeat arrives late.

Please note that the method introduced here to abolish the dependence on
the last heartbeat is not based on synchronised clocks.

30 Failure detection

i si mi f S
1 1000 1010 1010 []
2 1100 1105 1105 [95]
3 1200 1230 1230 [95, 125]
4 1300 1303 1303 [95, 125, 73]

Table 2.2: Common freshness point strategy

i si mi f S
1 1000 1010 1000 []
2 1100 1105 1100 [105]
3 1200 1230 1200 [105, 130]
4 1300 1303 1300 [105, 130, 103]
Table 2.3: New freshness point strategy

Algorithm 4 shows the basic algorithm presented in Algorithm 1 modified
according to the concepts presented here.

The presented mechanism to abolish the dependence on the last heartbeat
works for all failure detectors that are based on sampling heartbeat inter-
arrival times sent from the monitored to the monitoring process. The eval-
uation in Section 2.6 shows that this variation improves the failure detector.
It can be assumed that this positive effect also holds for other algorithms
that sample inter-arrival times like the ϕ failure detector [HDYK04].

2.5.4 Sampling window

In this section, variations based on a different representation, interpretation,
and manipulation of the sampled inter-arrival times are discussed.

Histogram bin width

In the basic algorithm, as described in Algorithm 1, the sampling window is
a list containing the last η sampled inter-arrival times. To compute a failure
probability, the cumulative frequencies of the entries in the sampling win-
dow are used. The resolution level of the cumulative frequencies is at the
resolution of the data - no certain bin width is used to cluster the data. The
procedure of the computation of a failure probability is illustrated in Figure
2.7. In this example the probability of a failure is calculated for a failure
detector whose current freshness point is two seconds old.

In the basic version of the failure detection algorithm no histogram in the
actual sense is used. The sampling window is just a list containing the

2.5 Extensions and variations of the algorithm 31

Algorithm 4 Failure detection algorithm with a different freshness point
strategy

1: Process q:
2: send heartbeat message to p every ∆i
3:
4:
5: Process p:
6:
7: f = −1 . freshness point
8: S = nil . S is initialised as empty list
9: η . max size of S (e.g. 1000)

10: ts . the sending time according to q’s clock
11:
12: procedure RCV HB(mj, t) . receiving heartbeat mj at time t
13: if f = −1 then
14: f = ts
15: else
16: t∆ = t− f
17: f = ts
18: append t∆ to S
19: if size of S > η then
20: remove head of S
21: end if
22: end if
23: end procedure
24:
25: function Pf ail(t) . returns suspicion value of q at time t
26: t∆ = t− f
27: |St∆ | = number elements in S that are lower or equal t∆
28: |S| = number of elements in S
29: return |S

t∆ |
|S|

30: end function
31:

inter-arrival times; the cumulative frequencies are used to calculate a failure
probability, the resolution of this calculation is at the level of the sampled
data. But there are some advantages that come along with the division of
the data in bins. Then, the sampling window does not consist of the values
of the sampled data, but only the information how many values a bin con-
tains. For instance S = [1.083s, 0.968s, 1.062s, 0.993s, 0.942s, 2.037s, 0.872s]
could become to S = [0s, 1s) : 4, [1s, 2s) : 2, [2s, 3s) : 1, while [[0s, 1s) : 4)
denotes four arrivals in the time interval [0s, 1s). It is obvious that the use of
such a representation of the data allows for a faster generation of a failure

32 Failure detection

1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Figure 2.7: Computation of a failure probability

probability. That is valid due to the fact that the counting of elements that
are lower or equal to a certain elapsed time only depends on the number of
bins which is typically clearly smaller than the number of samples.

Another advantage does only comes into effect if the sampling window’s
size is not limited: the coarsening of the granularity of the resolution of the
data saves a big amount of memory. If, however, the sampling window
has a specific size, values that are inserted have to be deleted later on when
they become too old. Thus every data value has to be saved explicitly and
the memory-saving is invalid. The drawback of dividing samples into bins
is the loss of information that might cause the failure detector to perform
worse, particularly if the bin width is chosen too big.

Figure 2.8 shows four examples of a sampling window as histograms with
different bin widths. Figure 2.9 illustrates the effects of the different bin
widths on the cumulative frequencies which are used to compute the suspi-
cion values.

2.5 Extensions and variations of the algorithm 33

inter−arrival time in seconds

F
re

qu
en

cy

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
2

4
6

8
10

12

inter−arrival time in seconds

F
re

qu
en

cy

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
10

20
30

40
50

60

inter−arrival time in seconds

F
re

qu
en

cy

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
10

0
20

0
30

0
40

0

inter−arrival time in seconds

F
re

qu
en

cy

1 2 3 4

0
20

0
40

0
60

0
80

0

Figure 2.8: Sampling window as histograms with different bin widths

34 Failure detection

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

C
um

ul
at

iv
e

fr
eq

ue
nc

y

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

C
um

ul
at

iv
e

fr
eq

ue
nc

y

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

C
um

ul
at

iv
e

fr
eq

ue
nc

y

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Figure 2.9: Cumulative frequencies based on histograms with different bin widths

2.5 Extensions and variations of the algorithm 35

Histogram smoothing

The heartbeat data sampled over time are subject to random variations due
to for instance the unpredictable behaviour of the network. There are meth-
ods for reducing the effects of random variations on sampled data. The
purpose for this is to reveal more clearly the underlying basic distribution.
A technique that can be used to achieve this is called smoothing and can be
used to smooth histograms.

A smoother can be seen as a kind of a weighted averaging process. The aim-
ing value is transformed by an averaging of the values in its neighbourhood.
The size of the neighbourhood that is taken into account has to be set in an
appropriate way. The parameter characterising this amount of neighbour-
ing values is called smoothing parameter. Generally, the larger the smoothing
parameter, the smoother the result.

A simple yet fast smoother has been chosen to be used together with the fail-
ure detector and is described in the following. Each band of the histogram is
smoothed by averaging over a moving window. The smoothing parameter
k determines the size of the moving window which is set to 2k + 1. If the
window runs off the end of the histogram, bands of size 0 are considered.
The process of this smoothing technique is illustrated in Figure 2.10. The
blue area represents the sampling window - only values within this win-
dow are taken into account. The aiming value is the value in the centre of
the sliding window and highlighted in red. This centre value is now set to
the average of all values within the sliding window. The sliding window
moves through the hole histogram until all bands are processed.

Figure 2.10: Histogram smoothing

36 Failure detection

inter−arrival time in seconds

D
en

si
ty

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
1

2
3

4
5

(a) not smoothed

inter−arrival time in seconds

D
en

si
ty

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
1

2
3

4
5

(b) k=3

inter−arrival time in seconds

D
en

si
ty

1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

(c) k=20

inter−arrival time in seconds

D
en

si
ty

1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

(d) k=50

Figure 2.11: Smoothed histograms

For further readings about smoothing techniques it is referred to [Här91,
Sil86]. In Figure 2.11, histograms smoothed with different smoothing pa-
rameters are illustrated. Figure 2.12 shows the corresponding cumulative
frequencies. Obviously, the choice of the smoothing parameter is impor-
tant. The larger the value k, the smoother the resulting histogram. How-
ever, if k is chosen too large over-smoothing occurs with loss of essential
histogram features. The usage of histogram smoothing only changes the
failure detection algorithm in calculating the failure probability. It is based
on the cumulative frequencies of the smoothed histogram instead of the un-
smoothed cumulative frequencies.

2.5 Extensions and variations of the algorithm 37

1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

C
um

ul
at

iv
e

fr
eq

ue
nc

y

(a) not smoothed

1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

C
um

ul
at

iv
e

fr
eq

ue
nc

y
(b) k=3

1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

C
um

ul
at

iv
e

fr
eq

ue
nc

y

(c) k=20

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

C
um

ul
at

iv
e

fr
eq

ue
nc

y

(d) k=50

Figure 2.12: Cumulative frequencies based on smoothed histograms

Using a smoothing technique can cause the failure detector to be more ro-
bust to random variations. Also a larger sampling window results in the
failure detector being less influenced by temporary extreme conditions. On
the other hand real changes of the conditions of the systems are met slower
if the sampling window is large because values that have been experienced
in the past have still a huge influence on the results of the failure detector.

In the next section an evaluation for the proposed failure detection algo-
rithms is provided.

38 Failure detection

2.6 Evaluation

In this section a methodology is introduced to evaluate failure detectors.
Based on these concepts, a test centre for heartbeat-style failure detection
has been developed. Using this tool, a series of performance measurements
have been conducted to compare the developed failure detector against
other state of the art failure detectors and to measure the effects of the pro-
posed variations.

The basic methodology for investigating the value of a failure detector for a
certain domain contains the following two steps:

Qualitative Evaluation: In the first step a qualitative approach is used to ex-
amine fundamental properties of failure detectors and their suitability
for a certain application area.

Quantitative Evaluation: Within a quantitative evaluation process the per-
formance of failure detectors applied to a certain domain is measured.
To conduct such measurements, the test centre can be used.

In the following evaluation, the basic failure detection algorithm presented
in this work (see Algorithm 1) is compared with the well known failure
detectors of Chen et al. [CTA00] and Bertier [BMS02], and the accrual ϕ
failure detector of Hayashibara et al. [HDYK04]. All these algorithms use a
heartbeat-style approach to monitor processes.

2.6.1 Qualitative Evaluation

For the qualitative evaluation, the following categories are considered:

Adaptive: Adaptive failure detectors are able to adapt to changing network
conditions (see Section 2.3.4).

Network load: It is examined to what extent failure detectors are able to
influence the network load they are producing.

Accrual: Accrual failure detectors output a suspicion information on a cer-
tain scale rather than outputting a binary value. This results in more
flexible failure detectors. (see Section 2.3.6)

Computational complexity: The computational complexity of a failure de-
tector is an important feature. Both the complexity computing a sus-
picion value on enquiry of the monitoring process as well as the pro-
cessing of a received heartbeat message has to be taken into account.

Table 2.4 shows the results of the qualitative evaluation according to the
above categories, where η is the maximal size of the sampling window S.

2.6 Evaluation 39

Algorithm Adaptive Network load Accrual
Computational

complexity
query heartbeat

Basic 4 tailorable & lazy 4
O(η) O(1)
O(log η) O(log η)

Chen 4 tailorable 8 O(η) O(1)
ϕ 4 tailorable 4 see text O(1)

Bertier 4 tailorable 8 O(1) O(1)
Table 2.4: Qualitative analysis

All algorithms can be called adaptive because they all have the ability to
adapt to changing network conditions. Additionally, all failure detectors
are tailorable as they all can downgrade their detection quality in order to
reduce the network load. The algorithms are based on periodically sent
heartbeat messages. An adjustment of this heartbeat interval is the instru-
ment to affect the network load in this way.

The only failure detector however, that comes with an approach for lazy
monitoring is the failure detector presented in this work. The lazy monitor-
ing is described in Section 2.7 and enables the failure detector to reduce the
network load without the negative effects on the detection quality.

Accrual failure detectors output a suspicion value in place of a binary value.
They are more flexible and can be seen as a generalisation of conventional
failure detectors. Accrual failure detectors can easily be transformed into
conventional binary failure detectors by defining a threshold. Values be-
low this threshold imply not-failed and values above failed as output. The
failure detector presented in this work and the ϕ failure detectors belong
to the class of accrual failure detectors while the other two algorithms are
conventional failure detectors.

For all algorithms the complexity of processing a heartbeat belongs toO(1).
The complexity of answering a query, i.e. computing a suspicion informa-
tion for Bertier’s algorithm is O(1) and for Chen’s it is O(η). Basically, the
complexity of answering a query for the basic algorithm is also O(η), but
with the usage of for example a sorted list to implement the sampling win-
dow it is O(log η). However, the usage of such a data structure extends the
complexity for a heartbeat arrival also to O(log η). Thus, if the failure de-
tector is often queried and the heartbeat interval is long then the use of e.g.
a sorted list can provide a benefit, otherwise the use of a non-sorted data
structure with an inexpensive insert operation like a standard list should
be preferred. The complexities do not change for the presented variations
of the algorithm except the variations that partition the data into bins and
the application of a smoothing technique. Assuming the sampling window

40 Failure detection

is partitioned into ηb bins, then the computation of a suspicion value takes
O(ηb), the processing of a heartbeat remains in O(1). Using a smoothing
technique the complexity of this technique has to be taken into account ad-
ditionally.

The computation of a suspicion value of the ϕ failure detector of
Hayashibara et al. [HDYK04] includes the following steps:

1. Determining the mean µ of the sampled values

2. Determining the variance σ2 of the sampled values

3. Computation of

Plater(t) =
1

σ
√

2π

+∞∫
t

e−
(x−µ)2

2σ2 dx

4. Computation of ϕ(tnow) = −log10(Plater(tnow − Tlast))

Thus the computational complexity of the ϕ failure detector depends on the
used methods to compute the above listed steps. Step 3 should be the de-
termining factor for the computational complexity if the mean and variance
of the sampled values are computed recursively. For sampling windows
of a common moderate size it could be assumed that the computation of a
suspicion value according to the ϕ failure detector takes significantly longer
than according to the other failure detectors presented in Table 2.4.

Now a quantitative evaluation follows, measuring the performance of fail-
ure detection algorithms.

2.6.2 Quantitative Evaluation

At first, the test centre for failure detectors developed to measure the per-
formance of heartbeat-style failure detection algorithms is described. After-
wards, the results of the performance measurements are presented.

Test centre

The test centre is a tool that allows for an easy evaluation of failure detec-
tion algorithms that are based on heartbeat messages. Figure 2.13 gives an
overview of the different functional parts of this framework.

In a nutshell the evaluation centre takes as input heartbeat samples and
applies a failure detection algorithm to it. As result the performance of the
failure detector according to a set of metrics is outputted.

In the following the functional parts of the test centre are described:

2.6 Evaluation 41

Figure 2.13: Test centre for failure detection algorithms

Heartbeat samples Again it is assumed that p and q are processes where p
is monitoring q. The heartbeat samples consist of data that give information
about the heartbeat sending process. In more detail it is a dataset consisting
of entries in the format:

heartbeatid | sendingtime | arrivaltime

heartbeatid is a consecutive id which q appends to every heartbeat to en-
able p to detect lost and late heartbeats. sendingtime is the time the heart-
beat has been sent according to q’s local clock. arrivaltime is the time the
heartbeat has been received according to p’s local clock. If a heartbeat gets
lost then arrivaltime is empty.

The heartbeat samples have a very simple format but contain all relevant
information about the environment like the message delay and loss of the
network as well as q’s ability to send heartbeats at the right time.

Heartbeat samples can be produced either by a setup in a real environment
(experiment) or by generating these data artificially (heartbeat generator).

42 Failure detection

Experiment The best way to evaluate how failure detectors perform in a
certain environment is to produce the heartbeat samples within this envi-
ronment. To do so, the heartbeat sending and receiving times of two pro-
cesses have to be logged and provided in the above stated format.

Heartbeat generator An infinite set of environments exists, regarding the
computing devices and their interconnection which influence the perfor-
mance of failure detection algorithms. For a more generic evaluation, the
heartbeat samples needed for the evaluation can be generated. This has the
benefit that the experiments are reproducible and independent of any spe-
cial properties of e.g. a certain type of communication medium.

Formula 2.2 describes how the sending time of the j-th heartbeat tj
s is com-

puted. The heartbeat interval is denoted with ∆i, $ stands for a random
variable sampled according to a certain probability distribution to model
the lag of time of q sending heartbeats. The test centre provides the possi-
bility to sample according to a set of probability distributions, such as the
Normal, Log-Normal, Exponential, Gamma, and Weibull distribution.

tj
s = tj−1

s + ∆i + $ (2.2)

The generation of the arrival time of the j-th heartbeat tj
r is described with

Formula 2.3. To model the sending delays of the heartbeat messages again
a random variable δ is used. θ represents the loss probability of a heart-
beat. For the message loss probability two different approaches are avail-
able: conditional and unconditional message loss [Bol93]. In the case of a
conditional message loss model, the probability of a message loss changes
depending whether the previous message is lost or not. This may be used
to model bursty message loss behaviour. Unconditional message loss does
not make this subdivision, all messages are subject to a message loss with
the same probability regardless of previous events. The heartbeat generator
of the test centre uses a conditional message loss model as this is a more
generic approach that covers the unconditional loss model as one special
case.

tj
r =

{
tj
s + δ , probability : 1− θ

message loss , probability : θ
(2.3)

Formula 2.4 shows the computation of the message loss probability. To spec-
ify a message loss behaviour, the overall message loss probability χ and a

2.6 Evaluation 43

burstiness factor κ have to be declared. The probability of a message loss
under the assumption that the previous message has been lost is κ · χ. If
the previous message has not been lost then the failure probability is χ−κ·χ2

1−χ .
Thus the overall failure probability is χ, according to the total probability
theorem [Pap84].

θ =

{
κ · χ , previous message lost
χ−κ·χ2

1−χ , previous message not lost
(2.4)

κ set to 1 results in an unconditional message loss behaviour. In this case the
probability of a message loss is not influenced by the previous message:

θ =

{
κ · χ = χ , previous message lost
χ−κ·χ2

1−χ = χ−χ2

1−χ = χ·(1−χ)
1−χ = χ , previous message not lost

Failure detection algorithm To evaluate a failure detection algorithm, an
implementation of this algorithm has to be provided to the test centre. If a
new failure detector is evaluated this is the only part where programming
is necessary. To minimise this work, an abstract failure detection class is
provided in which solely two methods need to be overwritten.

Core The test centre applies the specified failure detection algorithm to
certain heartbeat samples measuring its performance according to a set of
metrics. In order to compare accrual and non-accrual failure detectors, the
accrual failure detectors have to be transformed into conventional failure
detectors. Therefore, a threshold T is specified. If the level of suspicion of an
accrual failure detector is lower than this threshold, then the process is not
suspected to have failed. If the level of suspicion crosses T, it is suspected.

The next barrier to compare failure detection algorithms are their differ-
ent tuning parameters. These influence the time when a failure detector
starts/ends to suspect a process. For the accrual failure detectors the tun-
ing parameter is in this case the threshold T. Non-accrual failure detectors
often have explicit tuning parameters. Chen’s failure detector for example
has as tuning parameter a safety margin α. This is a constant period of time
that is added to the estimated heartbeat arrival time. Other failure detectors
like Bertier’s have no tuning parameters. To be able to compare the differ-
ent failure detection algorithms, the behaviour of the failure detectors using
several values of their respective tuning parameters should be measured.

To compute metrics concerning the detection time of the failure detectors it
is assumed that a crash would occur always exactly after successfully send-

44 Failure detection

ing a heartbeat message. Then the time it takes until the failure detector
reports a suspicion is measured. This corresponds to the worst case situa-
tion. This method to compute the worst-case detection time is also used in
[HDYK04]. To evaluate metrics concerning the number of mistakes exactly
the same experiment is considered but under the assumption that no single
crash occurs.

Evaluation results The output of an evaluation run of the test centre is the
performance of the failure detection algorithm according to the following
metrics implemented as introduced in Section 2.3.2:

• Number of mistakes NM,

• average detection time TD,

• average mistake recurrence time TMR,

• average mistake duration TM,

• average mistake rate per second λM,

• query accuracy probability PA, and

• average good period duration TG.

An example of such an output for the basic failure detector, transformed
into a non-accrual failure detector with threshold T = 0.97, is shown in
Figure 2.14.

- Basic FD - (threshold: 0.97)

num mistakes: 9315

avg detection time: 20002.62696640515

avg mistake recurrence time: 1067437.1914322525

avg mistake duration: 10642.299409554482

avg mistake rate per second: 9.36708097019428E-10

query accuracy probability: 0.9900312719721652

avg good period duration: 1056770.4754696726

Figure 2.14: Exemplified output of the test centre

The test centre is implemented in JAVA. Figure 2.15 shows a class diagram
of interesting parts of the test centre. Not previously mentioned is the class
EvaluationPlan that allows for the specification of plans for the test centre
that are sequentially executed as single evaluation runs in a kind of batch
mode.

In order to be evaluable by the test centre, every failure detection algo-
rithm has to implement the abstract class AbstractFD. Therefore, the two
methods newMessage and getNextFreshnessPoint must be implemented.

2.6 Evaluation 45

Chen

AbstractFD

+<<abstract>> newMessage(heartbeat:Message)

+<<abstract>> getNextFreshnessPoint(): Time

Phi BertierBasic ...

TestCenter

+startEvaluation()

HeartbeatSampler

-messageDelay: Distribution

-sendDelay : Distribution

-lossProbability: double

-burstynessFactor: double

-heartbeatInterval: Time

-numberOfSamples: int

+sampleHeartbeats(): HeartbeatSamples

EvaluationPlan

Figure 2.15: Simplified class diagram of the test centre

The method newMessage simulates the arrival of a new heartbeat while
getNextFreshnessPoint must return the time when the failure detector
starts to suspect the monitored process if no further message arrives. For
many failure detectors these two methods can be implemented with a few
lines of code. Besides this, the test centre provides all the functionality nec-
essary to evaluate the failure detector’s performance.

To perform one run of the test centre with the usage of the heartbeat sampler,
the value for the heartbeat interval ∆i and the size of the sampling window
η has to be set.

If the heartbeat samples are generated with the use of the heartbeat sampler,
additionally the following input parameters have to be specified:

• Number of heartbeats,

• message delay distribution δ,

• send delay distribution $,

• message loss probability χ, and

• burstiness factor κ.

In the following the results of the performance measurements that have
been conducted with the described test centre are presented.

46 Failure detection

Evaluation setting

In order to evaluate and compare the failure detection algorithms a scenario
is chosen according to results of researchers investigating the messaging
behaviour of the Internet.

Bolot [Bol93] and Mukherjee [Muk92] reason that the Internet end-to-end
delay distribution they experienced in their experiments is best modelled
by a shifted gamma distribution. Sanghi et al. [SAGJ93] encountered
packet loss rates between 2.1% and 10.1% in their measurements. Dam et
al. [DN98] selected a site in the US, sent ping packets at regular intervals
and noted the RTT for each ping packet. The closest gamma distribution fit
for the packet delay of this experiment turned out to be a shifted gamma
distribution with shape parameter 2.0 and scale parameter 2.8, as shown in
Figure 2.16.

 0

 0.05

 0.1

 0.15

Figure 2.16: Gamma distribution

Basic algorithms vs. other state of the art algorithms In the following, 12
experiments are presented to compare the basic failure detection algorithm
against other state of the art failure detectors. Per experiment one million
heartbeat messages are generated using a shifted gamma distribution with
shape parameter 2.0 and scale parameter 2.8 to model the message delay.
The heartbeat interval ∆i is set to 10 seconds in all experiments. These differ
in the modelling of the message loss and the size of the sampling window
η.

In Experiment 1.1 - 1.6 the sample window size η is set to 1000 samples
for all algorithms. This means that the computations of the failure detec-
tors rely only on the last 1000 heartbeat message samples. Furthermore, the

2.6 Evaluation 47

measurements are started not until 1000 heartbeats have been received to
grant a warm-up phase.

The first three experiments examine the performance of the failure detection
algorithms with different message loss probabilities but unconditional non-
bursty message loss behaviour.

Experiment 1.1: η: 1000, χ: 2%, κ: 1 (Figure 2.17)
Experiment 1.2: η: 1000, χ: 5%, κ: 1 (Figure 2.18)
Experiment 1.3: η: 1000, χ: 10%, κ: 1 (Figure 2.19)

The following three experiments consider a conditional bursty message loss
with a burstiness factor of κ = 5. Thus message loss in the case of a previ-
ously lost message has the probability 5 · χ.

Experiment 1.4: η: 1000, χ: 2%, κ: 5 (Figure 2.20)
Experiment 1.5: η: 1000, χ: 5%, κ: 5 (Figure 2.21)
Experiment 1.6: η: 1000, χ: 10%, κ: 5 (Figure 2.22)

Experiments 1.7 - 1.12 are similar to the first six experiments, but the sample
window size η is set to 20000 samples. Thus the effects of the sampling
window size on the detection quality can be investigated. A warm-up phase
of 20000 heartbeats is granted to all algorithms.

Experiment 1.7: η: 20000, χ: 2%, κ: 1 (Figure 2.23)
Experiment 1.8: η: 20000, χ: 5%, κ: 1 (Figure 2.24)
Experiment 1.9: η: 20000, χ: 10%, κ: 1 (Figure 2.25)

Experiment 1.10: η: 20000, χ: 2%, κ: 5 (Figure 2.26)
Experiment 1.11: η: 20000, χ: 5%, κ: 5 (Figure 2.27)
Experiment 1.12: η: 20000, χ: 10%, κ: 5 (Figure 2.28)

Within these settings the basic failure detector as described in Algorithm 1
is compared with the well known failure detectors of Chen et al. [CTA00]
and Bertier [BMS02] and the accrual ϕ failure detector of Hayashibara et al.
[HDYK04].

The test centre outputs for every run a file containing the results according
to the metrics NM, TD, TMR, TM, λM, PA, and TG. But in this form it is hard to
capture and compare the performance of the different algorithms. For this
reason the following two opposed metrics are singled out and presented
graphically.

These two metrics are [CTA00]:

λM: This measures the numbers of wrong suspicions per second.

TD: This is the average time that elapses since the crash of q until p starts to
suspect q permanently.

48 Failure detection

The counteraction of this two metrics is obvious. If the failure detector’s
tuning parameter is adjusted in a way to detect failures fast, the number of
wrong suspicions is likely to be high. If the other way round the tuning
parameter is set in a less aggressive way, the number of wrong suspicions
will decrease at the cost of a longer detection time in the case of a failure.

The results of the performance measurements of Experiment 1.1 - 1.12 are
depicted in Figure 2.17 - 2.28. These figures show the average detection
time TD on the horizontal axis and the mistake rate λM on the vertical axis.
Values near to the lower left corner represent a short detection time with few
mistakes. The basic failure detection algorithm of this work, as presented
in Algorithm 1, is denoted with basic. Chen’s failure detection algorithm
[CTA00] is denoted with Chen, the ϕ failure detector of Hayashibara et al.
[HDYK04] with ϕ, and Bertier’s algorithm [BMS02] with Bertier.

Every single point of the graph of the basic failure detection algorithm and
the algorithms of Chen et al. and Hayashibara et al. represents the result
of one run of the test centre with different tuning parameters. As Bertier’s
failure detector has no tuning parameters it is only one single point in the
charts.

2.6 Evaluation 49

 0

 2e-10

 4e-10

 6e-10

 8e-10

 1e-09

 1.2e-09

 1.4e-09

 1.6e-09

 1.8e-09

 2e-09

 10 12 14 16 18 20 22 24

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

basic
Chen

ϕ
Bertier

Figure 2.17: Experiment 1.1: η: 1000, χ: 2%, κ: 1

 0

 5e-10

 1e-09

 1.5e-09

 2e-09

 2.5e-09

 3e-09

 3.5e-09

 4e-09

 4.5e-09

 5e-09

 10 12 14 16 18 20 22 24 26 28 30 32

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

basic
Chen

ϕ
Bertier

Figure 2.18: Experiment 1.2: η: 1000, χ: 5%, κ: 1

50 Failure detection

 0

 1e-09

 2e-09

 3e-09

 4e-09

 5e-09

 6e-09

 7e-09

 8e-09

 9e-09

 1e-08

 10 15 20 25 30 35 40

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

basic
Chen

ϕ
Bertier

Figure 2.19: Experiment 1.3: η: 1000, χ: 10%, κ: 1

 0

 2e-10

 4e-10

 6e-10

 8e-10

 1e-09

 1.2e-09

 1.4e-09

 1.6e-09

 1.8e-09

 10 12 14 16 18 20 22 24 26 28 30 32

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

basic
Chen

ϕ
Bertier

Figure 2.20: Experiment 1.4: η: 1000, χ: 2%, κ: 5

2.6 Evaluation 51

 0

 5e-10

 1e-09

 1.5e-09

 2e-09

 2.5e-09

 3e-09

 3.5e-09

 4e-09

 10 15 20 25 30 35 40 45 50

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

basic
Chen

ϕ
Bertier

Figure 2.21: Experiment 1.5: η: 1000, χ: 5%, κ: 5

 0

 5e-10

 1e-09

 1.5e-09

 2e-09

 2.5e-09

 3e-09

 3.5e-09

 4e-09

 4.5e-09

 5e-09

 10 20 30 40 50 60 70 80 90

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

basic
Chen

ϕ
Bertier

Figure 2.22: Experiment 1.6: η: 1000, χ: 10%, κ: 5

52 Failure detection

 0

 2e-10

 4e-10

 6e-10

 8e-10

 1e-09

 1.2e-09

 1.4e-09

 1.6e-09

 1.8e-09

 2e-09

 12 14 16 18 20 22 24 26 28 30

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

basic
Chen

ϕ
Bertier

Figure 2.23: Experiment 1.7: η: 20000, χ: 2%, κ: 1

 0

 5e-10

 1e-09

 1.5e-09

 2e-09

 2.5e-09

 3e-09

 3.5e-09

 4e-09

 4.5e-09

 5e-09

 10 15 20 25 30 35 40

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

basic
Chen

ϕ
Bertier

Figure 2.24: Experiment 1.8: η: 20000, χ: 5%, κ: 1

2.6 Evaluation 53

 0

 1e-09

 2e-09

 3e-09

 4e-09

 5e-09

 6e-09

 7e-09

 8e-09

 9e-09

 1e-08

 10 15 20 25 30 35 40 45

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

basic
Chen

ϕ
Bertier

Figure 2.25: Experiment 1.9: η: 20000, χ: 10%, κ: 1

 0

 2e-10

 4e-10

 6e-10

 8e-10

 1e-09

 1.2e-09

 1.4e-09

 1.6e-09

 1.8e-09

 2e-09

 10 15 20 25 30 35 40

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

basic
Chen

ϕ
Bertier

Figure 2.26: Experiment 1.10: η: 20000, χ: 2%, κ: 5

54 Failure detection

 0

 5e-10

 1e-09

 1.5e-09

 2e-09

 2.5e-09

 3e-09

 3.5e-09

 4e-09

 10 15 20 25 30 35 40 45 50 55 60

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

basic
Chen

ϕ
Bertier

Figure 2.27: Experiment 1.11: η: 20000, χ: 5%, κ: 5

 0

 5e-10

 1e-09

 1.5e-09

 2e-09

 2.5e-09

 3e-09

 3.5e-09

 4e-09

 4.5e-09

 5e-09

 10 20 30 40 50 60 70 80 90 100 110

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

basic
Chen

ϕ
Bertier

Figure 2.28: Experiment 1.12: η: 20000, χ: 10%, κ: 5

2.6 Evaluation 55

Basic algorithm vs. variations In the same manner as the compari-
son of the basic failure detection algorithm with Chen’s, Bertier’s, and
Hayashibara’s failure detectors, the basic failure detection algorithm is com-
pared to the variations proposed in 2.5.

The following five algorithms have been investigated within these experi-
ments:

basic: The basic failure detection algorithm as in the previous experiments.

send: A variation of the basic failure detection algorithm using the different
freshness point strategy (see Section 2.5.3).

adjust: This variation implements the self-adjusting features as described
in Section 2.5.2.

send+adjust: A combination of the different freshness point strategy and
the self-adjusting variation.

smooth: A variation of the basic failure detection algorithm using the his-
togram smoothing technique with 100 bins and the smoothing param-
eter k set to 2 (see Section 2.5.4).

For these failure detectors, experiments with the same settings as above
have been conducted:

Experiment 2.1: η: 1000, χ: 2%, κ: 1 (Figure 2.29)
Experiment 2.2: η: 1000, χ: 5%, κ: 1 (Figure 2.30)
Experiment 2.3: η: 1000, χ: 10%, κ: 1 (Figure 2.31)

Experiment 2.4: η: 1000, χ: 2%, κ: 5 (Figure 2.32)
Experiment 2.5: η: 1000, χ: 5%, κ: 5 (Figure 2.33)
Experiment 2.6: η: 1000, χ: 10%, κ: 5 (Figure 2.34)

Experiment 2.7: η: 20000, χ: 2%, κ: 1 (Figure 2.35)
Experiment 2.8: η: 20000, χ: 5%, κ: 1 (Figure 2.36)
Experiment 2.9: η: 20000, χ: 10%, κ: 1 (Figure 2.37)

Experiment 2.10: η: 20000, χ: 2%, κ: 5 (Figure 2.38)
Experiment 2.11: η: 20000, χ: 5%, κ: 5 (Figure 2.39)
Experiment 2.12: η: 20000, χ: 10%, κ: 5 (Figure 2.40)

56 Failure detection

 0

 2e-10

 4e-10

 6e-10

 8e-10

 1e-09

 1.2e-09

 1.4e-09

 1.6e-09

 1.8e-09

 2e-09

 10 12 14 16 18 20 22 24

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

basic
send

adjust
send+adjust

smooth

Figure 2.29: Experiment 2.1: η: 1000, χ: 2%, κ: 1

 0

 1e-09

 2e-09

 3e-09

 4e-09

 5e-09

 6e-09

 10 15 20 25 30 35

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

basic
send

adjust
send+adjust

smooth

Figure 2.30: Experiment 2.2: η: 1000, χ: 5%, κ: 1

2.6 Evaluation 57

 0

 1e-09

 2e-09

 3e-09

 4e-09

 5e-09

 6e-09

 7e-09

 8e-09

 9e-09

 1e-08

 10 15 20 25 30 35 40

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

basic
send

adjust
send+adjust

smooth

Figure 2.31: Experiment 2.3: η: 1000, χ: 10%, κ: 1

 0

 2e-10

 4e-10

 6e-10

 8e-10

 1e-09

 1.2e-09

 1.4e-09

 1.6e-09

 1.8e-09

 10 12 14 16 18 20 22 24 26 28 30 32

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

basic
send

adjust
send+adjust

smooth

Figure 2.32: Experiment 2.4: η: 1000, χ: 2%, κ: 5

58 Failure detection

 0

 5e-10

 1e-09

 1.5e-09

 2e-09

 2.5e-09

 3e-09

 3.5e-09

 4e-09

 10 15 20 25 30 35 40 45 50

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

basic
send

adjust
send+adjust

smooth

Figure 2.33: Experiment 2.5: η: 1000, χ: 5%, κ: 5

 0

 1e-09

 2e-09

 3e-09

 4e-09

 5e-09

 6e-09

 10 20 30 40 50 60 70 80 90

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

basic
send

adjust
send+adjust

smooth

Figure 2.34: Experiment 2.6: η: 1000, χ: 10%, κ: 5

2.6 Evaluation 59

 0

 5e-10

 1e-09

 1.5e-09

 2e-09

 2.5e-09

 10 15 20 25 30 35

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

basic
send

adjust
send+adjust

smooth

Figure 2.35: Experiment 2.7: η: 20000, χ: 2%, κ: 1

 0

 1e-09

 2e-09

 3e-09

 4e-09

 5e-09

 6e-09

 10 15 20 25 30 35 40 45

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

basic
send

adjust
send+adjust

smooth

Figure 2.36: Experiment 2.8: η: 20000, χ: 5%, κ: 1

60 Failure detection

 0

 1e-09

 2e-09

 3e-09

 4e-09

 5e-09

 6e-09

 7e-09

 8e-09

 9e-09

 1e-08

 10 15 20 25 30 35 40 45 50 55

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

basic
send

adjust
send+adjust

smooth

Figure 2.37: Experiment 2.9: η: 20000, χ: 10%, κ: 1

 0

 2e-10

 4e-10

 6e-10

 8e-10

 1e-09

 1.2e-09

 1.4e-09

 1.6e-09

 1.8e-09

 2e-09

 10 15 20 25 30 35 40 45

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

basic
send

adjust
send+adjust

smooth

Figure 2.38: Experiment 2.10: η: 20000, χ: 2%, κ: 5

2.6 Evaluation 61

 0

 5e-10

 1e-09

 1.5e-09

 2e-09

 2.5e-09

 3e-09

 3.5e-09

 4e-09

 10 20 30 40 50 60 70

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

basic
send

adjust
send+adjust

smooth

Figure 2.39: Experiment 2.11: η: 20000, χ: 5%, κ: 5

 0

 1e-09

 2e-09

 3e-09

 4e-09

 5e-09

 6e-09

 0 20 40 60 80 100 120 140

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

basic
send

adjust
send+adjust

smooth

Figure 2.40: Experiment 2.12: η: 20000, χ: 10%, κ: 5

62 Failure detection

Send+adjust vs. other state of the art algorithms Experiment 1.1 - 1.12
compare the basic failure detection algorithm developed in this work to
other state of the art failure detectors. Experiment 2.1 - 2.12 compare the
basic failure detection algorithm to algorithms implementing the proposed
extensions. In most settings the variant send+adjust performed best, also
better than basic. Therefore it is interesting to compare send+adjust to the
other state of the art algorithms: Chen, ϕ, and Bertier. This is done in the
following Experiment 3.1 - 3.12, with an analogue setting as in Experiment
1.1 - 1.12 and Experiment 2.1 - 2.12.

Experiment 3.1: η: 1000, χ: 2%, κ: 1 (Figure 2.41)
Experiment 3.2: η: 1000, χ: 5%, κ: 1 (Figure 2.42)
Experiment 3.3: η: 1000, χ: 10%, κ: 1 (Figure 2.43)

Experiment 3.4: η: 1000, χ: 2%, κ: 5 (Figure 2.44)
Experiment 3.5: η: 1000, χ: 5%, κ: 5 (Figure 2.45)
Experiment 3.6: η: 1000, χ: 10%, κ: 5 (Figure 2.46)

Experiment 3.7: η: 20000, χ: 2%, κ: 1 (Figure 2.47)
Experiment 3.8: η: 20000, χ: 5%, κ: 1 (Figure 2.48)
Experiment 3.9: η: 20000, χ: 10%, κ: 1 (Figure 2.49)

Experiment 3.10: η: 20000, χ: 2%, κ: 5 (Figure 2.50)
Experiment 3.11: η: 20000, χ: 5%, κ: 5 (Figure 2.51)
Experiment 3.12: η: 20000, χ: 10%, κ: 5 (Figure 2.52)

2.6 Evaluation 63

 0

 2e-10

 4e-10

 6e-10

 8e-10

 1e-09

 1.2e-09

 1.4e-09

 1.6e-09

 1.8e-09

 2e-09

 10 12 14 16 18 20 22 24

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

send+adjust
Chen

ϕ
Bertier

Figure 2.41: Experiment 3.1: η: 1000, χ: 2%, κ: 1

 0

 5e-10

 1e-09

 1.5e-09

 2e-09

 2.5e-09

 3e-09

 3.5e-09

 4e-09

 4.5e-09

 5e-09

 10 15 20 25 30 35

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

send+adjust
Chen

ϕ
Bertier

Figure 2.42: Experiment 3.2: η: 1000, χ: 5%, κ: 1

64 Failure detection

 0

 1e-09

 2e-09

 3e-09

 4e-09

 5e-09

 6e-09

 7e-09

 8e-09

 9e-09

 1e-08

 10 15 20 25 30 35 40

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

send+adjust
Chen

ϕ
Bertier

Figure 2.43: Experiment 3.3: η: 1000, χ: 10%, κ: 1

 0

 2e-10

 4e-10

 6e-10

 8e-10

 1e-09

 1.2e-09

 1.4e-09

 1.6e-09

 1.8e-09

 10 12 14 16 18 20 22 24 26 28 30 32

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

send+adjust
Chen

ϕ
Bertier

Figure 2.44: Experiment 3.4: η: 1000, χ: 2%, κ: 5

2.6 Evaluation 65

 0

 5e-10

 1e-09

 1.5e-09

 2e-09

 2.5e-09

 3e-09

 3.5e-09

 4e-09

 10 15 20 25 30 35 40 45 50

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

send+adjust
Chen

ϕ
Bertier

Figure 2.45: Experiment 3.5: η: 1000, χ: 5%, κ: 5

 0

 5e-10

 1e-09

 1.5e-09

 2e-09

 2.5e-09

 3e-09

 3.5e-09

 4e-09

 4.5e-09

 5e-09

 5.5e-09

 10 20 30 40 50 60 70 80 90

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

send+adjust
Chen

ϕ
Bertier

Figure 2.46: Experiment 3.6: η: 1000, χ: 10%, κ: 5

66 Failure detection

 0

 2e-10

 4e-10

 6e-10

 8e-10

 1e-09

 1.2e-09

 1.4e-09

 1.6e-09

 1.8e-09

 2e-09

 10 15 20 25 30 35

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

send+adjust
Chen

ϕ
Bertier

Figure 2.47: Experiment 3.7: η: 20000, χ: 2%, κ: 1

 0

 5e-10

 1e-09

 1.5e-09

 2e-09

 2.5e-09

 3e-09

 3.5e-09

 4e-09

 4.5e-09

 5e-09

 10 15 20 25 30 35 40

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

send+adjust
Chen

ϕ
Bertier

Figure 2.48: Experiment 3.8: η: 20000, χ: 5%, κ: 1

2.6 Evaluation 67

 0

 1e-09

 2e-09

 3e-09

 4e-09

 5e-09

 6e-09

 7e-09

 8e-09

 9e-09

 1e-08

 10 15 20 25 30 35 40 45 50 55

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

send+adjust
Chen

ϕ
Bertier

Figure 2.49: Experiment 3.9: η: 20000, χ: 10%, κ: 1

 0

 2e-10

 4e-10

 6e-10

 8e-10

 1e-09

 1.2e-09

 1.4e-09

 1.6e-09

 1.8e-09

 2e-09

 10 15 20 25 30 35 40 45

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

send+adjust
Chen

ϕ
Bertier

Figure 2.50: Experiment 3.10: η: 20000, χ: 2%, κ: 5

68 Failure detection

 0

 5e-10

 1e-09

 1.5e-09

 2e-09

 2.5e-09

 3e-09

 3.5e-09

 4e-09

 10 20 30 40 50 60 70

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

send+adjust
Chen

ϕ
Bertier

Figure 2.51: Experiment 3.11: η: 20000, χ: 5%, κ: 5

 0

 1e-09

 2e-09

 3e-09

 4e-09

 5e-09

 6e-09

 0 20 40 60 80 100 120 140

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

send+adjust
Chen

ϕ
Bertier

Figure 2.52: Experiment 3.12: η: 20000, χ: 10%, κ: 5

2.6 Evaluation 69

2.6.3 Discussion of the evaluation results

Experiment 1.1 - 1.12 attest the basic failure detection algorithm a contin-
uous good performance compared to the other algorithms. The basic fail-
ure detection algorithm achieves excellent results with all kinds of message
losses. Moreover, for longer sampling windows the small areas where other
algorithms could outperform the basic algorithm further shrink.

Besides its performance the basic algorithm has further advantages. It is
more flexible than Chen’s, Bertier’s, and other non-accrual failure detectors.
The accrual ϕ failure detector is restricted to environments with roughly
normal distributed heartbeat inter-arrival times. The failure detectors pro-
posed in this work do not have this limitation as the probability distribution
of the heartbeat-arrivals is estimated in a non-model-based manner. This
further emphasises the flexibility of the introduced algorithm.

Experiment 2.1 - 2.12 show that all investigated variations except the one
based on histogram smoothing indeed provide an even better performance
than the basic algorithm. The variation that uses a different freshness point
strategy to abolish the dependence on the last heartbeats performs nearly in
all cases better than the basic algorithm.

The self-adjusting variants show at least the same and mostly better results
than its non-self-adjusting counterparts. The algorithm adjust performed
always better or equal than the basic algorithm, the algorithm send+adjust

better or equal than send.

Experiment 3.1 - 3.12 show that the variation send+adjust of the failure
detector proposed in this work clearly outperforms the other state of the art
failure detection algorithms in all settings, more clearly than basic does in
Experiment 1.1 - 1.12.

To sum up, the failure detector developed in this work outperforms all other
investigated failure detectors in all investigated test scenarios. In Experi-
ment 3.1 for instance (see Figure 2.41) it can be seen that in some cases the
algorithm proposed in this work makes about 90% less wrong suspicions
than the other algorithms with the same detection time.

In [SPTU07a], different scenarios than in this work have been chosen to
compare the basic failure detection algorithm to Chen’s, Hayashibara’s, and
Bertier’s. In the case of the consideration of message loss the basic failure
detection algorithm performed best, too. It is likely that the developed al-
gorithms, especially the variation send+adjust, currently represent the best
heartbeat-style failure detectors in the presence of message loss.

70 Failure detection

2.7 Lazy monitoring

Many failure detectors, like the ones proposed here, use heartbeats to draw
conclusions about the state of processes/nodes within a distributed envi-
ronment. The contribution of this section is an approach whose benefits are
twofold. On the one hand it reduces the network overhead produced by
heartbeat-style failure detectors. On the other hand it improves the quality
of these failure detectors by providing them with richer information about
the current network condition. This approach is called lazy monitoring, since
the active sending of heartbeats is avoided if possible as introduced in Sec-
tion 2.3.5. Because it is independent of the actual failure detection algorithm,
it can be used in many domains. As this technique mainly aims at reducing
the overhead of failure detectors it complements the introduced variations
which focus on improving failure detection performance.

A heartbeat-style failure detector is defined to be lazy if it applies a tech-
nique to reduce the networking overhead that arises from sending heart-
beat messages. The analogy is that these algorithms only send heartbeat
messages if they really have to and are thus called lazy. In this context it
is important to distinct application messages from heartbeat messages. The
former are sent by the application and cannot be avoided, heartbeat mes-
sages are sent by failure detectors.

Fetzer et al. [FRT01] introduced the term lazy failure detector but came
up with a slightly different definition which does not fit to heartbeat-style
failure detectors very well. Their algorithm requires that each application
message is being acknowledged. Thus the round trip delay of each applica-
tion message together with its acknowledgement message is calculated. In
addition, for each destination the maximum round trip delay is stored. The
output of the failure detector depends on the existence of a pending mes-
sage, i.e. a message such that the application message has been sent but not
acknowledged yet: If there is no such message, the answer is “no suspect”,
but a ping is sent to verify this answer. If there is such a message, the answer
depends on the maximum round trip delay.

The lazy monitoring approach proposed in this work also uses application
messages in order to save overhead, but has some noteworthy features in
comparison to the failure detector of [FRT01]. The usage of application mes-
sages in order to save overhead is an integrated part of the failure detector
of Fetzer et al. and is not applicable to other failure detection algorithms.
The lazy monitoring approach proposed in this work can be seen as a form
of a plug-in that can be used with heartbeat-style failure detectors. Fetzer’s
algorithm uses application messages and is able to save in the optimal case
50% of its message overhead. It is based on computing round trip delays. In-
stead of sending ping-pong messages, with the use of application messages

2.7 Lazy monitoring 71

it is able to save the “ping”-fraction. The lazy monitoring concept of this
work is capable of saving nearly all the overhead produced by heartbeat-
style failure detectors.

Larrea et al. [LLS+07] contribute to improve the communication efficiency
of failure detectors. They assume a network of n processes forming a ring
while the processes send heartbeats to their successor and monitor their pre-
decessor by listening for heartbeats. Their focus is on reducing the number
of unidirectional links between processes that carry messages forever. The
authors of [LLS+07] propose to piggyback information, more precisely to
append a suspicion list to sent heartbeats. By contrast, the lazy monitoring
approach proposed here saves the heartbeats themselves and no possibly
large data like a list is piggybacked.

The lazy monitoring technique presented in the following aims at using ap-
plication messages as alive proof which is not novel. But so far, this fun-
damental concept cannot be used together with heartbeat-style failure de-
tectors. These failure detectors completely depend on heartbeats sent at
regular intervals and are incapable exploiting information application mes-
sages are providing about the environment. The main contribution of the
lazy monitoring is to close this gap.

2.7.1 Lazy monitoring approach

Failure detectors should send as few messages as possible. There are two
ways to influence the amount of sent heartbeat messages. First, heartbeat-
style failure detectors are tailorable. This denotes the ability to downgrade
the detection quality for the benefit of a lower network load. The heartbeat
interval ∆i is the key to tailor the failure detector in this way: A small heart-
beat interval results in a high network load, but failures can be detected
rapidly.

Algorithm 5 shows the traditional sampling method for heartbeat inter-
arrival times. The monitored process q sends heartbeat messages to the
monitoring process p every ∆i. Process p manages a list S, the sample win-
dow with the sampled inter-arrival times, along with the freshness point f
which is always set to the time when the last heartbeat was received and the
heartbeat interval ∆i. This information is needed by most failure detectors
to compute a suspicion value. Whenever p receives a heartbeat, it appends
s = tr − f (tr is the current time) to S and sets f = tr afterwards. Most fail-
ure detectors limit the size of S to a certain value η (e.g. η = 1000) causing
the oldest sample being deleted if a new one is inserted into S.

The lazy monitoring approach of this work aims at reducing the network
load without the negative effects on the detection time. Quite the contrary,

72 Failure detection

Algorithm 5 Traditional heartbeat sampling
1: Process q:
2: send heartbeat message to p every ∆i
3:
4: Process p:
5:
6: f = −1 . freshness point
7: S = nil . S is initialised as an empty list
8:
9: procedure RCV HB(mj, tr) . receiving heartbeat mj at time tr

10: if f = −1 then
11: f = tr
12: else
13: s = tr − f
14: f = tr
15: append s to S
16: end if
17: end procedure
18:

it allows for a better training of the failure detector as it provides more data
and thus can furthermore improve the quality of the generated suspicion
information. Thereby it is distinguished between application messages and
heartbeat messages. Application messages are messages sent by the mem-
bers of the network in the normal mode and cannot be avoided. Heartbeat
messages are the messages sent by failure detectors. This section aims at
avoiding the overhead of sending heartbeats by appending small amounts
of data to the application messages. First, it is assumed that application
messages behave the same way as heartbeat messages. Limitations of this
generalisation are discussed below.

Friedman et al. [FvR97] compare the throughput and latency of four proto-
cols that provide total ordering. They come to the conclusion that message
packing influences the performance overwhelmingly more than any other
optimisation they check both in terms of throughput and latency. The rea-
son is that packing messages reduces amongst others the header overhead
for messages and the contention on the network. The lazy monitoring ap-
proach can be interpreted as some kind of message packing where the prob-
lem lies in enabling failure detectors to use them as samples. This is not
possible yet for heartbeat-style failure detectors.

In order to save a heartbeat message, the lazy monitoring approach needs a
consecutive id and a timestamp to be appended to an application message.
In heartbeat-style failure detection algorithms, q sends a heartbeat to p ev-
ery ∆i seconds and p is sampling the inter-arrival times of these heartbeats.

2.7 Lazy monitoring 73

Note that the calculation of inter-arrival times is always possible, provided
p has a local clock. If the lazy monitoring approach is applied, process q’s
heartbeat sending behaviour must be slightly changed. A heartbeat is not
sent automatically every ∆i, but q is responsible to send one to p if no mes-
sage, either application or heartbeat message, has been sent to p since ∆i.
Thus pure heartbeat messages are only used if no application message has
been sent since ∆i.

But a significant problem arises because the failure detector is now unable
to compute new heartbeat inter-arrival times to insert into the sample win-
dow S. The sample window consists of heartbeat inter-arrival times which
are typically around ∆i. The inter-arrival times of application messages are
arbitrary and have no informative value for a failure detector. Thus, the
basic issue is to provide a technique that allows failure detectors to sam-
ple inter-arrival times although only application messages are sent at ran-
dom times instead of heartbeats. Basically, heartbeat inter-arrival times are
mainly influenced by the following three environmental circumstances:

Message delay: Heartbeats sent over the network are affected by message
delays.

Message loss: It can occur that heartbeat messages get lost during the send-
ing process.

Processing delay of q: The monitored process q sends heartbeat messages
not at the time it is supposed, e.g. due to processing overload.

In many systems the variations of the inter-arrival times due to processing
delays of q are negligible. Therefore, the focus here lies on message delay
and message loss. In the following the concept of lazy heartbeat sampling
is introduced. This enables p to sample heartbeat inter-arrival times in or-
der to adapt to the actual network conditions, even if application messages
are used instead of heartbeats. By this means, the failure detector is able
to adapt even faster to changing networking conditions, as application and
heartbeat messages can be used to sample inter-arrival times. Due to the
fact that every message is used to draw conclusions about the network’s
condition, a much richer set of training information is available. To realise
the lazy heartbeat sampling, q is supposed to append a consecutively num-
bered id and the sending time according to its local clock to every message
it sends to q. It is shown in the following that, with this additional informa-
tion, process p can use every message it receives to compute a sample s for
the sample window S.

While heartbeat messages are sent every ∆i, application messages can be
sent at random times. The following Formula 2.5 transforms the inter-
arrival times of the application messages into inter-arrival times represent-
ing an estimation for heartbeats sent instead of the application messages.

74 Failure detection

In this way, application messages are made useful for the failure detection
task. This formula is the core of the lazy monitoring and consists of three
parts:

s = ∆i︸︷︷︸
heartbeat interval

+ (l · ∆i)︸ ︷︷ ︸
message loss

+ (∆r − ∆s)︸ ︷︷ ︸
sending time

(2.5)

Heartbeat interval: The heartbeat interval ∆i is the expected value for the
inter-arrival times of heartbeats and the basis for the lazy heartbeat
inter-arrival time estimation.

Message loss: Lost messages can be identified by the piggy-backed
message-ids. Every consecutively lost message lengthens the esti-
mated heartbeat inter-arrival time by ∆i. l is the number of consecu-
tively lost messages which arises from the message-ids (l = current re-
ceived message-id - last received message-id -1). Therefore l · ∆i adds
the additional time by lost messages to Formula 2.5.

Sending time: The term ∆r − ∆s reflects the variations of the inter-arrival
time through the network. ∆r is the difference of the receipt times of
the current message and the previously received message according
to p’s local clock and ∆s is the difference of the sending times of the
current message and the previously received message according to q’s
local clock which can be computed by p with the appended sending
times.

Algorithm 6 presents the lazy heartbeat sampling in detail.

To clarify the functionality of the new lazy monitoring approach two exam-
ples are discussed.

Example 1 In this first example it is assumed that two application messages
are sent within an interval that is shorter than the heartbeat interval. None
of these two messages gets lost.

∆i: heartbeat interval is 1000 ms

mi−1: • message-id: i-1
• sending time: 0000 (according to q’s clock)
• receipt time: 0500 (according to p’s clock)

mi: • message-id: i
• sending time: 0250 (according to q’s clock)
• receipt time: 0800 (according to p’s clock)

The messages mi−1 and mi are two application messages that are sent from q
to p. The message-ids i and i− 1 indicate that no message has been lost and
thus l = 0 in this case. The message mi has been sent exactly 250 ms after

2.7 Lazy monitoring 75

Algorithm 6 Lazy heartbeat sampling
1: Process q:
2: append sending time ts and consecutive id to every outgoing mes-

sage
3:
4: if no message sent to p since ∆i then
5: send heartbeat message to p
6: end if
7:
8: Process p:
9:

10: f = −1 . freshness point
11: S = nil . S is initialised as an empty list
12:
13: procedure RCV M(mj, tr) . receiving message mj at time tr
14: if f = −1 then
15: f = tr
16: else
17: s = ∆i + (l · ∆i) + (∆r − ∆s)
18: f = tr
19: append s to S
20: end if
21: end procedure
22:

mi−1. The interesting point here is that the sending times have an interval of
250 ms, the receipt times of 300 ms seconds. Thus the sending time variation
is 50 ms.

The basic idea of this lazy monitoring approach is roughly spoken “if the
application message were a heartbeat what would a sample look like”. If
the values of this example are inserted into Equation 2.5, the result is:

s = ∆i + (l ·∆i) + (∆r−∆s) = 1000 ms + (0 · 1000 ms) + (300 ms− 250 ms) =
1050 ms

The inter-arrival time of mi and mi−1 is 300 ms - the sending interval is 250
ms. Heartbeat messages are supposed to be sent every 1000 ms. Thus if
these two application messages were heartbeat messages then they would
have been sent with an interval of 1000 ms and the inter-arrival time that q
had experienced would be 1050 ms.

Example 2 In the second example a case is analysed where one message gets
lost. This can be recognised with the message-ids.

∆i: heartbeat interval is 1000 ms

76 Failure detection

mi−2: • message-id: i-2
• sending time: 0000 (according to q’s clock)
• receipt time: 0300 (according to p’s clock)

mi: • message-id: i
• sending time: 0800 (according to q’s clock)
• receipt time: 1030 (according to p’s clock)

With this setting the sample s is calculated as follows:

s = ∆i + (l ·∆i) + (∆r−∆s) = 1000 ms + (1 · 1000 ms) + (730 ms− 800 ms) =
1930 ms

In this example p sends three application messages to q and the second gets
lost. With the same probability the loss could also have happened to a sent
heartbeat message. Furthermore the sending time of mi is 70 ms shorter
than the sending time of mi−2. This example transferred to the case of real
heartbeat messages would result in an inter-arrival time of 1930 ms. The
meaning of Equation 2.5 should be clearer now: every message is used to
draw conclusions about the conditions a heartbeat would undergo if sent at
the same time. Process q passes on sending real heartbeat messages if appli-
cation messages are sent. Process p, however, is still able to sample heart-
beat inter-arrival times and can update its knowledge base, the list of inter-
arrival times S. The failure estimation algorithm of heartbeat-style failure
detectors do not have to be changed in order to apply this lazy monitoring
approach. If processes are communicating frequently no single heartbeat
message has to be sent and nearly no network overhead is produced by
failure detectors.

It is also possible to improve the quality of failure detectors by reducing
the heartbeat interval ∆i. Thus failures can be detected faster - the bigger
network overhead caused by this action could cease to exist with the appli-
cation of the lazy monitoring approach. If no application messages are sent
then of course heartbeat messages have to be used. But it can be argued
that in this case there is a very low network load and the overhead caused
by heartbeat messages can be borne. However, during high traffic times
where additional traffic would be very unpleasant the proposed approach
prevents the network from this overhead.

It has to be mentioned that the lazy monitoring approach introduces over-
head as a message id and the sending time is appended to application mes-
sages. However, this overhead can be reduced to 4 bytes or even less per
message. Suppose the message id is represented with 10 bits and the times-
tamp with 22 bits. Then, the message id has a range from 1 to 1024, and a
timestamp can be represented by the number of milliseconds since the last
full hour. The check for lost messages as well as the delay calculation has
then to be performed with modulo 210 and 222 respectively. Of course p

2.7 Lazy monitoring 77

is now unable to distinct e.g. whether none or 1024 consecutive messages
have been lost, but the latter case is very unlikely and can be ignored. The
analogue is holding for the appended timestamp.

In Section 2.5.3 a different strategy for setting the freshness points is pre-
sented. This technique applied to the lazy monitoring results in a slightly
changed equation for taking lazy monitoring samples:

s = ∆i + (l · ∆i) + (tr − ts) (2.6)

where

• tr is the receipt time of the message according to p’s clock and

• ts is the sending time of the message according to q’s clock.

Besides the usage of Formula 2.6 instead of 2.5 all lazy monitoring concepts
can be applied without change to a failure detector using the different fresh-
ness point strategy.

2.7.2 Message selection strategy

In this section two issues are addressed. First, until now it is assumed that
the behaviour of application messages is a good estimator for the behaviour
of heartbeat messages. However, this is not the case if application messages
can become much larger than heartbeats. One way to overcome this is to
perform the piggybacking of the relevant information at packet level. But
as the engineering of this heavily depends on the used protocols and often
the access to these layers is neither given nor wanted, lazy monitoring is
only considered on the application/message level in this work. Second, up
to now lazy monitoring information is appended to all application messages
- this is not always necessary.

A message selection strategy determines which messages to use for lazy
failure detection. This is useful to (1) omit application messages which are
too large and therefore unsuitable as information source for failure detec-
tors and (2) to adjust the amount of suitable messages which are used for
lazy monitoring. A message selection strategy (MSS) takes as input an ap-
plication message and outputs whether it is used for lazy monitoring, i.e.
whether a message id and a timestamp are appended. The simplest strat-
egy is to omit all application messages which are larger than MAXSIZE
bytes and to use the remaining ones. Application messages smaller or equal
to MAXSIZE are supposed to have similar behaviour to heartbeat mes-
sages and therefore considered suitable for lazy monitoring. This MSS is
illustrated in Algorithm 7.

78 Failure detection

Algorithm 7 Simple MSS
1: Process q:
2:
3: procedure MSS(m) . Called for every outgoing message m
4: if size of m ≤ MAXSIZE then
5: append sending time tr and consecutive id to m
6: end if
7: end procedure
8:
9: if no selected message sent to p since ∆i then

10: send heartbeat to p
11: end if
12:

If all suitable application messages are used for lazy monitoring a maximum
number of samples is provided to the failure detector. As some failure de-
tectors might not be able to profit from an amount of samples higher than
a certain value nu per interval ∆i even suitable application messages can be
omitted to reduce overhead. Suppose ns is the average number of suitable
messages within an interval ∆i and nu is the maximum number of messages
the failure detector can utilise as samples. The adaptive MSS of Algorithm 8
reduces the number of messages used for lazy monitoring to nu on aver-
age.

Algorithm 8 Adaptive MSS
1: Process q:
2:
3: procedure MSS(m) . Called for every outgoing message m
4: if size of m ≤ MAXSIZE and rand() < nu

ns
then

5: append sending time tr and consecutive id to m
6: end if
7: end procedure
8:
9: if no selected message sent to p since ∆i then

10: send heartbeat to p
11: end if
12:

The function rand() returns a random value within the interval [0, 1).

2.7 Lazy monitoring 79

non-lazy lazy
(1) Traffic h bytes b · nMSS + p · h bytes
(2) #Messages 1 p (0 ≤ p ≤ 1)
(3) #Samples 1 max(1, nMSS)
Table 2.5: Comparison non-lazy/lazy failure detection

2.7.3 Evaluation

In this section the costs and benefits of the lazy monitoring approach is de-
scribed with respect to (1) the produced traffic, (2) the number of sent mes-
sages, and the (3) number of samples provided to the failure detector. The
points (1) and (2) should be as small as possible, but for (3) higher values are
better because then the failure detector is provided with more information
about the environment. To make statements about these three measures, the
following variables are used:

• ∆i: the heartbeat interval,

• h: the size of a heartbeat message (including header),

• b: the size of data needed to be appended in order to use an application
message as sample,

• nMSS: the average number of messages the MSS selects within ∆i, and

• p: the probability that no message is selected within ∆i.

Table 2.5 shows how to compute (1), (2), and (3) where all measures refer to
the interval ∆i.

The introduced lazy monitoring technique is applied within the Smart
Doorplate Project [TBPU03a, TBPU05]. This project envisions the use of
smart doorplates within an office building. The doorplates are amongst
others able to display current situational information about the office owner
and to direct visitors to his current location based on a location-tracking sys-
tem. A middleware called “Organic Computing Middleware for Ubiquitous
Environments” OCµ [Tru06] based on JAVA and JXTA serves as common
platform for all included devices. To detect failures, the devices monitor
each other using failure detectors. The lazy monitoring is used to minimise
the messaging overhead caused by these failure detectors.

In the smart doorplate environment the heartbeat interval of the failure de-
tectors ∆i is set to 10 seconds. Messages are exchanged in XML format in
JXTA leading to an overhead of 3.5 kB per message. This overhead does not
only consume network resources but also represents a computational over-
head for each node sending and receiving messages. The amount of data
which has to be appended to an application message in order to use it for
lazy monitoring are in the test case 4 bytes. Especially the location tracking-

80 Failure detection

non-lazy lazy
(1) Traffic 3500 bytes 43.5 bytes
(2) #Messages 1 0.01
(3) #Samples 1 10

Table 2.6: Comparison non-lazy/lazy failure detection within the Smart Doorplate
Project

system typically generates many small messages containing coordinates of
the office owners which all can be used for the lazy monitoring. The amount
of selected messages is limited to 10 per 10 seconds, using the adaptive MSS
shown in Algorithm 8. The probability that no single message is sent during
∆i (10s) depends strongly on the system, the number and types of services
communicating in the network, the daytime, and so on. In the test case a
value of 1% is even pessimistic. This leads to the following list:

• ∆i: 10 seconds,

• h: 3.5 kB,

• b: 4 Bytes,

• nMSS: 10, and

• p: 1%.

Table 2.6 summarises and compares the resulting traffic, the number of mes-
sages sent by the failure detector, and the number of samples the failure
detector can use to adapt to the network.

These results show that by using the lazy monitoring approach the gener-
ated traffic can be reduced significantly as well as the number of sent mes-
sages. Furthermore, more samples are provided to the failure detector and
this allows it to adapt faster to changing network conditions. In the testbed
the usage of lazy monitoring reduces the traffic to 1.2% and the number of
messages to 1% of the benchmark while 10 times more information about
the environment is available.

2.7.4 Processing delays

The lazy monitoring introduced so far only considers network delays. It is
based on the assumption that a process is able to send heartbeats exactly
with a frequency of one heartbeat per ∆i seconds. To detect the processing
delays the regular inter-arrival times of heartbeats can be compared with
samples estimated by Formula 2.5.

Consider the following example where q is sending a heartbeat message.
If q sends the heartbeat exactly after ∆i like it is obligated, then the lazy
sampling and the non-lazy sampling always produce the same values:

2.7 Lazy monitoring 81

∆i: heartbeat interval is 1000ms

mi−1: • message-id: i-1
• sending time: 0000 (according to q’s clock)
• receipt time: 0050 (according to p’s clock)

mi: • message-id: i
• sending time: 1000 (according to q’s clock)
• receipt time: 1100 (according to p’s clock)

If these values are inserted into equation 2.5 the result is

s = ∆i + (l · ∆i) + (∆r − ∆s) = 1000ms + (0 · 1000ms) + (1050ms −
1000ms) = 1050ms,

which corresponds to the real inter-arrival time. Now an example is pre-
sented where q is unable to send a heartbeat accurately timed:

∆i: heartbeat interval is 1000ms

mi−1: • message-id: i-1
• sending time: 0000 (according to q’s clock)
• receipt time: 0050 (according to p’s clock)

mi: • message-id: i
• sending time: 1080 (according to q’s clock)
• receipt time: 1100 (according to p’s clock)

The real inter-arrival time of the heartbeats is again 1050ms. The formula,
however, computes the following:

s = ∆i + (l · ∆i) + (∆r − ∆s) = 1000ms + (0 · 1000ms) + (1050ms −
1080ms) = 970ms.

The lazy heartbeat sampling introduced so far results in correct values if q
is able to send heartbeats at the right time. If the processing delays of q have
considerable influence on the inter-arrival times the lazy sampled values
could be falsified.

To further illustrate the effects of the process imprecision concerning send-
ing heartbeats, the following example is considered: Heartbeat interval ∆i
is 10s. The time it takes to transmit a message is assumed to be normal dis-
tributed N (1s, 0.3s) with mean 1s and standard deviation 0.3s. The normal
distribution is an often used instrument to model message delay. For the
following examples this is not a crucial point and other distributions could
be used.

Figure 2.53(a) shows a Box-Whisker-Plot2 of two sampling windows, one

2A Box-Whisker-Plot is a diagram to graphically represent numerical data. The lines of the

82 Failure detection

taken with one without lazy sampling, under the assumption that q sends
heartbeats accurately timed.

9.
0

9.
5

10
.0

10
.5

11
.0

tim
e

in
 s

ec
on

ds

9.
0

9.
5

10
.0

10
.5

11
.0

tim
e

in
 s

ec
on

ds

non−lazy
lazy

(a) No process imprecision

10
12

14
16

tim
e

in
 s

ec
on

ds

10
12

14
16

tim
e

in
 s

ec
on

ds

non−lazy
lazy

(b) High process imprecision of 5s

Figure 2.53: Comparison lazy/non-lazy sampling

Figure 2.53(b) shows a similar Box-Whisker-Plot, but now q sends heart-
beats at a random time within [∆i, ∆i + 5s] and not at ∆i as in Figure 2.53(a).
You can see that now the two datasets differ significantly. Caused by the
imprecision of q, the lazy heartbeat sampling results in falsified values as it
disregards this imprecision.

What are the effects of such a process imprecision on the failure detection
using lazy monitoring? To compute a failure probability the introduced fail-
ure detection algorithm uses the cumulative frequencies of the entries in the
sampling window. Figure 2.54 illustrates the cumulative probabilities of
the above introduced example involving the highly inaccurately timed be-
haviour as shown in Figure 2.53(b). Obviously, the cumulative frequencies
of the lazy sampled values differ significantly from the ones sampled tradi-
tionally.

To overcome this issue, in the following an adaptive lazy heartbeat sampling
algorithm is presented. Whenever q sends a real heartbeat, p draws con-
clusions about q’s imprecision and adjusts the lazy sampling according to
this information. The adaptive lazy heartbeat sampling is shown in Algo-
rithm 9.

Whenever a heartbeat message is received the imprecision can be evaluated.

box represent the lower quartile, median, and upper quartile values. Whiskers extend
from each end of the box to the most extreme values within 1.5 times the interquartile
range from the ends of the box. Outliers beyond the ends of the whiskers are depicted
as circles. For more detailed information it is referred to [Tuk77, R D05]

2.7 Lazy monitoring 83

10 12 14 16

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

non−lazy
lazy

Figure 2.54: Effect of process imprecision on failure detection

If q is sending the heartbeat accurately timed, then sc and sl are equal and
s∆ is 0. If the heartbeat is not sent at the right time, then s∆ presents the
imprecision of process q sending this heartbeat. The values of s∆ are stored
in a list I. When p is receiving an application message it uses the imprecision
values in I to adjust the lazy sampled values.

In the following the adaptive lazy heartbeat sampling is experimentally
evaluated with this setting:

A process q is monitored by p. The heartbeat interval is ∆i. In the case
of non-lazy monitoring no application messages are used to sample inter-
arrival times. In this case the sampled values are indeed correct but q has to
send a heartbeat message to p every ∆i seconds. Heartbeat messages can-
not be saved using application messages. Using lazy heartbeat-sampling,
no single heartbeat message is needed if application messages are sent fre-
quently. But if q is working imprecisely regarding timing requirements the
lazy sampled values are falsified. To overcome this falsifications, adaptive
lazy monitoring uses heartbeats to adjust the sampling to the process’ tim-
ing imprecision. In the conducted experiments it has been assumed that on
an average every tenth message is a heartbeat message that can be used to
adjust the adaptive lazy sampling. The experiments differ in the impreci-
sion of q and the size η of the sampling window S. In the first four exper-
iments of Figure 2.55 a sampling window size η of 1000 has been used. In
the last four experiments (see Figure 2.56 - 2.56) a sampling window size η
of 20000 has been used. The imprecision of q has been modelled in delay-
ing the sending of heartbeats for a random time within the interval [0, pi].

84 Failure detection

Algorithm 9 Adaptive lazy heartbeat sampling
1: Process q:
2: append sending time ts and consecutive id to every outgoing mes-

sage
3:
4: if no message sent to p since ∆i then
5: send heartbeat message to p
6: end if
7:
8: Process p:
9:

10: f = −1 . freshness point
11: S = nil . S is initialised as an empty list
12: I = nil . I contains data about q’s imprecision
13:
14: procedure RCV M(mj, tr) . receiving message mj at time tr
15: if f = −1 then
16: f = tr
17: else
18: if mj is heartbeat then
19: sc = tr − f . Conventionally sampled inter-arrival time
20: sl = ∆i + (l · ∆i) + (∆r − ∆s) . Lazy sampled inter-arrival
21: . time
22: s∆ = sc − sl . Difference between sc and sl
23: append s∆ to I
24: append sc to S
25: else
26: pick a random value ir from I
27: sal = sl + ir = ∆i + (l · ∆i) + (∆r − ∆s) + ir
28: append sal to S
29: end if
30: f = tr
31: end if
32: end procedure
33:

Thus, higher values for pi represent a process with a lower ability to send
heartbeats accurately timed. The values that have been used for pi are 0.1s,
1s, 5s, 10s.

2.7 Lazy monitoring 85

8.5 9.0 9.5 10.0 10.5 11.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

non−lazy
lazy
adaptive lazy

(a) pi: 0.1s

9.0 9.5 10.0 10.5 11.0 11.5 12.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

non−lazy
lazy
adaptive lazy

(b) pi: 1s

10 12 14 16

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

non−lazy
lazy
adaptive lazy

(c) pi: 5s

10 12 14 16 18 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

non−lazy
lazy
adaptive lazy

(d) pi: 10s

Figure 2.55: Adaptive lazy monitoring results, sampling window size: 1000

86 Failure detection

8.5 9.0 9.5 10.0 10.5 11.0 11.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

non−lazy
lazy
adaptive lazy

(a) pi: 0.1s

9 10 11 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

non−lazy
lazy
adaptive lazy

(b) pi: 1s

10 12 14 16

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

non−lazy
lazy
adaptive lazy

(c) pi: 5s

8 10 12 14 16 18 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

non−lazy
lazy
adaptive lazy

(d) pi: 10s

Figure 2.56: Adaptive lazy monitoring results, sampling window size: 20000

2.8 Conclusions 87

Figure 2.55 and 2.56 shows that depending on the imprecision of the process
q, the non-adaptive lazy inter-arrival time sampling differs from the real
non-lazy sampled values. Using the adaptive lazy sampling, however, the
sampled values do not differ significantly from the conventionally sampled
ones. Even for an extremely unreliable process that sends messages anytime
within a ten second delay interval the adaptive lazy sampling shows very
good results. Using a sampling window of size 1000 a slight but very small
difference between the conventionally and adaptive lazy sampled values is
observable. Larger sized sampling windows lead to a stabilisation of the
conventional and adaptive lazy sampled values.

2.8 Conclusions

In this chapter, a new failure detection algorithm has been presented. It is an
adaptive accrual failure detector, applicable to a wide area of scenarios, and
adequate to build generic failure detection services. Despite algorithms that
depend on distribution models for heartbeat inter-arrivals like the Gaussian
distribution, it builds its own model based on the observed values. This
avoids the problem of model inadequacy and increases the versatility. Fur-
thermore, it makes very low demands on the computational power of the
hardware, comes with concepts to reduce network load, is mathematically
founded, and very insusceptible to message loss. All these features affirm
that this failure detector could be very interesting also for environments
where failure detection is problematic, such as in ubiquitous systems.

Performance measurements have been conducted to compare the new fail-
ure detector to the well-known failure detectors of Chen et al. [CTA00] and
Bertier et al. [BMS02], and the accrual failure detector of Hayashibara et al.
[HDYK04]. The detailed measurements show that the performance of the
failure detection algorithm in the experiments is excellent and outperforms
the other algorithms.

Additionally, a set of variations and modifications of the new failure detec-
tor has been introduced and evaluated. Most of these variations could help
to even improve the performance of the basic version of the failure detec-
tor. A variation of the algorithm proposed in this work makes about 90%
less wrong suspicions than other state of the art algorithms. Some of the
presented concepts the variations are based on could also be interesting for
other failure detection algorithms to improve their performance.

To conduct performance measurements of different failure detection algo-
rithms with minimal effort, a test centre for failure detectors has been de-
veloped. This framework is programmed in JAVA and provides all tools
and concepts to evaluate a failure detection algorithm - the only task that

88 Failure detection

has to be done is to specify the failure detection algorithm by implementing
two methods of an abstract class.

Furthermore, a mechanism called lazy monitoring is presented with the
ability to significantly reduce the overhead caused by heartbeat-style failure
detectors. These do not need to be changed in order to apply this approach.
Besides the reduction of overhead, the lazy monitoring also contains the
possibility of a faster adaptation to changing network conditions and better
detection quality due to more information about the network. In the con-
ducted evaluations the usage of lazy monitoring could reduce the traffic to
1.2% and the number of messages to 1% while 10 times more information
about the environment is available. The saved resources can be utilised to
enable a faster failure detection. Especially for environments with battery-
powered devices, like sensors in smart environments or sensor networks,
the reduction of message sending is very valuable as each sent message con-
sumes a relatively high amount of power. The presented techniques could
be a key enabler for using failure detectors in such environments.

3
Monitoring groups

3.1 Introduction

In the last chapter, efficient techniques that allow a node to monitor an-
other node are presented. To enable self-healing distributed systems, an
important ingredient is a scalable self-monitoring capability. An autonomous
formation of monitoring relations is needed to extend the failure detection
techniques to that effect. A simple technique would be that any two nodes
in a distributed system monitor each other. As this results in a huge over-
head and unscalable behaviour, intelligent strategies are needed to manage
the monitoring responsibilities.

This chapter proposes algorithms to autonomously install monitoring rela-
tions in distributed systems. These techniques are tailored to work in com-
plex, large scale, distributed systems allowing a fast formation of monitor-
ing groups to minimise the time that nodes are unmonitored.

In the next section, a survey of related work is given. Section 3.3 de-
scribes the contributions of the approach proposed in this chapter, and Sec-
tion 3.4 gives a precise problem statement for the establishment of monitor-
ing groups. Then, in Section 3.5, three grouping algorithms are introduced
and evaluated in Section 3.6. Finally, Section 3.7 concludes this chapter.

89

90 Monitoring groups

3.2 Related work

Scalable failure detectors

To supply adequate support for large scale systems, hierarchical failure de-
tectors define some hierarchical organisation. Bertier et al. [BMS03] intro-
duce a hierarchy with two levels: a local and a global one, based on the
underlying network topology. The local groups are LANs, bound together
by a global group. Every local group elects one leader that is member in
the global group. Within each group any member monitors all other mem-
bers.

Figure 3.1 illustrates such a hierarchy with two groups at level 1 and one
group at level 2. Referring to Bertier’s taxonomy the groups at level 1 are
the local groups, and the group at level 2 is the global group. Different from
Bertier’s failure detector, organisations with higher group levels are also
possible.

Figure 3.1: Hierarchical failure detectors

Hierarchical failure detectors demand a differentiation of the semantics of
failures on different levels. Failures on the lowest level normally correspond
to failures of a single process, whereas the detection of a failure on a higher
level indicates the crash of the entire subgroup. Different from Bertier et al.
[BMS03], in this work the existence of some classifying concept like a LAN is
not required. Monitoring groups can also be built within a network of equal
nodes. A hierarchy as proposed in [BMS03] is not further investigated in
this work, but could be easily built upon the monitoring groups which are
introduced later on.

Another hierarchical failure detector is presented by Felber et al. [FDGO99]
proposing an approach to view failure detectors as first class objects. They
emphasise the importance of well defined interfaces for failure detectors in
order to e.g. reuse existing failure detectors. In their paper they also present
a hierarchical configuration of the monitoring system to raise efficiency and
scalability.

Gossipping is a method of information dissemination within a distributed
system by information exchange with randomly chosen communication

3.2 Related work 91

partners. In 1972, Baker and Shostak [BS72] discussed a gossipping sys-
tem with ladies and telephones. They investigated the problem of n ladies,
each of them knows some item of gossip not known to the others. They
use telephones to communicate, and the ladies tell everything they know
at that time whenever one lady calls another. The problem statement was
“How many calls are required before each lady knows everything?”. De-
mers et al. [DGH+87] pioneered gossipping in computer science as a way
to update and ensure consistent replicas for distributed databases.

Van Renesse et al. [RMH98] have been the first using gossipping for failure
detection to cope with the problem of scalability. In their basic algorithm
each process maintains a list with a heartbeat counter for each known pro-
cess. At certain intervals every process increments its own counter and se-
lects a random process to send its list to. Upon receipt of a gossip message
the received list is merged with its own list. Each process also maintains the
last time the heartbeat counter has increased for any node. If this counter
is increased for a certain time then the process is considered to have failed.
Additionally to this basic gossipping, the authors specify a multi-level gos-
sipping algorithm that does not choose the communication partners com-
pletely randomly but dependent on the underlying network. Basically, they
try to concentrate the traffic within subnets and to decrease it across them
to further improve scalability. A disadvantage is that the size of gossip mes-
sages grows with the size of processes, and this causes a relatively high
network traffic. Furthermore, the timeout to prevent false detections has to
be rather high and since every process checks failures of processes by its
own, false detections cause inconsistent information.

The SWIM protocol, based on the work of Gupta et al. [GCG01] and de-
scribed in a paper of Das et al. [DGM02], uses a separate failure detection
and failure dissemination component. The former detects failures while the
latter distributes information about processes that have recently either left,
joined, or failed. Each process periodically sends a ping message to some
randomly chosen process and waits for it to respond. In this way failures
can be detected and are then disseminated by a separate gossip protocol.
The separation of failure detection and further components as proposed in
[DGM02] is taken up in this work. While the previous chapter introduces
the failure detection component, here the dissemination component is pro-
posed.

Horita et al. [HTC05] present a scalable failure detector that creates dis-
persed monitoring relations among participating processes. Each process is
intended to be monitored by a small number of other processes. In almost
the same manner as in systems mentioned above, a separate failure detec-
tion and information propagation is used. Their protocol tries to maintain
each process being monitored by k other processes. As a typical number
for k they declare 4 or 5. When a process crashes, one of the monitoring

92 Monitoring groups

processes will detect the failure and propagate this information across the
whole system. In addition to the description of their failure detector, Horita
et al. compare the overheads of different failure detection organisations in
their paper. The grouping mechanism of Horita et al. [HTC05] is based
on a random construction of monitoring relations. Each node selects a cer-
tain amount of randomly chosen nodes which then serve as its surveillants.
Hence, it is not taken into account how well a node is suited to monitor an-
other. One motivation for the concepts proposed in this chapter is to take
such an optimality criterion into account.

Graph partitioning

Graph partitioning represents a fundamental problem arising in many sci-
entific and technical areas. In particular, understanding the graph as a net-
work, it is a problem closely related to the problem approached in this work.
Consider each partition of a network as a group of nodes which monitor
each other.

A k-way partition of a weighted graph is the partitioning of the node set
into k disjoint subsets, so as to minimise the weight of edges connecting
nodes in different partitions. This problem is known to be NP-hard [GJ90]
while many heuristics and approximation algorithms are known which aim
at producing solutions close to the optimum. However, most of these tech-
niques are not applicable to distributed environments and are therefore un-
suitable to form monitoring groups.

An algorithm capable of solving a slightly modified k-way partition prob-
lem in a distributed way is presented by Roy et al. [RWS06]. It is based
on a stochastic automaton called influence model [ARLV01]. An influence
model consists of a network of nodes which can take one of a finite number
of statuses at discrete time steps. At each time step the algorithm proposed
in [RWS06] performs the following: Each node picks a node as determining
node with a certain probability and copies its status. By recursively per-
forming these steps, partitions emerge. They argue that, under some con-
straints, their algorithm finds partitions which pass to the optimal partition
with probability 1.

In this work two algorithms to partition a network into groups are intro-
duced. This is a problem very similar to graph partitioning. However, the
problem investigated in the following is adapted to the needs of self-healing
distributed systems.

3.3 Contribution 93

3.3 Contribution

The contribution of this chapter is the introduction and evaluation of al-
gorithms to form monitoring relations and monitoring groups respectively.
The grouping component is independent from the used monitoring com-
ponent. The latter could for instance be a failure detector as introduced in
Chapter 2 or any other mutual monitoring task. The separation of the mon-
itoring itself and the group formation allows to create generic monitoring
and grouping services. As clarified in the previous section, the separation
of information propagation and monitoring has been identified as an im-
portant characteristic by many researchers.

In the area of scalable failure detectors, the consideration of the suitability
of monitoring relations has been neglected so far. For instance, the work
of Horita et al. [HTC05] proposes to choose surveillants randomly. Taking
suitability information into account can improve the performance and re-
duce the overhead of monitoring components like failure detectors. Related
methods from graph partitioning, which in fact search for optimal relations,
are too complex and slow for an application in complex systems. Further-
more, graph partitioning algorithms normally need global knowledge and
are not designed to work in a distributed environment. For self-healing sys-
tems a fast installation of monitoring relations is more important than to
find an optimal solution eventually. Especially from the point of view that
a network can be subject to changes what means an optimal solution could
become obsolete faster than it is found.

To cover a wide range of different requirements and applications, dispersed
monitoring relations, as arising if each node chooses its surveillants individ-
ually [HTC05], as well as closed monitoring groups which result from e.g.
network partitioning, are studied.

In the following, a precise formal definition of the stated problem is given.

3.4 Problem statement

A monitoring network Net, a network of monitoring relations, is represented
as a triple (N, M, s), where N is the set of nodes/processes of a network,
M ⊆ N × N is the monitoring relation, and s is a function from N × N to
a real value within [0, 1]. For each tuple (u, v) ∈ N × N, s(u, v) is the suit-
ability of node u to monitor node v. This suitability can depend on different
aspects like the latency of a connection, the reliability of a node, its load and
so on. If a node u is not able to monitor another node v at all, s(u, v) should
output 0. The monitoring relation defines which monitoring relations are

94 Monitoring groups

established, i.e. (u, v) ∈ M means node u is currently monitoring node v.
(u, v) ∈ M is also denoted with u→ v. The relation M is irreflexive, i.e. it is
not allowed that a node is monitoring itself. The term ∗→ v is defined as all
nodes monitoring v, i.e. ∗→ v := {u ∈ N | u → v}. Similar, u ∗→ outputs all
nodes u is monitoring, i.e. u ∗→:= {v ∈ N | u→ v}.

The task of a grouping algorithm is basically, given a monitoring network
Net = (N, M, s) and a positive integer m < |N|, to establish monitoring
relations such that every node of the network is monitored by at least m
nodes. In this work two flavours of this problem are distinguished, namely
individual monitoring relations also called dispersed monitoring relations and
closed monitoring groups. In the former, monitoring relations can be set for
each node individually while in the latter nodes form groups with mutual
monitoring relations.

The number m of surveillants for each node can be defined by the user.
Typically, a higher number of surveillants provides a higher reliability but
also causes a higher overhead.

In Figure 3.2(a), an instance of individual monitoring relations of a monitor-
ing network is illustrated with m = 3. Thereby, the illustration of the suit-
ability information has been omitted. Figure 3.2(b) shows a corresponding
partition of a network into monitoring groups.

(a) Individual monitoring relations (b) Monitoring groups

Figure 3.2: Types of monitoring relations

In the following, problem definitions of establishing individual monitoring
relations and monitoring groups are given.

3.4 Problem statement 95

Individual monitoring relations

Given a positive integer m, where m < |N|, establish monitoring relations
M where ∀n ∈ N holds | ∗→ n| = m. This means each node is monitored by
m other nodes. Furthermore, the algorithm should maximise the suitability
of the grouping to establish adequate monitoring relations. Therefore the
term

∑
v∈N

∑
u∈ ∗→v

s(u, v)

should be maximised by the grouping algorithm. The optimisation of the
suitability is a quality criterion for grouping algorithms, but it is not postu-
lated that the algorithms output an optimal solution as it is more important
to find solutions in all cases as fast as possible.

The term monitoring group or simply group in the context of individual mon-
itoring relations can be understood as all nodes monitoring one particular
node, and the latter is the leader of the group. Thus, in a network of n
nodes the are also n groups: Each node v ∈ N is the leader of the group
{v} ∪ ∗→ v.

Closed monitoring groups

Different from the dispersed individual monitoring relations, a closed mon-
itoring group is a group of nodes where all members monitor each other.
This problem is very similar to a graph partitioning problem. In addition to
the individual monitoring relations, constraints regarding the monitoring
relations M are holding: M must be symmetric and transitive in order to
produce closed monitoring groups. In another point, the problem of finding
monitoring groups is relaxed, compared to individual monitoring relations,
as it is not always possible to find groups of the size m + 1 resulting in m
surveillants per node in the group. If for instance a network has three nodes
and monitoring groups of size 2 need to be established, this leads to an un-
solvable problem. For such cases, also closed monitoring groups of bigger
sizes are allowed. In detail, the problem ∀n ∈ N holds | ∗→ n| = m is relaxed
to ∀n ∈ N holds | ∗→ n| ≥ m. A very simple solution to this problem is to
combine the whole network into one group. This is a valid solution as just
| ∗→ n| ≥ m is postulated. However, the number of surveillants per node
should be as close as possible to m. This represents a soft constraint similar
to the maximisation of the suitability criterion.

Two nodes are in the same closed monitoring group if they are monitoring
each other. An additional requirement for such monitoring groups is that
each group has one node which is declared as leader. Such a role is needed

96 Monitoring groups

by many possible applications based upon grouped nodes, e.g. to have one
coordinator or contact for each group. An instance where one leader per
group is necessary is the formation of hierarchical groups.

Whether individual monitoring relations or monitoring groups are more ad-
equate depends on the environment and the monitoring task. Furthermore,
the installed groups can also be used for many other purposes beyond mon-
itoring, such as cooperative failure recovery.

3.5 Grouping algorithms

In this section three grouping algorithms are introduced, one to establish in-
dividual monitoring relations, two to form closed monitoring groups. The
algorithms are tailored to solve these problems in a distributed manner. Fur-
thermore, it is not assumed that all nodes have information about all other
nodes what would simplify the problem significantly. The nodes of a mon-
itoring network Net = (N, M, s) do not know about the suitability s, i.e.
how suitable other nodes are to monitor it, until they receive a message
from a node with information about that. The suitability also might change
over time. In the following, the usage and relevance of suitability metrics
for monitoring relations is discussed. Then, three algorithms are presented
which provide the desired grouping capabilities.

In order to establish suitable monitoring relations, the nodes of a network
need information about each other. Such information might be the quality
of the network connection of two nodes, the reliability of a node, and so on.
Each node is holding relevant information about a number of other nodes
allowing to compute suitability information.

The establishment of monitoring relations within a network Net = (N, M, s)
can be based on different aspects. Therefore, the suitability function s has
to be defined accordingly. Note that the suitability information typically
is not computable before nodes receive information from other nodes. If
it is for instance desired that nodes should be monitored by nodes with a
similar hardware equipment and a fast network connection, the suitability
function could be set to s(u, v) = h(u,v)+n(u,v)

2 where h(u, v) returns a value
within [0, 1] indicating the similarity of the hardware equipment of u and
v and n(u, v) returns a value within [0, 1] indicating the performance of the
network connection. Such a scenario would make sense if a fast network
connection improves the monitoring quality and in the case of an outage of
a node, another node with similar hardware equipment is likely to have the
ability to inherit the tasks of the failed node. Thus, the setting of the suit-
ability function influences the establishment of monitoring relations. The
definition of a suitability function should reflect the requirements of a mon-

3.5 Grouping algorithms 97

itoring system. All relevant factors should be included and weighted ac-
cording to its importance.

Now three algorithms to establish monitoring relations in an autonomous
distributed way are presented: INDIVIDUAL, which constructs individ-
ual monitoring relations, MERGE and SPECIES which install monitoring
groups.

The idea of INDIVIDUAL is very simple: each node tries to identify the m
most suitable nodes and asks them to monitor it.

In the initial state of the algorithm MERGE, each node forms a group only
consisting of itself as leader node. Groups merge successively until they
reach a size greater than m.

SPECIES distinguishes between the two species leader and non-leader. The
specificity of a node is random-driven. Non-leaders try to join a group and
each group is controlled by one leader. In the case of an inadequate ratio of
leaders to non-leaders, nodes can change its specificity.

Individual

Individual monitoring relations denote monitoring responsibilities set indi-
vidually for each node. Using the suitability function, nodes can identify
suitable surveillants. The most suitable ones are asked to monitor it. There-
fore, nodes send monitoring requests to other nodes and wait for their ac-
knowledgement. This process is repeated until the node has established m
acknowledged monitoring relations. In Algorithm 10, the above described
algorithm is formalised as pseudocode.

A further requirement for individual grouping algorithms which is omitted
here could be that each node u monitoring a node v needs to know all other
nodes also monitoring v, i.e. if u → v then u needs to know the set ∗→
v. This might be necessary as in the case of a failure of v, all monitoring
nodes could e.g. have to hold some kind of vote to gather a consistent view
and to plan repairing actions respectively. This feature of closed monitoring
groups could easily be integrated into INDIVIDUAL. This has not been done
in order to investigate the more general algorithm as stated here.

Merge

In this section the MERGE algorithm is discussed which establishes closed
monitoring groups. Within these groups all nodes monitor each other. Ev-
ery group has a group leader. Typically, the initial situation is a monitoring
network Net = (N, S, ∅) without monitoring relations and a number m

98 Monitoring groups

Algorithm 10 INDIVIDUAL

1: id . the id of this node
2: m . number of surveillants
3: N . set of known nodes
4: id ∗→= ∅ . set of monitored nodes
5:
∗→ id = ∅ . set of surveillants

6:
7: loop
8: if received message msg from n then
9: if type of msg is ’request’ then

10: id ∗→ = id ∗→ ∪{n}
11: send(’ack’, id) to n
12: end if
13: if type of msg is ’ack’ then
14:

∗→ id = ∗→ id ∪ {n}
15: end if
16: else
17: if | ∗→ id| < m then
18: select most suitable node n out of N \ ∗→ id
19: send(’request’, id) to n
20: end if
21: end if
22: end loop

which determines the desired number of surveillants. During the grouping
of the nodes into monitoring groups, existing groups smaller than m + 1
merge with other groups until the resulting group has enough members.
Due to this mechanism the maximal size can be limited by 2 · (m + 1)− 1. If
a group of size 2 · (m + 1) exists, it can be split into two groups of valid size
m + 1. The group leaders which belong to a monitoring group smaller than
m + 1, ask other suitable group leaders to merge their groups. If this request
is accepted the groups merge and the requesting group leader must give off
its leadership. The requested group leader is the leader of the newly formed
group. After such a merging process the group leader informs all members
about the new group. Nodes which lost the leadership adopt a completely
passive role in the further grouping process and are not allowed to accept
merging requests from other leaders anymore.

Let us consider an example where m is 2, i.e. groups of minimum size 3 are
formed. In Figure 3.3(a) two groups are examined, one consisting of Nodes
1 and 2 in which Node 1 is leader and the other group consisting only of
Node 3. Node 3 is requesting the group of Node 1 to merge. After the
merge process a new group is formed with exactly 3 members and node 1

3.5 Grouping algorithms 99

is leader of that group. Merge requests are never denied by leaders. Thus,
as you can see in Figure 3.3(b), it is possible that groups emerge which have
more than the desired m + 1 members.

ONMLHIJKGFED@ABC1 ?>=<89:;2 ONMLHIJKGFED@ABC3

⇓ ⇓

ONMLHIJKGFED@ABC1

=========

?>=<89:;2 ?>=<89:;3
(a) Merge process resulting
in desired group size

ONMLHIJKGFED@ABC1 ?>=<89:;2 ONMLHIJKGFED@ABC3 ?>=<89:;4

⇓ ⇓ ⇓

ONMLHIJKGFED@ABC1

=========
?>=<89:;2

?>=<89:;3

���������� ?>=<89:;4
(b) Merge process resulting in over-
sized group

Figure 3.3: MERGE scenarios

If groups become greater than or equal to 2 · (m + 1), as illustrated in Fig-
ure 3.4, a splitting is performed resulting in two monitoring groups which
both have at least m + 1 members, what is enough to stop active merging ac-
tivities. Thus the resulting group sizes of the MERGE algorithm are always
between m + 1 and 2 · (m + 1)− 1.

ONMLHIJKGFED@ABC1

=========
?>=<89:;2 ONMLHIJKGFED@ABC5 ?>=<89:;6

?>=<89:;3

���������� ?>=<89:;4

⇓ ⇓ ⇓

ONMLHIJKGFED@ABC1

=========
ONMLHIJKGFED@ABC5

=========

?>=<89:;2 ?>=<89:;3 ?>=<89:;4 ?>=<89:;6

Figure 3.4: Merge and consecutive split

In Algorithm 11, the described grouping algorithm is formalised as pseu-
docode. Please note that only the most interesting parts of the algorithm are
presented, due to space limitations. For instance, the notification of group
members when the group has changed is omitted.

100 Monitoring groups

Algorithm 11 MERGE

1: id . the id of this node
2: m . minimum number of surveillants
3: N . set of known nodes
4: G = {id} . set of group members
5: l = id . leader, initially set to node id
6: wr = F . is the node is waiting for a response
7:
8: loop
9: if received message msg from n then

10: if type of msg is ’request’ then
11: if id = l then
12: if wr then send (’waiting’, id) to n
13: else
14: if |G|+ |msg.G| ≥ 2 · (m + 1) then
15: H = choose b |G|+|msg.G|

2 c − |msg.G|
16: group members to handover
17: send (’handover’, H) to n
18: else
19: G = G ∪msg.G
20: send (’ack’,G) to all G \ {id}
21: end if
22: end if
23: else
24: send (’non-leader’, G) to n
25: end if
26: else if type of msg is ’ack’ then
27: l = n
28: G = msg.G
29: wr = F
30: else if type of msg is ’handover’ then
31: G = G ∪msg.H
32: wr = F
33: else if type of msg is ’non-leader’ then
34: store information that n is no leader
35: wr = F
36: else if type of msg is ’waiting’ then
37: affects the selection of most suitable node
38: wr = F
39: end if
40: else
41: if id = l ∧ |G| < m + 1 then
42: select most suitable node n out of N \ ∗→ id
43: send(’req’, G) to n
44: wr = T
45: end if
46: end if
47: end loop

3.5 Grouping algorithms 101

Species

Like the MERGE algorithm, SPECIES also installs closed monitoring groups.
It is based on the existence of two species: leader and non-leader. Leaders are
group managers and each group contains exactly one leader. Non-leaders
contact the most suitable leader trying to join its group. The specificity of a
node is random-driven and dependent on the value of m. Consider a net-
work consisting of n nodes. The optimal number of leaders is n

m+1 , as the
following example illustrates: Within a small network of 12 nodes, closed
monitoring groups need to be installed with m = 2, i.e. two surveillants per
node or groups of size three. The optimal case for that are four groups of
size three. Thus n

m+1 = 12
3 = 4 leaders are needed which the non-leaders

can join. Therefore, the SPECIES algorithm selects every node as leader with
probability 1

m+1 . As it is worse to have too many leaders than too few, the
probability of a node to become a leader can be adjusted to e.g. 0.8

m+1 . How-
ever, the random assignment of species to nodes does not guarantee a valid
distribution into leaders and non-leaders. Thus, if a leader recognises that
there are too many of them, they can toggle their species and transform into
a non-leader. Vice versa, if nodes cannot find leaders to join they transform
into a leader with a certain probability.

The network shown in Figure 3.5(a) contains too many leaders. In this case
m is 3 which means groups of sizes of at least 4 need to be formed. However,
this is not possible in this example. If no non-leader joins the groups smaller
than 4, their leaders try to contact other leaders in order to find groups
with enough members to poach some non-leaders. If this also fails, lead-
ers then transform to non-leaders with a certain probability. This happens
with Node 7 in this example. After that transformation a valid grouping is
possible.

Figure 3.5(b) shows the contrary situation as above, where too few leaders
are available, in this case even none. If non-leaders are unable to find any
leader, they become leader with a certain probability.

There are two cases how non-leaders join a group. If they do not belong to
a group yet, they themselves care to find a group and join it. The other case
is shown in Figure 3.6. Leaders controlling an undersized group try to find
oversized groups and ask their leaders to handover unneeded members.

In Algorithm 12, the most important parts of SPECIES are formalised as
pseudocode.

After the introduction of the proposed grouping algorithms, an evaluation
is provided in the following section.

102 Monitoring groups

ONMLHIJKGFED@ABC1

<<<<<<<<<<
?>=<89:;2 ONMLHIJKGFED@ABC5 ?>=<89:;6

?>=<89:;3

���������� ?>=<89:;4 ONMLHIJKGFED@ABC7 ?>=<89:;8

⇓ ⇓ ⇓

ONMLHIJKGFED@ABC1

=========
?>=<89:;2 ONMLHIJKGFED@ABC5

=========
?>=<89:;6

?>=<89:;3

���������� ?>=<89:;4 ?>=<89:;7

���������� ?>=<89:;8
(a) Change species from leader to non-
leader

?>=<89:;1 ?>=<89:;2

?>=<89:;3 ?>=<89:;4

⇓ ⇓
?>=<89:;1

==========
ONMLHIJKGFED@ABC2

?>=<89:;3

��������� ?>=<89:;4
(b) Change
species from
non-leader to
leader

Figure 3.5: SPECIES scenarios

ONMLHIJKGFED@ABC1

=========
?>=<89:;2 ONMLHIJKGFED@ABC5 ?>=<89:;6

?>=<89:;3

���������� ?>=<89:;4

⇓ ⇓ ⇓

ONMLHIJKGFED@ABC1 ?>=<89:;2 ONMLHIJKGFED@ABC5 ?>=<89:;6

?>=<89:;3

���������� ?>=<89:;4

���������

ppppppppppppppppp

Figure 3.6: Handover of group members

3.5 Grouping algorithms 103

Algorithm 12 SPECIES

1: id . the id of this node
2: m . minimum number of surveillants
3: N . set of known nodes
4: G = {id} . set of group members

5: l =

{
id with probability 0.8

m+1
unde f ined otherwise

6: wr = F . is the node waiting for a response
7:
8: loop
9: if received message msg from n then

10: if type of msg is ’request’ then
11: if id = l then
12: G = G ∪ {n}
13: end if
14: else if type of msg is ’handover-request’ then
15: if id = l then
16: if wr then
17: send (’waiting’, id) to n
18: else
19: x = min(b |G|+|msg.G|

2 c − |msg.G|, |G| − (m + 1))
20: H = choose x group members to handover
21: send (’handover’, H) to n
22: end if
23: else
24: Forward message to random node, preferably a leader
25: end if
26: else if type of msg is ’handover’ then
27: G = G ∪msg.H
28: wr = F
29: else if type of msg is ’chgspecies’ then
30: if id = l then
31: G = msg.G
32: else
33: Forward message to random node, preferably a leader
34: end if
35: else if type of msg is ’waiting’ then
36: affects the selection of most suitable node
37: wr = F

104 Monitoring groups

Algorithm 12 SPECIES - continued
38: else
39: if id 6= l ∧ |G| ≤ 1 then
40: select most suitable node n out of N
41: send(’req’, G) to n
42: l = n
43: end if
44: if id = l ∧ |G| < m + 1∧ with probability of e.g. 25% then
45: if other suitable leader n is known then
46: send(’handover-request’, G) to n
47: else if no leader can handover nodes then
48: change species to non-leader
49: l = undefined
50: send(’chgspecies’, G) to random node, preferably a
51: leader
52: end if
53: end if
54: if id = l∧ no leader known ∧ probability of e.g. 25% then
55: change species to leader
56: l = id
57: end if
58: end if
59: end if
60: end loop

3.6 Evaluation 105

3.6 Evaluation

In this section an evaluation for the above introduced algorithms is pro-
vided. For the purpose of evaluating and testing, a toolkit has been im-
plemented which is able to simulate distributed algorithms based on mes-
sage passing. It is written in JAVA and allows the construction of networks
consisting basically of nodes, channels which connect two nodes, and algo-
rithms running on nodes. As the simulation runs on one single computer,
a random strategy selects the next node whose algorithm is executed par-
tially. Thus, the asynchronous behaviour of distributed systems is covered.
It is assumed that the communication channels do not drop messages and
deliver them in the correct order.

The nodes of the monitoring network Net = (N, M, s) used for the eval-
uation are theoretically arranged as a grid, as shown in Figure 3.7 for an
example network consisting of 100 nodes. The nodes of the network are
labelled with natural numbers which represent their ID. Note that the algo-
rithms are neither based on that fact nor take any advantage of that. The
distance of two nodes u, v within the grid determines their mutual monitor-
ing ability. Thus, the suitability has been set to the reciprocal value of the
Euclidean distance of the nodes within the grid.

GFED@ABC0 GFED@ABC1 . . . GFED@ABC9

GFED@ABC10 GFED@ABC11 . . . GFED@ABC19

.

GFED@ABC90 GFED@ABC91 . . . GFED@ABC99

Figure 3.7: Evaluation network of 100 nodes

The evaluation network consists of 1000 nodes1, where all nodes are able to
communicate with each other. However, in most evaluation scenarios the
nodes only have sufficient information about a certain number of nodes to
compute a suitability value. This models the concept that in many networks
nodes do not know everything but have a limited view.

The introduced grouping algorithms are evaluated within different scenar-
ios. The evaluation focuses on the scalability of the establishment of moni-

1Except for the measurements of the scalability regarding the network size where the
number of nodes have been varied.

106 Monitoring groups

toring relations, the optimality of the relations regarding the suitability met-
ric, and the failure tolerance of a system if failure detectors are used to-
gether with the grouping approach. The evaluations have been conducted
using different sets of parameters like the values for the desired number
of surveillants m and the amount of information about other nodes. Each
evaluation scenario has been replayed 1000 times and the results have been
averaged.

Recall, a monitoring network Net is represented as (N, M, s), where N is
the set of nodes of a network, M ⊆ N × N is the monitoring relation, and s
is a function from N × N to a real value within [0, 1]. The task of a group-
ing algorithm is, given a positive integer m < |N|, to establish monitoring
relations such that every node of the network is monitored by at least m
nodes.

As suitability function s(u, v), the reciprocal value of the Euclidean distance
of the nodes u and v is used. At the beginning, the monitoring relation
is empty, i.e. M = ∅. This means that the network is in a state where
no monitoring relations are established yet. To model the fact that nodes
usually do not have a complete view of the whole network, the value κ
describes the part of the network each node is aware of. A value of κ = 10
means that each node has information about 10 randomly chosen nodes.

In the following the results of the conducted evaluations are presented.

3.6.1 Scalability

To establish monitoring relations, messages need to be sent. In the fol-
lowing, this overhead is evaluated for the proposed grouping algorithms.
All experiments have been conducted according to the description given
above.

First the scalability regarding the network size is evaluated. In this experi-
ment the number of desired surveillants m is set to 5 while each node knows
50 other nodes, i.e. κ = 50. Figure 3.8 shows the results of this experiment.
The values on the x-axis stand for the network size and the average number
of messages sent by each node is depicted on the y-axis.

As m is 5, each node executing the INDIVIDUAL algorithm needs 10 mes-
sages, 5 monitoring requests and 5 responses. MERGE needs less than 6
messages, SPECIES less than 4. The results indicate that all three algorithms
can be classified as being independent from the network size, as the nodes
basically do not send more messages within a bigger network. The algo-
rithm SPECIES performs even better in bigger networks. The reason for this
behaviour is the random-driven determination of the specificity. The aim of

3.6 Evaluation 107

 0

 2

 4

 6

 8

 10

 12

 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

ra
ge

 n
um

be
r

of
 m

es
sa

ge
s

se
nt

 p
er

 n
od

e

Network size

Individual
Merge

Species

Figure 3.8: Scalability of grouping algorithms regarding network size (κ = 50)

that process is to achieve a division into leaders and non-leaders of a defined
ratio. In general, the bigger the network the better this ratio is met.

Thanks to the independence of the overhead caused by the grouping algo-
rithms from the network size, all introduced algorithms seem suitable to be
applied within complex distributed systems.

All following evaluations have been conducted with a network size of 1000
nodes. To evaluate the overhead with regard to the sizes of the formed
groups, the message sending behaviour of the algorithms is compared using
different values for the minimum group size m within [3, 4, . . . , 20], and κ =
100.

Figures 3.9 shows the results of that experiment. It depicts the average num-
ber of sent messages on the y-axis. The x-axis stands for the different values
of m. Figure 3.10 presents exactly the same information as Figure 3.9, but
without the data of INDIVIDUAL to provide a better comparison possibility
between MERGE and SPECIES.

The SPECIES algorithm manages to group with the least messages of the
three algorithms. The number of sent messages is independent from the
number of surveillants. INDIVIDUAL scales linearly with the number of
surveillants. The number of messages for MERGE is strictly increasing, but
only logarithmically due to the exponential group growth based on merg-
ing.

108 Monitoring groups

 0

 5

 10

 15

 20

 25

 30

 35

 40

 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 n
um

be
r

of
 m

es
sa

ge
s

se
nt

 p
er

 n
od

e

m

Individual
Merge

Species

Figure 3.9: Scalability of grouping algorithms regarding group size (κ = 100)

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 n
um

be
r

of
 m

es
sa

ge
s

se
nt

 p
er

 n
od

e

m

Merge
Species

Figure 3.10: Scalability of grouping algorithms regarding group size - without IN-
DIVIDUAL

The three algorithms differ in the way they are able to meet the desired
number of surveillants m. As it is mandatory to install at least m monitor-
ing relations per node, only greater or equal values for the resulting group

3.6 Evaluation 109

sizes are possible. Figure 3.11 shows the resulting number of surveillants
in comparison to the value of m. INDIVIDUAL manages to install exactly
m surveillants per node. For closed monitoring groups it is a much harder
problem to exactly meet this condition. MERGE and SPECIES typically form
slightly larger groups in order to allow for a fast and robust grouping pro-
cess.

 0

 5

 10

 15

 20

 25

 30

 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 n
um

be
r

of
 s

ur
ve

ill
an

ts
 p

er
 n

od
e

m

Individual
Merge

Species

Figure 3.11: Resulting group sizes caused by different values for m

The next section examines the monitoring relations with respect to their
suitability according to the suitability function.

3.6.2 Suitability

As stated in the specification, the algorithms are supposed to take the suit-
ability of the nodes into account. This means the term

∑
v∈N

∑
u∈ ∗→v

s(u, v) (3.1)

should be maximised. The average suitability within the evaluation net-
work is about 0.09. This means a random grouping produces monitoring
relations of about that value. Figures 3.12 to 3.15 show the results of the
experiments concerning the suitability of the algorithms for different val-
ues of κ (10, 50, 100, 1000). This parameter represents the size of the nodes’

110 Monitoring groups

view on the network. The x-axis represents the number of surveillants per
node, the y-axis depicts the average suitability of the formed groups based
on Formula 3.1.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25 30 35

A
ve

ra
ge

 g
ro

up
 s

ui
ta

bi
lit

y

Average number of surveillants per node

Individual
Merge

Species

Figure 3.12: Suitability of grouping algorithms (κ = 10)

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 5 10 15 20 25 30 35

A
ve

ra
ge

 g
ro

up
 s

ui
ta

bi
lit

y

Average number of surveillants per node

Individual
Merge

Species

Figure 3.13: Suitability of grouping algorithms (κ = 50)

3.6 Evaluation 111

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0 5 10 15 20 25 30

A
ve

ra
ge

 g
ro

up
 s

ui
ta

bi
lit

y

Average number of surveillants per node

Individual
Merge

Species

Figure 3.14: Suitability of grouping algorithms (κ = 100)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35

A
ve

ra
ge

 g
ro

up
 s

ui
ta

bi
lit

y

Average number of surveillants per node

Individual
Merge

Species

Figure 3.15: Suitability of grouping algorithms (κ = 1000)

For all algorithms holds the obvious fact that bigger group sizes cause
lower values for the suitability. It is remarkable that SPECIES and especially
MERGE handle grouping with limited information very well. In the case of

112 Monitoring groups

full information about the network (κ = 1000) INDIVIDUAL performs opti-
mal, as each node is able to identify and request its most suitable surveil-
lants.

Figure 3.16 illustrates all results of the suitability measurements at once. It
shows on the x-axis the number of surveillants, on the y-axis the number
of known nodes κ, and on the z-axis the resulting suitability values. The
image on the top left shows the results for INDIVIDUAL, on the top right for
MERGE, on the lower left for SPECIES, and on the lower right a comparison.

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

In
di

vi
du

al

 0
 1

0
 2

0
 3

0
X

 2
0

 4
0

 6
0

 8
0

 1
00

Y

 0
.2

 0
.4

 0
.6

Z

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
 1

0
 2

0
 3

0
 2

0
 4

0
 6

0
 8

0
 1

00

 0
.2

 0
.4

 0
.6

Z

In
di

vi
du

al

X
Y

Z

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

M
er

ge

 0
 1

0
 2

0
 3

0
X

 2
0

 4
0

 6
0

 8
0

 1
00

Y

 0
.2

 0
.4

 0
.6

Z

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
 1

0
 2

0
 3

0
 2

0
 4

0
 6

0
 8

0
 1

00

 0
.2

 0
.4

 0
.6

Z

M
er

ge

X
Y

Z

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

S
pe

ci
es

 0
 1

0
 2

0
 3

0
X

 2
0

 4
0

 6
0

 8
0

 1
00

Y

 0
.2

 0
.4

 0
.6

Z

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
 1

0
 2

0
 3

0
 2

0
 4

0
 6

0
 8

0
 1

00

 0
.2

 0
.4

 0
.6

Z

S
pe

ci
es

X
Y

Z

C
om

pa
ris

on
In

di
vi

du
al

M
er

ge
S

pe
ci

es

 0
 1

0
 2

0
 3

0
X

 2
0

 4
0

 6
0

 8
0

 1
00

Y

 0
.2

 0
.4

 0
.6

Z

Figure 3.16: Suitability of grouping algorithms

3.6 Evaluation 113

3.6.3 Failure tolerance

In this section, the gain of applying the proposed grouping techniques with
respect to failure tolerance is investigated. To evaluate the failure tolerance
of the monitoring relations, the following methodology is used: It is as-
sumed that a certain percentage of randomly chosen nodes within the net-
work fail simultaneously, i.e. they crash and do not recover. Using failure
detectors, nodes monitor each other according to the installed monitoring
relations by a grouping algorithm. It is assumed that failure detectors even-
tually detect the failure of a node. An undetected failure means the unrecog-
nised failure of a node. In this setting this is only possible if a node and all
its surveillants fail simultaneously.

The detection of a failure is the prerequisite of a subsequent repair or self-
healing respectively. If a node has no surveillant, its failure equals an unde-
tected failure. If in a network any node monitors all other nodes, only the
complete failure of the whole network results in undetected failures. How-
ever, for more complex systems, the latter monitoring strategy typically in-
troduces an excessive overhead.

Before the evaluation results are presented, a short view on failure tolerance
motivated by probability theory is given.

Let X be the number of elements within a set, Y ≤ X the number of elements
within this set possessing a feature F, and x ≤ X the number of elements
which are randomly chosen from the set. The probability of k elements with
feature F to be in the randomly chosen set is then

(
Y
k

)(
X−Y
x− k

)
(

X
x

) ,

according to the hypergeometric distribution [Fel70].

Considering a network Net = (N, M, s) and a number of surveillants per
node of m < |N|. If φ random nodes of the network fail, where m + 1 ≤ φ ≤
|N|, the probability for the undetected failure of a certain node is

(
m + 1
m + 1

)(
|N| −m + 1
φ−m + 1

)
(
|N|
φ

) =

(
|N| −m + 1
φ−m + 1

)
(
|N|
φ

) .

If φ is lower than m + 1, the probability for an undetected failure is obvi-

114 Monitoring groups

ously 0. If for instance φ = 10% of the nodes of a network Net = (N, M, s)
consisting of 100 nodes fail, and each node is monitored by m = 3 nodes,
then the probability for a certain node η ∈ N to fail undetectably is

(
|N| −m + 1
φ−m + 1

)
(
|N|
φ

) =

(
100− 4
10− 4

)
(

100
10

) ≈ 5 · 10−5.

The following simulations have been conducted as before with a network
Net = (N, M, s) of 1000 nodes. Monitoring relations are established with
all three proposed grouping algorithms and different values for m. It is
measured how many undetected failures occur if a certain percentage φ of
random nodes fail.

Figure 3.17 presents the results for φ = 10%, Figure 3.18 for φ = 50%, and
Figure 3.19 for φ = 90%. The x-axis shows the average number of surveil-
lants per node, the y-axis the number of undetected failures.

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0 5 10 15 20 25 30

N
um

be
r

of
 u

nd
et

ec
te

d
fa

ilu
re

s

Average number of surveillants per node

Individual
Merge

Species

Figure 3.17: Failure tolerance of grouping algorithms (10% failure)

In all cases the number of undetected node failures decreases with a higher
number of surveillants. It can be seen that, with a number of surveillants
of 15, a failure of every second node in the network does not result in any
undetected node failures. These results can be used as a utility to choose
an adequate value for m, which is a balancing act between overhead and
failure tolerance.

3.6 Evaluation 115

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30

N
um

be
r

of
 u

nd
et

ec
te

d
fa

ilu
re

s

Average number of surveillants per node

Individual
Merge

Species

Figure 3.18: Failure tolerance of grouping algorithms (50% failure)

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30

N
um

be
r

of
 u

nd
et

ec
te

d
fa

ilu
re

s

Average number of surveillants per node

Individual
Merge

Species

Figure 3.19: Failure tolerance of grouping algorithms (90% failure)

The algorithm INDIVIDUAL performs best in all three scenarios. The reason
is that it has no variance in the number of surveillants. The parameter m
exactly determines the resulting group size, i.e. the number of surveillants.

116 Monitoring groups

For closed monitoring groups this number varies. The value for m only de-
termines the minimum number of surveillants. Thus, an average number of
surveillants of e.g. 10 does not exclude groups of lower sizes. Consider for
example a network of 10 nodes, arranged in two monitoring groups. In the
first case two groups of sizes 5 (no variance), in the second case one group
of size 4 and one group of size 6 (variance of 2). If for example only 4 nodes
fail, in the latter case undetected failures are possible, in the former not.
The variance of the group sizes impacts the number of undetected failures,
while a low variance is better. INDIVIDUAL has no variance, SPECIES has the
highest variance, and MERGE lies in between. The evaluation results reflect
this fact.

While the influence of the variation of the number of surveillants is given,
all three algorithms show the same basic behaviour, which is depicted in
Figure 3.20 with the algorithm INDIVIDUAL. The x-axis shows the number
of surveillants, the y-axis the percentage of node failures φ, and the z-axis
the number of undetected failures. A high number of surveillants and a low
percentage of node failures result in none or few undetected node failures.
A low number of surveillants and many failed nodes result in a high rate of
undetected failures.

 0
 100
 200
 300
 400
 500
 600
 700

 2 4 6 8 10 12 14 16 18 20 0
 0.2

 0.4
 0.6

 0.8

 0
 100
 200
 300
 400
 500
 600
 700

Z

X

Y

Z

Figure 3.20: Failure tolerance of INDIVIDUAL

3.7 Conclusions and future work 117

3.7 Conclusions and future work

In this chapter, the requirements for self-monitoring, distributed systems
are presented. The task is to autonomously install monitoring relations,
whereas the two types of individual monitoring relations and monitoring
groups have been identified. This problem is novel and has been defined
in a concise way. Three algorithms to install such monitoring relations are
introduced and compared regarding their efficiency, suitability, and the fail-
ure tolerance they are providing. The algorithms are tailored to install mon-
itoring relations very quickly, and this is important for self-healing systems.
The evaluation shows that the overhead of all proposed algorithms is inde-
pendent from the network size. Therefore, they are suitable for complex,
large scale, distributed systems. Each algorithm needs only a very limited
number of messages per node in order to fully install monitoring relations.
Existing algorithms dealing with similar problems are either too complex
for self-healing systems or unable to consider the suitability of monitoring
relations. The conducted evaluations and theoretical considerations regard-
ing the failure tolerance can be used to determine the necessary number
of monitoring nodes. The formation of hierarchical groups could further
improve the monitoring relations and could be a starting point for future
work.

4
Failure recovery

4.1 Introduction

The self-healing concepts dealt with so far correspond to gather information
about the state of the system. In this chapter a failure recovery engine is
presented which autonomically controls the entities of a distributed system
in order to maintain user-defined properties and to recover from unwanted
conditions respectively. An automated planning approach is the basis of the
proposed recovery engine.

Srivastava et al. [Sri05] argue that planning is an evolutionary next step for
AC systems that use procedural policies. Policies are often used to specify
the desired behaviour of computer systems. To meet these policies under
all system conditions, lists of necessary actions can be defined. During run-
time, a policy engine will verify the conditions and take the stipulated ac-
tion. However, for self-healing in distributed systems the enumeration of
all conditions, i.e. all possible types of failures is often impracticable. Also,
the actions to recover the system can be too complex to specify manually.
Furthermore, many different ways to recover a system from one certain fail
state may exist, and this raises the complexity even more. A methodology
that is better in line with the visions of OC and AC would be policies that
only describe desired conditions that a system can meet by itself. Auto-
mated planning is a concept to enable computer systems to reason about
actions in order to automatically compute plans to follow the policies.

As an overview of related work, failure recovery techniques are presented

119

120 Failure recovery

in the next section. Section 4.3 gives an introduction to automated planning.
Then, in Section 4.4, the proposed failure recovery engine is presented while
Section 4.5 provides an evaluation of that approach. Finally, Section 4.6 con-
cludes this chapter and outlines future work.

4.2 Related work

Failure recovery in distributed systems is a multifaceted area of computer
science. In this section, a few interesting workings related with this topic
are presented. The main focus lies on presenting work that has a connection
to the approach proposed later on in this chapter. Commonly used tech-
niques like replication, checkpointing, or message logging are assumed to
be known and not introduced separately. For the interested reader it is re-
ferred to e.g. [CDK00] for some fundamental concepts on failure recovery
in distributed systems.

Porter et al. [PTC06] propose an approach to generically achieve repair in
overlay networks. They separate the generic and specific aspects of overlay
repair to support and harness diverse environments. The repair is done in a
localised manner as only nodes in the locality of a failed node are involved
in the repair. This serves to guarantee the scalability of the approach. The
authors do not treat individual nodes as the unit of failures, but more gener-
ally failed sections. Porter et al. propose a three-phase repair algorithm: In
the first phase each node that detects the failure of a neighbouring node con-
structs its own view of the failed section. In phase two the nodes agree on
a common view of the failed section and select a coordinator for the repair.
In the third phase the coordinator performs the repair under monitoring of
the remaining nodes.

Joshi et al. [JSHS05] deal with automatic model-driven recovery in dis-
tributed systems. When a failure of a component is detected, a recovery
controller is invoked. The controller uses Bayesian estimation to combine
monitor outputs and determine their likelihood. It then invokes one of two
recovery algorithms to choose appropriate recovery actions: SSLRecover
and MSLRecover. SSLRecover (Single Step Lookahead) is a computationally
efficient greedy procedure that chooses the minimum cost recovery action
that can restore the most likely fault hypothesis. MSLRecover (Multi-Step
Lookahead) is a more sophisticated algorithm that looks multiple steps into
the future.

Recovery Oriented Computing (ROC) [Fox02, Pat02] is a joint work of Stan-
ford University and University of California, Berkeley. ROC takes the per-
spective that hardware faults, software bugs, and operator errors are facts
to be coped with, not problems to be solved. It is proposed to reduce their

4.3 Introduction to Automated Planning 121

harmful effects by fast and graceful failure recovery. An indicator for sys-
tem availability is A = MTTF/(MTTF + MTTR), where MTTF is the mean
time to system failure and MTTR the mean time to recovery after a failure.
The target is to have a system with A = 1. The authors argue that in the
past much effort has focused on achieving this by enlarging MTTF mak-
ing hardware and software more reliable. The way ROC envisions to reach
A = 1 is to focus on making MTTR much smaller than MTTF. In [Fox02]
several reasons why to focus on recovery are cited, e.g. that human error is
inevitable.

Arshad et al. [AHW04] use planning for failure recovery. Their approach
automates failure recovery by capturing the state after failure, defining an
acceptable recovered state as a goal and applying planning to get from the
initial state to the goal state.

In this chapter a failure recovery based on automated planning is proposed.
Before the technical realisation is explained, the following section gives an
introduction to automated planning. If the reader is already familiar with
that topic the next section may be skipped.

4.3 Introduction to Automated Planning

Automated planning is a branch of artificial intelligence. Its primary prob-
lem is the computation of sequences of actions which will achieve a speci-
fied goal from specified initial conditions. Domain-independent planning
is concerned with the fundamental principles of planning as an activity.
Domain-dependent planning deals with the application of planning within
particular domains.

The conceptual model of a planning environment can be represented as state
transition system. Formally, this is a four-tuple Σ = (S, A, E, γ), where

• S = s1, . . . , snS is a set of states,

• A = a1, . . . , anA is a set of actions,

• E = e1, . . . , enE is a set of events, and

• γ : S × (A∪ E)→ 2S is a state transition function.

Basically, an automated planning problem can be described as follows:

Given a description of γ and the initial state s0 ∈ S, find a sequence of
actions that transforms the system from the initial state to a state sg that
satisfies the goal, i.e. sg ∈ Sg where Sg ⊆ S is a set of goal states. The
initial state is a snapshot of the system, any sequence of action that trans-
forms the system to a goal state is called valid plan. Goals can also be called

122 Failure recovery

objectives.

Planning algorithms often are based on some simplifying assumptions:

• The set of states S is finite.

• The system is fully observable, i.e. its state can be determined.

• The system is deterministic, i.e. every action or event has only one
possible outcome.

• . . .

The following section gives a short overview of different formalisms to rep-
resent planning problems.

4.3.1 Formal representation

A formalisation provides a formal description of all relevant information of
planning problems. The system’s state, the objectives, the actions, and its
causalities have to be covered by such a formalisation.

Situation calculus [McC68, McC86] is a formalism to describe dynamic do-
mains in first-order-logic. It is one of the most famous logic representations
for planning problems. The system it depends on is modelled as consisting
of a sequence of situations where each situation is a snapshot of the state of
the system. Situations are a consequence from actions applied to previous
situations. A binary function Result(action, situation) returns the succes-
sor state of a state if a certain action is performed. Every predicate that
can change from situation to situation obtains an extra situation argument.
Actions are defined as axioms. These axioms are called effect axioms. The
situation calculus needs some further axioms, called frame axioms. These de-
termine which statements are not affected by the execution of an action.

Another approach for encoding a knowledge base for planners into first or-
der predicate logics is the event calculus [KS86, MS99]. Situation calculus
has two problems limiting its applicability [RN95]. It is not suitable to rep-
resent gradual change over time and spontaneous change. Event calculus
can cope with these aspects. In the event calculus, events initiate periods
during which certain properties hold. A property is initiated by an event
and continues to hold until some event occurs that terminates it.

Expressing planning problems in logic is very expressive causing planning
in such domains to be slow. The STRIPS (STanford Research Institute Prob-
lem Solver) [FN71] representation has been devised by Fikes and Nilsson
to overcome with these computational difficulties. STRIPS is probably the
most famous planning language. It was designed to control a robot named

4.3 Introduction to Automated Planning 123

Shakey. The STRIPS language describes states by a conjunction of function-
free ground literals. Actions are modelled by operators. An operator con-
sists of a precondition and an effect. The effects are often composed of an
add list and a delete list. The semantic of an operator description states that
an operation is only applicable if the precondition holds in the current sys-
tem state and that after execution the literals of the add list will be added to
the system state and the atoms of the delete list will be deleted.

In the following it is demonstrated how a planning problem can be mod-
elled using a STRIPS like representation. Therefore the blocks world [ST96]
is used. It consists of a set of blocks on a table. The blocks can be stacked and
all blocks have the same size. Thus it is e.g. impossible to put two blocks
directly onto another. There is one robot arm in the blocks world that has
the ability to pick a block and put it either on the table or on another block.
This can be modelled as follows:

The blocks on the table are constants. The four blocks of this example are
described by the constants: A, B, C, and D. Furthermore, there are the pred-
icates:

On(x,y) Indicates that block x is on block y.

Ontable(x) Is block x on the table?

Clear(x) True if no block is on top of x.

Armempty Is the robot arm empty or is it holding a block?

Holding(x) Indicates that block x is held by the robot arm.

The possible actions in the blocks world are modelled by four operators:

PICKUP(x) Takes a block from the table. The preconditions are that the
block x is on the table, no other block is on top of x, and the robot arm
is empty. The effects are that the arm is holding the block, the block is
neither on the table nor clear, and the robot arm is not empty.

PUTDOWN(x) Puts a block on the table. The precondition is that the robot
arm is holding a block. The effects are that the block x is on the table,
clear, and the robot arm is empty.

STACK(x,y) Stacks block x on block y. The preconditions are that the robot
arm is holding block x and block y is clear. The effects are that the
robot arm is empty, x is on y, x is clear, the arm does not hold x, and y
is not clear.

UNSTACK(x,y) Takes a the block x from block y. The preconditions are
that the robot arm is empty, x is clear and is actually on y. The effects
are that the arm is holding x, block y is clear, the arm is not empty, x is
not clear and x is not on y.

124 Failure recovery

PICKUP(x)

precond: Ontable(x), Clear(x), Armempty

effect: ADD: Holding(x)

DEL: Ontable(x), Clear(x), Armempty

PUTDOWN(x)

precond: Holding(x)

effect: ADD: Ontable(x), Clear(x), Armempty

DEL: Holding(x)

STACK(x,y)

precond: Holding(x), Clear(y)

effect: ADD: Armempty, On(x,y), Clear(x

DEL: Holding(x), Clear(y)

UNSTACK(x,y)

precond: Armempty, Clear(x), On(x,y)

effect: ADD: Holding(x), Clear(y)

DEL: Armempty, Clear(x), On(x,y)

Figure 4.1: Operators of the blocks world

Figure 4.1 shows the modelling of the operators in a STRIPS-like notation.

With the definition of the operations the properties of the domain are mod-
elled. Given this set of operators, an initial state, and a goal, a STRIPS plan-
ner is able to generate a plan. Consider for example an initial state as in
Figure 4.4(a) and a goal state as in Figure 4.4(b).

INIT

Ontable(B) ∧ On(A,B) ∧ Clear(A) ∧
Ontable(C) ∧ Clear(C) ∧ Holding(D)

GOAL

On(C,D) ∧ On(B,C) ∧ On(A,B)

Figure 4.2: Initial state and objective

The accordant representation of this case in the terms of the predicates as
introduced are shown in Figure 4.2.

Properties of the STRIPS language have been discussed over many years
and a number of proposals for extensions and changes have been made,
e.g. [Lif86, Rei01]. The ADL planning language [Ped89] is a more expres-
sive language and solves some problems of the STRIPS formalism. Instead
of the Closed World Assumption of STRIPS, i.e. negative information is not

4.3 Introduction to Automated Planning 125

(a) Initial state (b) Goal state

Figure 4.3: Blocks world

given explicitly, ADL is based on an Open World Assumption, i.e. undefined
literals are unknown. Thus, state descriptions consist of positive and neg-
ative literals. Some further features of ADL are universal quantification of
preconditions and effects, typing support, and the definition of context sen-
sitive effects.

Like ADL, a number of planning languages emerged to extend the expres-
siveness of STRIPS in certain issues. As this wide range of formats makes
it hard to compare the performance of planning algorithms, the PDDL 1.7
language [McD98] has been developed for the AIPS ’98, The Fourth Inter-
national Conference on Artificial Intelligence Planning and Scheduling Sys-
tems. PDDL is inspired by the STRIPS formulations, and basically a first-
order logic language. The syntax is inspired by LISP, so much of the struc-
ture of a domain description is a LISP-like list of parenthesised expressions.
The first version of PDDL included features of ADL [Ped89], SIPE-2 [Wil88],
PRODIGY [Car88], and UCPOP [PW92].

The PDDL version for the AIPS in the year 2002 is called PDDL2.1 [FL03]. It
contains new features, mainly connected with adding time to the language.
Certain other features of the original language have been removed. The
2004 version is called PDDL2.2 [EH04]. It adds derived predicates and timed
initial literals. The former are just backward-chaining axioms that allow a
planner to achieve a goal by making the antecedent of one of them true.
The latter are literals that will become true at a predictable time indepen-
dent of what the planner does. PDDL3.0 [GL05] is the language for the 2006
competition and incorporates constraints and preferences.

PDDL separates the descriptions of actions that characterise domain be-
haviours from the description of specific objects, initial conditions, and
goals that characterise a problem instance. A planning problem in PDDL
consists of a domain description with a problem description. Figure 4.4

126 Failure recovery

shows the domain description of the blocks world in PDDL.

(define (domain blocksworld)

(:requirements :strips)

(:predicates (clear ?x)

(ontable ?x)

(armempty)

(holding ?x)

(on ?x ?y))

(:action pickup

:parameters (?x)

:precondition (and (clear ?x) (ontable ?x) (armempty))

:effect (and (holding ?x) (not (clear ?x))

(not (ontable ?x)) (not (armempty))))

(:action putdown

:parameters (?x)

:precondition (holding ?x)

:effect (and (clear ?x) (armempty) (ontable ?x)

(not (holding ?x))))

(:action stack

:parameters (?x ?y)

:precondition (and (clear ?y) (holding ?x))

:effect (and (armempty) (clear ?x) (on ?x ?y)

(not (clear ?y)) (not (holding ?x))))

(:action unstack

:parameters (?x ?y)

:precondition (and (on ?x ?y) (clear ?x) (armempty))

:effect (and (holding ?x) (clear ?y) (not (on ?x ?y))

(not (clear ?x)) (not (armempty)))))

Figure 4.4: Domain definition of the blocks world in PDDL

A number of other planning representations exist, but as it goes beyond the
scope of this work they are not further discussed here. The next section
focuses on how to solve planning problems.

4.3 Introduction to Automated Planning 127

4.3.2 Planning techniques

The task of a planning technique is to find valid plans for given plan-
ning problems. Basically, planning can be seen as a search problem
[NS72, AHT90]. Planning algorithms vary in the space that is searched, how
the search is performed, in which way the plans are constructed, and so on.
In the following an overview of different planning techniques is given.

State-space planning

The simplest classical planners are based on state-space planning where the
search space is a subset of the state space. A state-space planning problem
can be represented as a graph: Every node is an element of the set S, the
states of the system. The edges are elements of A, the set of actions and are
directed. The edges connect a state and the state that results from the appli-
cation of the corresponding action at this state. A plan can be represented
as a path within the graph. A path from the initial state s0 to a goal state
sG ∈ SG is a solution of the planning problem. It is possible that multiple
paths lead from the initial to a goal state. Figure 4.5 shows the search graph
of the blocks world example.

Figure 4.5: State-space planning

An advantage of representing the planning problem as a search in a graph
is that general search algorithms can be applied [Kor88]. Dependent on

128 Failure recovery

whether the planning algorithm is searching forwards starting from the ini-
tial state to the goal state or searching backwards from the goal state to the
initial state it is called progression planner or regression planner. For typical
planning problems regression search is faster than progression search, but
unfortunately also more complicated [RN95]. Progression and regression
search both are sound and complete, but state-space search has a rather high
complexity as it produces a vast number of branches. State based planners
normally output solutions as totally ordered sequences of actions, i.e. a list of
actions.

The original STRIPS algorithm is a state-space regression planner with a
mechanism to reduce the plan space significantly. However, this makes
STRIPS incomplete, i.e. it is not guaranteed to find a solution for a prob-
lem even if one exists.

The FAST FORWARD (FF) planning system [Hof01] was the most successful
automatic planner in the AIPS 2000. FF is based on forward search through
the search space, guided by a sophisticated heuristic function to focus the
search.

PRODIGY [Car88] is a system that incorporates forward state-space plan-
ning and learning capabilities. It uses control rules to guide the search -
these rules may be general or domain specific, hand coded or automatically
acquired, and may consist of heuristic preferences or definitive selections.
If no control rules are defined, PRODIGY defaults to depth-first means-ends
analysis. The learning process of PRODIGY refers to refining the possibly in-
complete domain description through experience and learning knowledge
to control the search process.

VVPLAN [VR99] is a forward state-space planner for the ADL language. It
improves the performance by introducing a loop test relating to previously
visited states.

Plan-space planning

An alternative to the search through the state-space is to search through the
space of plans. In this space the search nodes represent partially specified
plans, the start node is an empty plan which has no actions. The edges
correspond to refinements of the partial plans, called plan refinements, that
expand them until a complete plan has been created that solves the stated
planning problem. Figure 4.6 illustrates a search through the plan space of
the blocks world example.

To introduce some basic concepts of plan space planning a simple, banal
planning problem is considered: preparing a lazy evening. The goal is to
have beer, chips, and a movie, i.e. HaveBeer ∧ HaveChips ∧ HaveMovie, the

4.3 Introduction to Automated Planning 129

Figure 4.6: Plan-space planning

initial state is ¬HaveMoney ∧ ¬HaveBeer ∧ ¬HaveChips ∧ ¬HaveMovie. The
operations are:

DRAWMONEY - effect: HaveMoney

BUYBEER - precond: HaveMoney, effect: HaveBeer

BUYCHIPS - precond: HaveMoney, effect: HaveChips

RENTMOVIE - precond: HaveMoney, effect: HaveMovie

Plan-space refinement algorithms often apply a principle called least commit-
ment what means to defer decisions as long as possible. Instead of commit-
ting to a totally ordered sequence of operations as typical e.g. in state-space
planning, plans are represented as partially ordered sequences where or-
dering restrictions are inserted only if necessary. Planners using partially
ordered sequences of actions are called partial order planners, in contrast to
total order planners. A total order plan is a linearisation of a partial order plan
if it does not violate any of its ordering constraints. Figure 4.7 illustrates a
partial order plan for the lazy evening planning problem, Figure 4.8 shows
the linearisations of this partial order plan.

Partial order plans can be represented as a quadruple 〈ST ,O, CL,B〉
where

• ST is a set of steps,

• O is a set of ordering constraints,

• CL is a set of causal links, and

• B is a set of variable binding constraints.

ST contains the steps of the plan. These steps consist of the available ac-
tions A of the problem description. O is a binary relation over ST . Its

130 Failure recovery

Figure 4.7: Partial order plan for the lazy evening

Figure 4.8: Total order plans for the lazy evening

entries are of the form si < sj where si, sj ∈ ST . This means that step si is
performed before sj.

Causal links are a method to keep track of past decisions. Causal links have
the form si

c−→ sj where si and sj are steps of the plan. c is a proposition

and an effect of si as well as a precondition of sj, e.g. DRAWMONEY
HaveMoney−→

BUYBEER. It is read “si achieves c for sj” and records e.g. that the purpose
of DRAWMONEY is to achieve the precondition HaveMoney for BUYBEER. Causal
links make it possible to detect threats. Let si, sj, sk be actions in A, si

c−→ sj,
and ¬c is an effect of sk. If not sk < si or sj < sk then sk threatens si

c−→ sj. If
there was for example an action SPENDMONEY that could be executed between

4.3 Introduction to Automated Planning 131

DRAWMONEY and BUYBEER it threats DRAWMONEY
HaveMoney−→ BUYBEER.

Variable binding constraints bind variables to either constants or reference
them to other variables. In the blocks world example the variable x of the
operator STACK(x,y) could be bound to block A, denoted as x=A. If only
ground plan steps are used, i.e. plan steps without variables, as in the lazy
evening example, then B = ∅.

Other terms that can be derived from 〈ST ,O, CL,B〉 exist. OC is the set
of open conditions. An open condition is a precondition c of a plan step sj

where there is no causal link si
c−→ sj, si ∈ ST . UCL is the set of unsafe

causal links, i.e. causal links that are threatened by another step. The flaws
of a plan are the union of its open conditions and unsafe causal links: F =
OC ∪ UCL.

A solution of a partial order planning problem is a complete and consistent
plan. In a complete plan every precondition of every step is achieved by
some other step. A consistent plan does not contain any contradictions in
its ordering or binding constraints.

The initial partial plan, the plan at the begin of the search graph where no
refinements have been made, is sometimes called the null plan. To improve
simplicity and uniformity the null plan works with a little encoding trick
to describe the initial planning problem. The null plan has the following
structure:

• ST = {START, GOAL}
• O = {START < GOAL}
• CL = ∅

• B = ∅

START is a dummy step that has no precondition and its effects define the
initial state of the system s0.

START - effect: s0

GOAL is a dummy step that has no effects but its preconditions are the propo-
sitions of the goal state sG.

GOAL - precond: sG

Plan-space planning was pioneered by Sacerdoti [Sac74, Sac90] who devel-
oped a planner called NOAH and reformulated the planning problem as a
search through the space of plans. In 1977, Tate developed a system called
NONLIN [Tat77] and introduced the concept of causal links.

TWEAK [Cha87] combined and distilled research in the field of partial order
planners, formalised planning problems, and developed a sound and com-

132 Failure recovery

plete generic planner. McAllester et al. [MR91] describe a simple, sound,
complete, and systematic partial order planning algorithm for STRIPS plan-
ning, called SNLP.

The UCPOP planner [PW92] is a well-known plan space planner and intro-
duced major improvements based on contributions of TWEAK and SNLP.
It handles a subset of the ADL language. UCPOP is a regression planner
and applies a search control strategy to decide which partial plan should be
further refined.

REPOP [NK01] introduces several novel heuristic control techniques to im-
prove the scalability of partial order planning algorithms. Its implementa-
tion is based on UCPOP.

VHPOP [YS03a] is a versatile heuristic partial order planner, loosely based
on UCPOP. It was the best newcomer at the 3rd International Planning
Competition in 2002. VHPOP comes with a set of flaw selection strategies
to guide the search and permits to use them simultaneously to combine its
strengths.

Graph-based planning

Graph-based planning uses a certain data structure for the planning process
called planning graph. It can be used to obtain better heuristic estimates to
guide the planning process. As illustrated in Figure 4.9, such heuristics can
either be used together with a planner or a solution can directly be extracted
from the planning graph, using a specialised algorithm.

Figure 4.9: Usage of planning graphs

Planning graphs can only be applied to planning problems without vari-
ables. A planning graph consists of several levels that correspond to time
steps in the plan (see Figure 4.10). Each level is layered and contains a state

4.3 Introduction to Automated Planning 133

layer and an action layer. The state layer of level 0, S0, corresponds to the
initial state s0 of the planning problem. The action layer A0 contains all ac-
tions whose preconditions are nodes in S0. The basic idea is that the literals
in St are those that could be true at time step t, At are those actions that could
have their preconditions satisfied at step t. The action nodes are connected
with its preconditions (the incoming edges) and its positive and negative
effects (the outgoing edges).

Figure 4.10: A planning graph

The planning graph does not take every possible interaction among actions
into account. Therefore, the planning graph can be generated very effi-
ciently. A planning graph can be seen as a relaxed problem for reachabil-
ity analysis. It provides information on which states are reachable from s0.
However, in contrast to a full reachability analysis it only allows for a nec-
essary criteria: If a state is reachable then it also appears in some node of
the planning graph. Nevertheless, planning graphs can be used as a good
estimate of how difficult it is to achieve a given state.

Figure 4.12 illustrates a part of a planning graph for the blocks world plan-
ning problem shown in Figure 4.11. The edges of a planning graph are
directed, but for a better graphical representation the indication of the di-
rection has been omitted. The states of S0 represent the initial state s0 of
the planning problem. A0 contains all actions whose preconditions are in

134 Failure recovery

(a) Initial state (b) Goal state

Figure 4.11: A planning problem within the blocks world

S0 and these actions are connected with their respective preconditions. S1
contains all literals of S0 plus literals that are contained in the effects of any
action of A0 and not contained in S0. The actions of A0 are also connected
with their effects in S1. Maintenance actions are dummy actions that link
literals whose values do not change if no action is performed.

Not mentioned yet is another element of planning graphs: mutexes. They
define pairs of elements that are mutual exclusive, i.e. cannot occur together.
The action PICKUP(A) for instance is mutual exclusive with the maintenance
actions Armempty. The mutexes are represented as red lines in Figure 4.12.

Figure 4.12: Planning graph for the blocks world planning problem

There are three different types of mutex relationships between two actions
a1 and a2, see Figure 4.13:

Inconsistent effects: The action a1 has an effect p while a2 has an effect ¬p.

Interference: a1 has an effect p while a2 has a preconditions ¬p.

Competing needs: a1 has a precondition p while a2 has a precondition ¬p.

4.3 Introduction to Automated Planning 135

(a) Inconsistent effects (b) Interference (c) Competing needs

Figure 4.13: Mutex conditions for actions

For two literals p1 and p2 the criteria to be mutual exclusive is as follows:
Either p1 is the negation of p2 or every action, also maintenance actions, that
has p1 as effect is mutex with every action that has p2 as effect. This mutex
relationship is called inconsistent support.

Further levels of the planning graph are constructed analogous. This comes
to an end when two consecutive levels are identical. If two levels are once
identical, then all the following levels are, too. The resulting graph provides
information about which actions can be performed in which step together
with the information which cannot be performed together. Similarly it pro-
vides information about which literals could occur and which combinations
are impossible. This information can be used by planners to guide their
search.

GRAPHPLAN [BF95] was the first planner that was based on a planning
graph. It is an algorithm that directly extracts the solution from it. GRAPH-
PLAN operates in a loop with two alternating steps: planning graph expan-
sion and solution extraction. The graph is expanded until a state level Sx
is reached which includes all goal literals without mutex relations between
them. This is a necessary condition, i.e. the graph could contain a solution.
In this stage the algorithm tries to extract a plan within the solution extrac-
tion phase. If this fails the graph is further expanded. This loop terminates
if either a solution is found or it turns out that there is no solution.

SGP [WAS98] is a descendant of GRAPHPLAN that solves contingent plan-
ning problems, i.e. generation of a plan whose course of action depends
on information based on sensing actions. Therefore SGP modifies the graph
expansion phase and incorporates a conditioning threat resolution method
into the solution extraction phase.

TGP [SW99] is a planner for temporal planning. TGP adopts an extension
of the STRIPS language allowing to assign starting times and durations to
actions. The planning algorithm generates a temporal planning graph to
find a solution for the planning problem.

Koehler et al. [KNHD97] present an early version of their IPP planner, in
which they extend GRAPHPLAN to a subset of ADL. It allows conditional
and universally quantified effects in operations while most interesting prop-

136 Failure recovery

erties of GRAPHPLAN are preserved. In later work IPP has been extended
by a technique to remove irrelevant operators and facts from planning prob-
lems as well as a goal agenda manager to order subgoals and plan for sub-
problems [KH00].

STAN [FL01], another planner based on GRAPHPLAN, introduces an effi-
cient structure to represent the planning graph. Thus it reduces the costs
for graph construction. Furthermore, it uses TIM [FL98, LF00], a domain
analysis tool, to improve the planning process.

Planning as satisfiability

The traditional way of planning based on logic is deduction [Gre69, Ros81].
In this case planning is proving the theorem that the initial state together
with axioms that describe the effects of the actions and some sequence of
actions imply the goal conditions. However, this technique is not very effi-
cient. Another logical planning approach is to test the satisfiability of logi-
cal expressions instead of theorem proving. Basically, this refers to finding
a model that satisfies a logical sentence like this [RN95]:

initial state ∧ all possible action descriptions ∧ goal

This sentence contains the initial state s0 of the planning problem, a goal
state sG, and logical expressions corresponding to every possible action. A
model that satisfies the sentence will assign true to the actions that are part
of a correct plan and false to the others. The sentence is unsatisfiable if no
solution of the planning problem exists.

Planning as satisfiability was first proposed by Kautz and Selman [KS92,
KS96] and used in their SATPLAN planner. The encoding in a satisfiability
problem was hand-coded as they had difficulties to automatically derive it
from STRIPS.

Ernst et al. [EMW97] developed an automatic “compiler” to generate satis-
fiability problems from planning problems in PDDL representation.

BLACKBOX [KS98, KS99] is a planner that combines SATPLAN and GRAPH-
PLAN. It takes planning problems specified in STRIPS as input and converts
them to a planning graph of a certain length. The plan graph is then con-
verted to a special logic representation. The resulting logic formula is then
simplified by a general simplification algorithm. This formula is then solved
by a satisfiability planner. If a model could be found it is converted to a plan,
otherwise the process is repeated with a planning graph of an incremented
size.

Further satisfiability planners are e.g. DPLL [Lib00], WALKSAT [SKC95], and
LPSAT [WW99].

4.4 Failure recovery engine 137

With the given survey of planning techniques it is tried to cover some im-
portant aspects. For more information about automated planning it is re-
ferred to [GNT04].

In the next section a failure recovery engine is introduced which is able to
manage distributed systems.

4.4 Failure recovery engine

The failure recovery process can be seen as an instance of an Ob-
server/Controller architecture [RMB+06] in the terminology of Organic
Computing (OC) or the MAPE [SPTU05] control loop of Autonomic Com-
puting (AC) systems. The MAPE control loop consists of the four stages
monitor, analyse, plan, and execute.

The failure recovery engine works in a distributed way where one instance
runs on every node of a distributed system. The user/administrator defines
objectives and the engine is responsible for their compliance. Thus, users
can specify the desired system behaviour but do not need to deal with its
implementation. Monitoring and analysing provides information about the
system while planning and execution yields decision-making and action-
taking.

The planning capabilities of the recovery engine are based on the POP algo-
rithm which is introduced in the next section.

4.4.1 Pop algorithm

The POP algorithm [Wel94] shown in Algorithm 13 is a partial order plan
space planner (see Section “Plan-space planning” in 4.3.2).

Recall that partial order plans can be represented as a quadruple:
〈ST ,O, CL,B〉 where

• ST is a set of steps,

• O is a set of ordering constraints,

• CL is a set of causal links, and

• B is a set of variable binding constraints.

For the sake of simplicity, in the POP algorithm (Algorithm 13), the usage
and binding of variables is omitted. In this case a plan can be represented
as 〈ST ,O, CL〉. A is the set of available actions of the system. A set named
agenda is used to keep track of the open conditionsOC. Each item of agenda

138 Failure recovery

Algorithm 13 The POP algorithm
function POP(〈ST ,O, CL〉, agenda,A)

[1. Termination:]
if agenda is empty then return 〈ST ,O, CL〉
end if

[2. Select flaw:]
Choose an item 〈c, aneed〉 from agenda

[3. Select action:]
Choose an action aadd that has c as effect;
either from the steps of the plan ST or
a new action from the set of available actions A.
if no such actions exists then return ’failure’
end if

[4. Refine plan:]
Add aadd, an ordering constraint, and a causal link.
〈ST ,O, CL〉 :=
〈ST ∪ {aadd},O ∪ {aadd < aneed}, CL ∪ {aadd

c→ aneed}〉.

[5. Update agenda:]
Remove 〈c, aneed〉 from agenda:
agenda := agenda\ 〈c, aneed〉.
Then add an entry 〈ci, aadd〉 to agenda for all preconditions ci of aadd.

[6. Resolve threats:]
For each action athreat that threatens a link
ai

c→ aj in CL choose either
(a) Promotion: Add athreat < ai to O
(b) Demotion: Add aj < athreat to O

[7. Recursive call:]
POP(〈ST ,O, CL〉, agenda,A)

end function

has the form 〈c, ai〉 where c is a precondition of ai. The initial call of POP is
performed with the parameters:

• The null plan representing the planning problem: 〈{START, GOAL},
{START < GOAL}, ∅〉.

4.4 Failure recovery engine 139

• agenda consists of the subgoals of the initial planning problem, i.e.
agenda := {〈c1,GOAL〉, . . . , 〈cn,GOAL〉}, where c1, . . . , cn are the precondi-
tions of GOAL.

• The available actions of the planning problem: A.

The POP algorithm terminates if there are no more flaws. In every call the
algorithm selects one flaw and tries to achieve it. To do so, the algorithm
chooses a refinement, normally either to use an existing step from ST or to
add a newly instantiated one from A. If no action exists that could achieve
the flaw then a failure is returned. Assuming that the action aadd is chosen to
achieve subgoal 〈c, aneed〉, i.e. aadd has c as an effect. Then aadd is added to the
set of steps ST if aadd is a newly instantiated action. If aadd is an already ex-
isting step nothing needs to be done at this point. In either case aadd < aneed

is added to O and aadd
c→ aneed is added to CL to commit that aadd is per-

formed before aneed and aadd achieves c for aneed. As now the agenda item
〈c, aneed〉 is achieved it can be removed. In return, for all preconditions ci of
aadd an entry 〈ci, aadd〉 is added to the agenda to declare that these precondi-
tions have to be achieved in a subsequent step. The addition of aadd

c→ aneed

to CL could cause threats. If there is for example a causal link ai
¬c→ aj and

not aneed < ai or aj < aneed then aadd threatens ai
¬c−→ aj. To resolve such a

threat either promotion or demotion can be used. Promotion in this case is
to add aneed < ai, demotion to add aj < aadd to the ordering constraintsO.

(a) Initial state (b) Goal state

Figure 4.14: The “Sussman anomaly” planning problem

To demonstrate the functionality of the POP algorithm it is applied to an ex-
ample planning problem: the so-called “Sussman anomaly” [Sus75]. Plan-
ners that are based on the assumption that subgoals are independent and
can be sequentially achieved in an arbitrary order have problems to solve
this problem. Figure 4.14 illustrates the Sussman anomaly in the blocks
world domain. The problem has two subgoals: On(A,B) and On(B,C). If it is
first tried to achieve On(A,B), then it is obvious to put C on the table and A

140 Failure recovery

on B afterwards. However, now it is impossible to achieve On(B,C) without
destroying On(A,B). Trying to achieve On(B,C) first results in putting B on
C. As A remains on the table under C, in this case it is impossible to achieve
On(A,B) without destroying On(B,C). The root of the problem is that the
subgoals interfere with each other. Also Weld [Wel94] uses the Sussman
anomaly to explain the POP algorithm.

Figure 4.15(a) shows the null plan of the Sussman anomaly. This is used
as argument for the call of the POP procedure. START is a dummy step
that has no precondition and its effects define the initial state of the prob-
lem, GOAL is a dummy step that has no effects but its preconditions rep-
resent the goal state. For the sake of simplicity two new actions are in-
troduced that are compositions of the already defined ones of the blocks
world: PutFromTable(X,Y) takes a block X that is on the table and puts it
on Y. It is a composition of Pickup(X) and Stack(X,Y). The second action
putOnTable(X,Y) takes C that is currently on Y and puts it on the table. This
combines Unstack(X,Y) and Putdown(X). The set A contains all the avail-
able actions of the planning domain, in this case Pickup(X), Putdown(X),
Stack(X,Y), Unstack(X), PutFromTable(X,Y), and putOnTable(X,Y). At the
call of the POP algorithm the agenda consists of the two elements 〈On(A,B),
GOAL〉 and 〈On(B,C), GOAL〉.

(a) Initial plan (b) After first call (c) After second call

Figure 4.15: Partial plans for the “Sussman anomaly”

As the list agenda is not empty the algorithm (see Algorithm 13) proceeds
to step 2 and selects one item of the agenda as flaw to achieve next. The
choice of the flaw has no influence on the completeness of the planning
process, but it has an influence on the performance of the search. It falls
into the scope of planning heuristics to select opportune flaws. Let us as-
sume the algorithm chooses the flaw 〈On(B,C), GOAL〉 first. In the next step
the algorithm selects an action either from ST or from A that has On(B,C)

as an effect. In this example it selects PutFromTable(B,C). According to
step 4 the algorithm adds PutFromTable(B,C) to ST , PutFromTable(B,C)

< GOAL to the ordering constraints O, and PutFromTable(B,C)
On(B,C)−→ GOAL

to the set of causal links CL. Then, the agenda is updated: 〈On(A,B),
GOAL〉 is now achieved by a causal link and can be removed. In return,

4.4 Failure recovery engine 141

it adds entries for all preconditions of PutFromTable(B,C) to the agenda,
i.e. 〈Clear(B), PutFromTable(B,C)〉, 〈Clear(C), PutFromTable(B,C)〉, and
〈OnTable(B), PutFromTable(B,C)〉. Since there is only one causal link a
threat cannot occur. As final step of this first call, the POP procedure is
recursively invoked. The corresponding partial plan at the end of the first
call is shown in Figure 4.15(b) where the arrow denotes the causal link.

In the second run of the POP procedure it is assumed that the flaw
〈Clear(B), PutFromTable(B,C)〉 is chosen and the existing step START is se-
lected to achieve it. Figure 4.15(c) illustrates the resulting partial plan.

Suppose that in the third invocation of the POP procedure the plan-
ner selects the flaw 〈On(A,B), GOAL〉 and the newly instantiated action
PutFromTable(A,B) from A to achieve it. In this case the planner recog-
nises a threat as the newly introduced step has an effect PutFromTable(A,B)
¬Clear(B) and could be executed before the PutFromTable(B,C) action.

Therefore it threatens the causal link START
Clear(B)−→ putFromTable(B,C) as

depicted in Figure 4.16(a). To resolve this threat, the POP algorithm chooses
demotion, i.e. adds PutFromTable(B,C) < PutFromTable(A,B) to the order-
ing constraintsO. The partial plan after the resolution of the threat is shown
in Figure 4.16(b).

(a) Partial plan with threat (b) Partial plan with resolved threat

Figure 4.16: Partial plans for the “Sussman anomaly”

The POP procedure is recursively called as long as the agenda is not empty
and finally results in the plan that is illustrated in Figure 4.17. In this plan
all the preconditions are achieved by a causal link without any threats.

The proposed recovery engine is based on the POP algorithm presented in
this section, but with several extensions. In the following the developed fail-
ure recovery concepts are presented. In Section 4.4.2 the planning language

142 Failure recovery

Figure 4.17: Final plan for the “Sussman anomaly”

used to specify e.g. the system objectives is introduced. Section 4.4.3 dis-
cusses the functionality of the failure recovery engine in detail. Section 4.4.4
introduces further extensions and improvements of the failure recovery pro-
cess.

4.4.2 Planning language

To specify the system objectives, the actions nodes are able perform, and to
describe the current condition of the system a planning language is used.
The planning language follows the syntax of the Planning Domain Defini-
tion Language PDDL [McD98], presented in 4.3.1. A PDDL definition con-
sists of a domain and a problem definition. In this section the general input
language for the developed planner is introduced.

4.4 Failure recovery engine 143

Domain definition

The domain definition contains the definitions for types, predicates and for
the available actions.

(:types TYPE_1 ... TYPE_N)

(:predicates (PREDICATE_1_NAME [ARG_1 ... ARG_N])

(PREDICATE_2_NAME ...

...)

(:action ACTION_1_NAME

[:parameters (PARAM_1 ... PARAM_N)]

[:precondition PRECOND_FORMULA]

[:effect EFFECT_FORMULA]

)

(:action ACTION_2_NAME

...)

...

Elements inside of angled parentheses are optional. A type like TYPE_1 is
defined by a name and a supertype: TYPE_1_NAME [- SUPERTYPE_TYPE_1].
Types are organised hierarchically where every type has exactly one super-
type. If no supertype is given the standard supertype object is implicitly
set. The arguments of predicates and the parameters of actions are typed
variables. Variables are indicated by question marks. The argument ARG1 is
defined by ?ARG_1_NAME - TYPE_ARG_1.

In the current implementation of the planning engine, a precondition for-
mula PRECOND_FORMULA is any formula of the predicate calculus which is
in prenex normal form, i.e. PRECOND_FORMULA= Q1y1Q2y2 . . . QkykF, where
k ≥ 0 and Q1, . . . , Qk ∈ {∀, ∃} and no further quantors in F. Other re-
strictions are currently that in F negation occurs only immediately above
elementary propositions, and ¬,∧ are the only allowed connectives.

An effect formula EFFECT_FORMULA is of the same form as a precondition
formula, but as a further restriction no existential quantifiers are allowed.

Problem definition

The problem definition contains the objects present in the problem instance,
the current state of the system, and its goal.

144 Failure recovery

(:objects OBJ1 OBJ2 ... OBJ_N)

(:init ATOM1 ATOM2 ... ATOM_N)

(:goal PRECOND_FORMULA)

The system’s state description consists of a list of all atoms true in the initial
state. All other atoms are regarded as false. The system’s goal description
has the same form as an action precondition.

To clarify the approach a simple scenario is discussed, a small automated
production cell, introduced by Güdemann et al. [GOR06]. It consists of
three robots and two carts. Each robot has three tools which can be switched
during runtime: (1) a drill to drill holes into workpieces, (2) an inserter to
insert a screw into a drilled hole, and (3) a screw driver to tighten an in-
serted screw. The carts transport workpieces from one robot to another. All
workpieces must be processed in the order drill, insert, and tighten. Fig-
ure 4.18 illustrates this scenario. The arrows represent the flow of the work-
pieces, the tools below the robots are the available tools for that robot, tools
marked with a dot indicate the robot’s tasks, i.e. the processing steps it is
responsible to execute.

Figure 4.18: Production cell

As a start it is shown how this system can be modelled in order to be man-
aged by a classical automated planning approach which requires an omni-
scient central instance performing the planning.

4.4 Failure recovery engine 145

Below the domain definition for the production cell scenario is given.

(:types robot tool cart - object)

(:predicates (having ?r - robot ?t - tool)

(using ?r - robot ?t - tool)

(transporting ?c - cart ?from ?to - tool)

)

(:action startTool

:parameters (?r - robot ?t - tool)

:precondition (and (having ?r ?t) (not (using ?r ?t)))

:effect (and (using ?r ?t))

)

(:action stopTool

:parameters (?r - robot ?t - tool)

:precondition (and (using ?r ?t))

:effect (and (not (using ?r ?t)))

)

(:action startTransport

:parameters (?c - cart ?from ?to - tool)

:precondition ()

:effect (and (transporting c1 ?from ?to))

(:action stopTransport

:parameters (?c - cart ?from ?to - tool)

:precondition (and (transporting ?c ?from ?to))

:effect (and (not (transporting ?c ?from ?to)))

)

Thus, robots can start and stop tools. In order to start a tool ?t the cor-
responding tool must be available for the robot (having r1 ?t). The ef-
fect of the action startTool is that the robot is using the tool afterwards
(using r1 ?t). A robot can also use two tools simultaneously. This is es-
pecially important if another robot completely fails and the remaining ones
have to take over its tasks. The action stopTool can be seen as the comple-
mentary action to startTool and stops using a tool. Carts transport work-
pieces from one robot which is currently using a certain tool to a robot using
another tool. Similar to robots they also start and stop these tasks.

As goal only a subcondition of the condition necessary for ensuring the full
functionality of the production cell is presented. For the purpose of explain-

146 Failure recovery

ing the functionality of the planning engine this is sufficient and easier to
comprehend.

(:objects r1 r2 r3 - robot

drill inserter screw_driver - tool

c1 c2 - cart

)

(:init

(having r1 drill)(having r1 inserter)(having r1 screw_driver)

(having r2 drill)(having r2 inserter)(having r2 screw_driver)

(having r3 drill)(having r2 inserter)(having r3 screw_driver)

(using r1 drill) (using r2 inserter) (using r3 screw_driver)

(transporting c1 drill inserter)

(transporting c2 inserter screw_driver)

)

(:goal (forall (?t - tool) (exists (?r - robot) (using ?r ?t)))

)

It is supposed that in the current system condition all three robots have
the tools drill, inserter, and screw_driver, and r1 is currently using the
drill, r2 the inserter, and r3 the screw_driver. The cart c1 is transporting
workpieces from the robot using the drill to the robot using the inserter

and c2 is transporting workpieces from the robot using the inserter to the
robot using the screw_driver. In this example only the predicates which are
true are cited, implicitly also e.g. (not (using r1 inserter)) is holding.

The objective considered for explanation purposes is that for each tool there
must be one robot which is using that tool.

The next section presents the capabilities of the planning engine to work in
distributed domains with no central omniscient instance.

4.4.3 Failure recovery process

It is assumed that the self-healing approach is applied to a distributed sys-
tem consisting of m nodes n1, . . . , nm. The nodes perceive their environ-
ment with sensors. The term sensor stands for any facility that contributes
to gather information about external or internal states. Typically, nodes only
have sensors for some facts, but do not have information about the whole

4.4 Failure recovery engine 147

system. All nodes are running an instance of the distributed planning en-
gine.

The current state of the system is expressed by predicates. Let S be the
set of existing sensors, and P be the set of existing predicates. A function
µ : S →P maps a sensor to its corresponding predicate. The function µ is
injective; in the untypical case that a node has a sensor for each predicate,
which represents a complete view on the whole system, it is also surjective.
The set Pn stands for all predicates, node n has a sensor to determine its
value, i.e. Pn ⊆P in more detail Pn = {p ∈P | ∃s ∈ S : µ(s) = p}.

Nodes are only able to perceive parts of the system status, but it is assumed
that there is no predicate which cannot be perceived by any node. This
means in a system with the nodes n1, . . . , nm, the union of the perceivable
predicates of all nodes results in the set of all predicates: Pn1 ∪ . . .∪Pnm =
P .

All entities in the distributed system constantly monitor their environment
using their sensors. If one entity observes a violation of an objective it ini-
tiates a recovery process. This entity now serves as coordinator for a dis-
tributed planning process with the goal to recover the system to a state in
line with the system’s objectives. The coordinator manages an agenda with
open conditions that have to be addressed in order to recover the system.
The open conditions are announced, while all entities communicate their
possible contributions to resolve an open condition to the coordinator. Thus,
the coordinator is able to generate a plan where the abilities of other enti-
ties are included. The result is a parallel executable plan that recovers the
system from the unwanted state. Using the MAPE architecture, the failure
recovery process for each node can be expressed as follows:

Monitor: Relevant environmental parameters are monitored using the
available sensors.

Analyse: Check whether the system is consistent with objectives specified
in PDDL.

Plan: The node which first discovers an inconsistency initiates and coordi-
nates a distributed planning process.

Execute: The found plan is executed in a distributed way.

The analyse, plan, and execution phases of the failure recovery engine are
the most interesting ones and explained in the following sections. Before,
the information restrictions of planning in distributed environments in com-

148 Failure recovery

parison to classical planning are discussed.

Types: The available types are known due to information exchange of the
nodes.

Predicates: Each node only knows about the existence of predicates neces-
sary to describe its actions, the goal, and the initial state. However,
the current value of a predicate is only known if the node has a corre-
sponding sensor.

Actions: Each node only knows the actions it is able to perform itself.

Objects: The available objects are known due to information exchange of
the nodes.

Init: The initial state reflects the system’s state in this work. Each node only
has information about the parts of the system covered by its sensors.

Goal: Any node knows the complete goal description for the system. This
goal description may be broadcast into the network.

The information restrictions are exemplified using the production cell sce-
nario introduced above from the view of the robot r1.

(:types robot tool cart - object)

(:predicates (having ?r - robot ?t - tool)

(using ?r - robot ?t - tool)

)

(:action startTool

:parameters (r1 ?t - tool)

:precondition (and (having r1 ?t) (not (using r1 ?t)))

:effect (and (using r1 ?t))

)

(:action stopTool

:parameters (r1 ?t - tool)

:precondition (and (using r1 ?t))

:effect (and (not (using r1 ?t)))

)

The existing types, robot, tool, and cart, are known to robot r1, as it ex-
changes the information about the available types with the other nodes.
Robot r1 is aware of the predicates having and using since these predicates
are used to describe its actions and the system’s goal. The list of actions
consists only of the actions r1 is able to perform.

4.4 Failure recovery engine 149

(:objects r1 r2 r3 - robot

drill inserter screw_driver - tool

)

(:init

(having r1 drill)(having r1 inserter)(having r1 screw_driver)

(using r1 drill) (not (using r1 inserter))

(not (using r1 screw_driver))

)

(:goal (forall (?t - tool) (exists (?r - robot) (using ?r ?t)))

)

Based on message exchange, robot r1 is aware of the existing objects of type
robot and tool. In fact, information about all objects of a type is only nec-
essary if a forall expression is used which quantifies over this type. In the
:init section only the values of predicates are known the robot has a sen-
sor for. In this case the robots know about their own tools. Different from
the description of the system’s state using an omniscient planner, not only
the predicates which are true are cited but also the predicates whose value
is false are explicitly stated. Predicates which are not stated have the new
status unknown.

Analyse: consistency check

Any node in the distributed system is constantly checking whether the sys-
tem is in line with the stated objectives. These are expressed in a precondi-
tion formula in the :goal section. First the distributed consistency check is
discussed for a goal formula without quantifiers. Thus, the goal precondi-
tion formula G consists just of a conjunction of positive and negative predi-
cates. Two variants for the analysis whether a system is in a valid state exist:
(1) Each node inspects the system to be in line with the full list of goal predi-
cates which is reasonable for smaller systems and (2) the goal is divided into
subgoals and the task of consistency checks for these subgoals is assigned
to different nodes.

Assuming the goal has the form G = g1 ∧ . . . ∧ gk, where gi (1 ≤ i ≤ k)
is a positive or negative predicate. For a consistency check the elements
g1, . . . , gn need to be assigned to the nodes n1, . . . , nm of the system . In the
case (1) each node monitors the value for each element of G. If a node does
not have a sensor to directly diagnose the value of the corresponding predi-
cate, it needs to ask nodes which have such a sensor. If the monitoring of the
goal predicates is divided and each node is only responsible for parts of G,
it is of course necessary for the correct functioning that all goal predicates

150 Failure recovery

have at least one node which is checking it. For an efficient consistency
check the distribution of subgoals should consider to assign predicates to
nodes which can directly observe them.

To be able to divide and distribute goals which contain a quantifier, the
planning engine eliminates all universal quantifiers. This can easily be
performed as the quantified variables are typed and their possible val-
ues - the objects - are finite. Thus, the goal G is transformed to the form
G = ∃y1 . . . ∃yiG instead of G = Q1y1 . . . QkyiF, where Q1, . . . , Qk ∈ {∀, ∃}.
F then has the form F = g1 ∧ . . . ∧ gk, where gi (1 ≤ i ≤ k). This can be
transformed to G = ∃y1 . . . ∃yig1 ∧ . . . ∧ ∃y1 . . . ∃yigk. These k subgoals can
then again be distributed to different nodes to perform consistency checks.
The consistency check for existentially quantified predicates demands that
one actual instance of a corresponding predicate needs to be accounted.

In the robot cell example, first the universal quantifier of the goal
(forall (?t - tool) (exists (?r - robot) (using ?r ?t))) is elimi-
nated which results in a conjunction of (exists (?r - robot) (using ?r

drill)), (exists (?r - robot) (using ?r inserter)), and (exists (?r

- robot) (using ?r screw_driver)). These subgoals are distributed to
the nodes of the production cell, i.e. the robots r1, r2, r3, and the carts c1,
c2. To check e.g. the subgoal (exists (?r - robot) (using ?r drill)),
a node verifies whether at least on of the predicates (using r1 drill)),
(using r2 drill)), and (using r3 drill)) is true.

If any node finds an inconsistent subgoal, the planning phase is supposed
to resolve that problem and to transform the system into a state which is in
line with the objectives.

Plan: distributed planning

If one entity observes a violation of an objective it initiates a reconfiguration
process. This entity now serves as coordinator for a distributed planning
process which is performed with a distributed variant of the POP algorithm,
called DPOP. It has been developed in the course of this work and is shown
in Algorithm 14. The red colour indicates the parts which differ substan-
tially from the central POP algorithm.

In step 2, the POP as well as the DPOP algorithm select a flaw which needs
to be achieved. The central algorithm selects an action to do so from its local
set of available actions. DPOP, however, broadcasts the selected flaw to all
nodes. Note that each node runs an instance of the planning engine imple-
menting the DPOP algorithm. Each node has a list of actions containing the
regular actions it can perform as well as the two dummy actions INIT and
GOAL. Like the POP algorithm, DPOP represents the system’s goals as a GOAL

4.4 Failure recovery engine 151

Algorithm 14 The DPOP algorithm
function DPOP(〈ST ,O, CL〉, agenda)

[1. Termination:]
if agenda is empty then return 〈ST ,O, CL〉
end if

[2. Select flaw:]
Choose an item 〈c, aneed〉 from agenda

[3. Broadcast flaw:]
The chosen flaw 〈c, aneed〉 is broadcast to all nodes.
For uniformity the broadcast is also received by the coordinator
itself which also answers it.

[4. Receive actions:]
All nodes receiving a flaw 〈c, aneed〉 send their actions
which have c as effect from their set of available actions or from
existing steps to the coordinator. Each node has at least one existing
step INIT which has the effects to introduce the initial predicates,
i.e. the predicates of the :init section.

[5. Select action:]
Choose an action from the received action offers.
if no actions have been received then return ’failure’
end if

[6. Refine plan:]
Add aadd, an ordering constraint, and a causal link.
〈ST ,O, CL〉 :=
〈ST ∪ {aadd},O ∪ {aadd < aneed}, CL ∪ {aadd

c→ aneed}〉.

[7. Update agenda:]
Remove 〈c, aneed〉 from agenda:
agenda := agenda\ 〈c, aneed〉.
Then add an entry 〈ci, aadd〉 to agenda for all preconditions ci of aadd.

[8. Resolve threats:]
For each action athreat that threatens a link
ai

c→ aj in CL choose either
(a) Promotion: Add athreat < ai to O
(b) Demotion: Add aj < athreat to O

[9. Recursive call:]
DPOP(〈ST ,O, CL〉, agenda)

end function

152 Failure recovery

step. However, the INIT step of DPOP contains only the known predicates.
If a node receives a broadcast request containing a flaw, it uses the planning
engine to find all actions which achieve that flaw. This set of actions is then
sent to the coordinator which can conduct the further planning with these
actions. Coming back to the production example, Robot r1 for instance has
the following four actions.

(:action startTool

:parameters (r1 ?t - tool)

:precondition (and (having r1 ?t) (not (using r1 ?t)))

:effect (and (using r1 ?t))

)

(:action stopTool

:parameters (r1 ?t - tool)

:precondition (and (using r1 ?t))

:effect (and (not (using r1 ?t)))

)

(:action INIT

:parameters

:precondition

:effect (and (having r1 drill) (having r1 inserter)

(having r1 screw_driver) (using r1 drill)

(not (using r1 inserter))

(not (using r1 screw_driver)))

)

(:action GOAL

:parameters

:precondition (forall (?t - tool)

(exists (?r - robot) (using ?r ?t)))

:effect

)

Consider the production cell as presented in Figure 4.18, but robot
r3 has failed and is now completely unavailable. The goals are:
(exists (?r - robot) (using ?r drill)), (exists (?r - robot)(using

?r inserter)), and (exists (?r - robot) (using ?r screw_driver)).
As robot r3 failed while using the tool screw_driver, the last goal is false.
This is recognised in the analyse phase and a distributed planning process
is initiated to recover the system. Assuming that robot r1 becomes the co-
ordinator for the planning process an optimal planning sequence looks as
follows:

4.4 Failure recovery engine 153

For each recursive run of the DPOP function (see Algorithm 14), the agenda
and the set of causal links (CL) is stated. It is shown which flaw the coor-
dinator is selecting and broadcasting. Furthermore, it can be seen which ac-
tions are received by the coordinator as a result of the broadcast and which
action it selects.

1. Call

agenda = {〈D, GOAL〉, 〈I, GOAL〉, 〈S, GOAL〉}
CL = ∅

r1 broadcasts D and receives:

from r1: INIT, startTool(r1,D) from r2: startTool(r2,D)

r1 selects INIT

2. Call

agenda = {〈I, GOAL〉, 〈S, GOAL〉}
CL = {INIT D→ GOAL}

r1 broadcasts I and receives:

from r1: startTool(r1,I) from r2: INIT, startTool(r2,I)

r1 selects INIT

3. Call

agenda = {〈S, GOAL〉}
CL = {INIT D→ GOAL, INIT I→ GOAL}

r1 broadcasts S and receives:

from r1: startTool(r1,S) from r2: startTool(r2,S)

r1 selects startTool(r1,S)

4. Call

agenda = {〈having(r1, s), startTool(r1, S)〉, 〈¬using(r1, S), startTool(r1, S)〉}
CL = {INIT D→ GOAL, INIT I→ GOAL, start(r1, S) S→ GOAL}

r1 broadcasts (having r1 ?t) and receives:

from r1: INIT

r1 selects INIT

5. Call

agenda = {〈¬using(r1, S), startTool(r1, S)〉}

154 Failure recovery

CL = {INIT D→ GOAL, INIT I→ GOAL, start(r1, S) S→ GOAL,

start(r1, S) S→ GOAL, INIT
having(r1,s)→ startTool(r1, S)}

r1 broadcasts (not (using r1 S)) and receives:

from r1: INIT

r1 selects INIT

6. Call

agenda = ∅

CL = {INIT D→ GOAL, INIT I→ GOAL, start(r1, S) S→ GOAL,

start(r1, S) S→ GOAL, INIT
having(r1,s)→ startTool(r1, S), INIT

¬using(r1,S)→
startTool(r1, S)}

The plan after the sixth call is returned as result. The only step which needs
to be executed is startTool(r1,S). After the execution of this step the sys-
tem is recovered as it is again in line with the stated goal. Robot r1 is adopt-
ing the task of tightening the screws by starting the corresponding tool.

Plans to recover a system typically contain more than one step involving
more than a single node which needs to execute them. In the next section a
generic way is discussed how plans can be executed in a distributed envi-
ronment.

Execute: distributed plan execution

When a plan is found it contains amongst other things the information ST ,
the steps of the plan and O, the ordering constraints which provide infor-
mation about the coherence of a plan execution. If s1 < s2 ∈ O, then s1
needs to be executed before s2. As O is only a partial ordering of the plan’s
steps it is possible that neither s1 < s2 nor s2 > s1 holds. In this case s1 may
be executed before or after s2 - furthermore these two steps can be executed
in parallel. For the parallel execution it is assumed that these steps do not
interact with each other, i.e. the result of a concurrent execution is the same
as executing s1 before s2 or s2 before s1.

In the developed planning engine each step of the resulting plan consists of
an action and the node executing it. Figure 4.19 shows an example of such
a partially ordered plan.

In this example node n1 is supposed to execute a1 and so on. The step (n1,
a1) must be executed before (n3, a3), but the order of (n1, a1) and (n2, a2) does
not matter.

If a valid plan is found the coordinator multicasts it to all nodes which are

4.4 Failure recovery engine 155

Figure 4.19: Distributed partially ordered plan

involved in its execution. Each node which is allowed to immediately ex-
ecute a step, as it has no predecessor, perform the execution and send a
message to all nodes which are scheduled to execute a subsequent step. If
a node has received such a notification from all predecessors of a step, it
executes this step and sends a notification itself to all successors. If a step
has no successors a notification is sent to the coordinator.

In the example of Figure 4.19, the coordinator sends the plan to the nodes
n1, . . . , n5. Hereupon, node n1 executes action a1 and sends a message to
n3, n2 executes a2 and sends messages to n4 and n5. Upon the receipt of the
notification from n1, n3 executes a3 and sends a message to the coordina-
tor. According to this, n4 and n5 execute their corresponding actions upon
the receipt of the notification from n2 and notify the coordinator. Having
received three messages from n3, n4, and n5 the coordinator is aware of the
successful plan execution.

4.4.4 Extensions

After the introduction of the general functionality of the failure recovery
engine, extensions are presented which aim to further improve it.

Recovery-oriented planning

The classical planning approach does not incorporate knowledge which is
available due to the analyse phase. The information gathered in this phase
can be used to modify the planning process to the effect that if possible only
the subgoals detected as unachieved need to be considered.

Assume again the goal G has the form g1 ∧ . . . ∧ gk, where gi (1 ≤ i ≤ k)
is a positive or negative predicate. By the activities of the nodes during the
analyse phase it is known which subgoals are unachieved and which not.
As the ordering is irrelevant, suppose that g1 ∧ . . . ∧ gu are the unachieved
goals while gu+1 ∧ . . . ∧ gk are achieved. In standard planning, the POP or
DPOP algorithms use the following initial parameters:

156 Failure recovery

• ST = {INIT, GOAL}

• O = {INIT < GOAL}

• CL = ∅

• agenda = {g1, . . . , gk}

Here, it is proposed to use this setting of initial parameters:

• ST = {INIT, GOAL}

• O = {INIT < GOAL}

• CL = {INIT
gu+1→ GOAL, . . . , INIT

gk→ GOAL}

• agenda = {g1, . . . , gu}

With this method the agenda has fewer items and the achieved subgoals are
committed to be achieved by the INIT step. This technique can be seen as
a change of the origin of the planning process expecting it to be closer to a
solution. However, it also might be possible that these initial causal links
retard the planner from finding a solution and have to be removed during
the planning.

A simple approach to guarantee that the planner is still complete is to first
start the planning with the initial parameters set in the way proposed here.
If no solution is found the planning process is reinvoked but with a standard
parameter setting. A more sophisticated solution which is applied in the
planning engine is to successively remove the initial causal links when the
planning is coming to a dead end. This also results in the worst case to
finally start with an empty set of causal links. The choice which of these
initial causal links to remove is based on the “Resolve threats”-step of the
planning algorithm. The causal link which caused the most threats during
the addition of new causal links should be removed.

In the previous section “Plan: distributed planning” an example is stated to
show the planning of the DPOP algorithm. The very same initial situation is
considered here, but the recovery-oriented planning approach is applied:

1. Call

agenda = {〈S, GOAL〉}
CL = {INIT D→ GOAL, INIT I→ GOAL}

r1 broadcasts S and receives:

from r1: startTool(r1,S) from r2: startTool(r2,S)

r1 selects startTool(r1,S)

4.4 Failure recovery engine 157

2. Call

agenda = {〈having(r1, s), startTool(r1, S)〉, 〈¬using(r1, S), startTool(r1, S)〉}
CL = {INIT D→ GOAL, INIT I→ GOAL, start(r1, S) S→ GOAL}

r1 broadcasts (having r1 ?t) and receives:

from r1: INIT

r1 selects INIT

3. Call

agenda = {〈¬using(r1, S), startTool(r1, S)〉}
CL = {INIT D→ GOAL, INIT I→ GOAL, start(r1, S) S→ GOAL, start(r1, S) S→
GOAL, INIT

having(r1,s)→ startTool(r1, S)}

r1 broadcasts (not (using r1 S)) and receives:

from r1: INIT

r1 selects INIT

4. Call

agenda = ∅

CL = {INIT D→ GOAL, INIT I→ GOAL, start(r1, S) S→ GOAL, start(r1, S) S→
GOAL, INIT

having(r1,s)→ startTool(r1, S), INIT
¬using(r1,S)→ startTool(r1, S)}

Instead of needing six calls in the best case without the application of
recovery-oriented planning, in this case only four calls are needed. In more
complex systems the possible reduction of the planning complexity carries
much more weight.

The subgoal oriented planning is very interesting for self-healing dis-
tributed systems, as typically systems fail only partially. The technique is
based on the assumption that the subgoals which still are achieved can fur-
ther be achieved in the same manner. Thus, the focus of the planning is on
the failures instead of considering all subgoals for the whole system.

Numerical resources

In classical planning problems numerical resources are not considered. But
as the planner should be characterised by a high versatility and numerical
resources are considered important in the focused domain of distributed
computer systems, it has been incorporated into the planning engine. This
section describes how the developed planning algorithm deals with numer-
ical resources.

158 Failure recovery

For the design of the numerical planning capabilities the trade-off between
the expressivity of the planning representation and the performance of
problem solving has to be considered. In this work the numerical planning
capabilities are tailored to be simple enough to solve numerical planning
problems with reasonable effort, but expressive enough to describe plan-
ning problems dealing with failure recovery of distributed systems. The
second aspect affecting the performance of planning based failure recovery
is the execution flexibility of generated plans. Particularly the concurrent
execution of actions is a key for an efficient failure recovery in distributed
systems. The advantages of partial order planning to generate flexibly exe-
cutable plans should not be affected by the incorporation of numerical ca-
pabilities into the planning engine. PDDL, the Planning Domain Definition
Language, also allows for numerical variables, basically since version 2.1.
PDDL 2.1 [FL03] is separated into different levels of expressivity where level
1 is ADL planning, level 2 planning with numeric effects, level 3 planning
with durative actions. However, PDDL adopts a rule called no moving targets,
which means that two actions cannot simultaneously make use of a value
if one of the two is updating the value. This is a major limitation for the
plan generation. Suppose that there are two actions while one action con-
sumes 64, the other action 32 units of the resource Memory. In many cases
the parallel execution of both actions should be possible and beneficial but
is prevented by the no moving targets rule. The planning engine of this
work should be able to reason about numerical resources without applying
a rule like the no moving target rule that strongly restricts the concurrency
of the generated plans.

Plenty of work deals with the representation of numerical planning prob-
lems and their solution. Many modern planners are able to deal with nu-
merical resources while the concepts to deal with them heavily depend on
the basic algorithm of the particular planner. Due to space issues it is passed
on a complete survey of the field of planning with numerical resources. For
the interested reader it is referred to Nareyek et al. [NFF+05] as a starting
point to this topic.

The ZENO planner [PW94] is a least commitment regression planner, like
the planning engine of this work, that supports amongst others numerical
preconditions and effects, a model of time, and continuous change. Ac-
tions are allowed to occur simultaneously only when their effects do not
interfere. Due to the rather high expressivity of the representation language
of ZENO its algorithm is much more complicated than the POP algorithm
and incorporates methods from operations research for handling numerical
constraints. The authors consider an example of a single plane able to move
passengers between four possible locations to demonstrate the capabilities
of ZENO. The goal is to move two passengers to one location in less than
5.5 hours. ZENO took about three minutes to solve the problem at the time

4.4 Failure recovery engine 159

when the paper was written.

In [Koe98], Jana Koehler summarises the basic principles of reasoning about
resources of the planning system IPP [KNHD97] which is based on planning
graphs. In this system actions can either provide, produce, or consume re-
sources. This rather simple perception of numerical resources that allows
for more efficient planning is adopted in a similar way in this work. To deal
with numerical resources the IPP planner uses resource time maps which
record interval boundaries for the possible values of each resource value
additionally to the planning graphs.

Numerical resources are called fluents in this work. The planning rep-
resentation extends with the use of such fluents stated by the key word
:functions as follows:

(:types TYPE_1 ... TYPE_N)

(:predicates (PREDICATE_1_NAME [ARG_1 ... ARG_N])

(PREDICATE_2_NAME ...

...)

(:functions (FUNCTION_1_NAME [ARG_1 ... ARG_N])

(FUNCTION_2_NAME ...

...)

(:action ACTION_1_NAME

[:parameters (PARAM_1 ... PARAM_N)]

[:precondition PRECOND_FORMULA]

[:effect EFFECT_FORMULA]

)

(:action ACTION_2_NAME

...)

...

(:objects OBJ1 OBJ2 ... OBJ_N)

(:init ATOM1 ATOM2 ... ATOM_N)

(:goal PRECOND_FORMULA)

160 Failure recovery

Fluents are stated similar to predicates, for example:

(:functions (ram ?n - node)

(cpu ?n - node)

)

In the :init section additionally to Boolean predicates the values for the
fluents are declared:

(:init

...

(= (ram n1) 1024)

(= (cpu n1) 10000)

...

)

Furthermore the PRECOND_FORMULA and EFFECT_FORMULA are also extended.
A PRECOND_FORMULA with fluents is defined as before, but extra non neg-
ative propositions of the form (� (f) r) connected only with ∧ are al-
lowed, where f is a fluent, r ∈ R, and � ∈ {<=, <, =, >, >=}. An
EFFECT_FORMULA may have the additional positive propositions of the form
(� (f) c) where f is a fluent, r ∈ R+, and � ∈ {increment, decrement}.
Additionally, r is allowed to be a fluent whose value remains unchanged
during the planning process, i.e. a constant fluent.

As an example, the following action startService makes use of fluents:

(:action startService

:parameters (?n - node)

:precondition (and (>= (ram ?n) 200))

:effect (and (decrease (ram ?n) 200))

)

For the incorporation of techniques to enable the planner to plan with flu-
ents it is at first assumed that the effects on fluents are commutative. Suppose
that two actions a1 and a2 both have an effect that changes fluent f , then f
has the same value after the execution of (a1, a2) as after the execution of
(a2, a1). Furthermore, in this work it is assumed that the concurrent exe-
cution of a1 and a2 results in the same state as the sequential execution of
either (a1, a2) or (a2, a1).

In the following, two different variants of planning with such fluents are
introduced. The first variant adopts causal link planning in order to handle
fluents while the second variant deviates from the methodology of causal
link planning for fluents.

4.4 Failure recovery engine 161

Causal link planning with fluents To apply causal link planning it needs
to be adapted to deal with fluents. In this variant the term resource is consid-
ered in a narrow sense. There are three kinds of numerical actions. Actions
producing a resource, actions consuming a resource, and actions requiring a
resource. Of course, it is also possible that one action is e.g. producing one
resource as well as consuming another.

Actions producing a resource increase the value of a fluent. The following
action work is an action producing the resource money. The fluent salary is
constant. It is not allowed for the fluent which is increased to appear in the
precondition of that action.

(:action work

:precondition ...

:effect (and (increase (money) (salary) ...))

)

Actions consuming a resource check whether in their precondition the value
of a certain fluent is sufficient and consume this amount by decreasing the
fluent. An instance for a consuming action is buy as presented below where
the fluent price is again a constant.

(:action buy

:parameters (?i - item)

:precondition (and (>= (money ?n) (price ?i) ...))

:effect (and (decrease (money) (price ?i) ...))

)

Different from consuming actions, requiring actions simply need the fluent
to have a certain minimal value in order to be executed, but do not consume
the resource. A bank could e.g. check a customer who is applying for a
credit. Only if he has enough own funds he is classified creditworthy.

(:action applicantCheck

:parameters (?i - item)

:precondition (and (>= (money) 10000) ...)

:effect (and (creditworthy))

)

Now it is discussed how such fluents are incorporated into the planning
process.

In Step 2, the POP algorithm introduced above as Algorithm 13, selects a
flaw 〈c, aneed〉 from the agenda. If c is a Boolean precondition an action

162 Failure recovery

aadd is chosen that has c as effect, either from the steps of the plan ST or
a new action from the set of available actions A. If c is a numerical precon-
dition, Step “3. Select action” needs to be adapted. The restrictions made
in this section result in numerical preconditions of the only allowed form
c = (>= (f) r). Different from Boolean preconditions where a single ac-
tion/step achieves a precondition, in the numerical case it is possible that a
precondition requires multiple pairs of actions/effects to achieve it. Thus,
numerical causal links have the form {(aadd1, c1), . . . , (aaddn, cn)}

c→ aneed,
where aadd1, . . . , aaddn are actions which produce the resource f with their
corresponding effects c1, . . . , cn. Let ri be the value f is increased by the ef-
fect ci. First it is considered that the action aneed consumes the fluent f . The
action/effect pairs (aaddi, ci) are chosen such that r1 + . . . + rn ≥ r. Note
that the action ai can be taken from the set of steps ST as well as from the
set of actions A. After the application of c1, . . . , cn to a causal link they are
updated, i.e. the corresponding values r1, . . . , rn by which they increase f
are set to 0, except for one selected value ri which is set to the overlapping
value of r − (r1 + . . . + rn). If the action aneed does not consume but only
requires the fluent f , then a dummy effect is added to aneed, increasing f by
r.

In Step “4. Refine plan”, all steps aadd1, . . . , aaddn are added to ST ,
aadd1 < aneed, . . . , aaddn < aneed is added to the orderings O, and
{(aadd1, c1), . . . , (aaddn, cn)}

c→ aneed to the causal links CL. In Step “5.
Update agenda” the numerical precondition 〈c, aneed〉 is removed from the
agenda as in the case of a Boolean precondition. Then all preconditions of
all added steps have to be added to the agenda. Step “6. Resolve threats”
also needs to be modified slightly but as this is quite straightforward, the
explanation is omitted here.

The introduced handling of fluents is illustrated with some examples. Con-
sider an f producing action p and an f consuming action c as shown
below. The action p can be used to achieve (and (>= (f) 10)) for c.
If p is selected to do so, its effect (and (increase (f) 20)) is set to
(and (increase (f) 10)). Thus, the resource of this step concerning f is
half spent. Note that also the INIT step can be used to achieve numerical
preconditions.

(:action p

:precondition

:effect (and (increase (f) 20))

)

(:action c

:precondition (and (>= (f) 10))

:effect (and (decrease (f) 10)))

4.4 Failure recovery engine 163

In the next example again the precondition (and (decrease (f) 10)) of
step p is selected as subgoal. To achieve it, the actions p1 and p2 are
available. Assuming that these are actions from A and not existing steps,
multiple combinations to select the steps {aadd1, . . . , aaddn} are possible:
{p11, p12}, {p1(3), p21, p22}, {p1, p21, p22(3)}, {p21(2), p22, p23}. In the
case the actions produce more than needed, one action is chosen which is
not decremented to 0 but set to the difference. This value represents the
remaining resources of this step and is parenthesised in this example.

(:action p1

:precondition

:effect (and (increase (f) 5))

)

(:action p2

:precondition

:effect (and (increase (f) 4))

)

(:action c

:precondition ((>= (f) 10))

:effect (and (decrease (f) 10))

)

Below is an example of a step r which is requiring but not consuming the
resource f. If p is chosen to achieve (>= (f) 10)) for r, then the effect is
decremented by 10, in this case set to 0. But an effect (increase (f) 10)

is added to r. This guarantees that p provides the resource f for r and no
other step inserted before p is able to access the necessary amount of 10. But
after the execution of r it is available again as an effect of r.

(:action p

:precondition

:effect (and (increase (f) 10))

)

(:action r

:precondition ((>= (f) 10))

:effect

)

In the next section a different way of dealing with fluents is presented at
which fluents are not protected by causal links.

164 Failure recovery

Planning with unprotected fluents In this variant of planning with fluents
the restrictions of the previous section do not hold. Thus possible tests in
numerical preconditions are <, <=, =, >=, >. As a start, effects can either
decrement or increment fluents.

Let s< be the set {si ∈ ST | si < s}, i.e. the set of steps that are executed
before step s. Analogue s> be {si ∈ ST | si > s}. Furthermore let s≈ be the
subset of steps ST \ (s< ∪ s>), i.e. the steps which could be executed before
or after s, or concurrently to it.

The verification whether a numerical precondition c = (� (f) r) of step s
based on a fluent f is currently achieved or not is calculated as follows:

1. Apply all effects of steps in s< that influence the value of f

2. Now it is distinguished by �, the type of the precondition (� (f) r).

<: Apply all effects of steps in s≈ that increment f. If then f < r

holds, the precondition is certainly achieved.
≤: Apply all effects of steps in s≈ that increment f. If then f <= r

holds, the precondition is certainly achieved.
=: This case is resolved into the two preconditions: f <= r and

f >= r.
≥: Apply all effects of steps in s≈ that decrement f. If then f >= r

holds, the precondition is certainly achieved.
>: Apply all effects of steps in s≈ that decrement f. If then f > r

holds, the precondition is certainly achieved.

As an example to clarify this verification process the following two actions
are considered:

(:action p

:precondition (and (<= (f) 0))

:effect (and (increase (f) 1))

)

(:action c

:precondition (and (> (f) 0))

:effect (and (decrease (f) 1))

)

Suppose that f is 0 in the initial state. The steps of the current plan are ST =
{c1, c2, p1, p2}. The only ordering constraint in O is p1 < c1. Figure 4.20
illustrates this plan.

To check now whether the precondition f > 0 of step c1 holds, first all
effects of steps in c1<, i.e. steps that are executed before c1 and influence f

4.4 Failure recovery engine 165

Figure 4.20: Planning with numerical resources

are applied. After this, f has a value of 1, as p1 is executed before c1. Now,
all effects of steps in c1≈ that decrement f are applied; this is the effect of
c2 in this example that decrements f by one, and this results in a value of
0. Thus f > 0 is not achieved as c2 could be executed before c1 and destroy
the precondition. There are three ways to achieve the precondition for the
current plan:

1. Add a new step p3 to the plan together with the ordering constraint
p3 < c1.

2. Add the ordering constraint p2 < c1 to O.

3. Add the ordering constraint c1 < c2 to O.

It is not necessary that the mathematical expression r is constant, but it is
not allowed that it is updated by any action in s≈. This means its current
value is known.

The most important changes of the POP algorithm, using the way of plan-
ning with fluents as presented here, are:

1. Termination: If agenda is empty and all numerical preconditions are
achieved, return 〈ST ,O, CL〉. Note that the set of causal links CL
and the agenda is only used for non-numerical constructs.

2. Select subgoal: Choose either an item 〈c, aneed〉 from agenda or an un-
achieved numerical precondition as subgoal.

166 Failure recovery

3. Select action: If a non-numerical subgoal is selected, the steps 3., 4., and
5. stay the same as in the original POP algorithm. Therefore, only
the numerical case is presented: Select an action either from the steps
of the plan ST or a new action from the set of available actions A
that helps to fulfil the precondition. If no such actions exists, return a
failure. An action helps to fulfil a precondition f � r if it has an effect
e as follows:

� is either ’<’ or ’≤’: The effect e decrements f or increments r.
� is ’=’: The effect e reduces the value of | f − r|.
� is either ’>’ or ’≥’: The effect e increments f or decrements r.

4. Refine plan: Add aadd and an ordering constraint. 〈ST ,O, CL〉 :=
〈ST ∪ {aadd},O ∪ {aadd < aneed}, CL〉.

If the commutativity of the fluents does not hold, the determination whether
a precondition is achieved or not is much harder. The verification of a nu-
merical precondition in a commutative environment utilises this feature to
compute the “worst case” ordering, and this enables a fast computation.
Unfortunately, without the commutativity assumption this worst case can-
not be computed easily. Therefore, there is nothing else for it but to have a
look on every possible combination of actions that can be executed before
the action of the precondition that is checked.

Suppose the following two actions where c is slightly modified and addi-
tionally to the decrease and increase, a setting of fluents to a specific value
is allowed.

(:action p

:precondition (and (= (f) -1))

:effect (and (increase (f) 1))

)

(:action c

:precondition (and (> (f) 0))

:effect (and (decrease (f) 1))

)

The action p does not decrement the fluent value but sets it to −1. This
violates the commutativity of the actions. If e.g. f has a value of 0 and c is
executed before p the resulting value is again 0. The other way round, if p
is executed before c then f is −1 after the execution.

To verify a precondition p with fluent f of step s in the non-commutative
case, the following set of steps is considered: s∗ := s≈ ∪ s< ∪ {s}, where all
steps are removed from s≈ and s< that have no influence on f. This are all

4.4 Failure recovery engine 167

steps that could influence the precondition c. As this influence depends on
the order of the actions, all possible orders, i.e. all linearisations regarding
O, are computed. The precondition c is achieved if it is achieved for all
linearisations. The set of all linearisations can be computed using e.g. the
algorithm of Varol and Rotem [VR81].

Suppose that there are three actions a, b, c with no ordering constraints.
Then the set of linearisations is {(a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b),
(c, b, a)}. An ordering constraint a < b reduces the set of linearisations to
{(a, b, c), (a, c, b), (c, a, b)}, the ordering constraints a < b, a < c, and b < c
to {(a, b, c)}.

Consider an example plan analogue to the example in Figure 4.20, with the
four steps ST = {c1, c2, p1, p2} and the ordering constraint O = {p1 < c1}.
The difference to the previous example is that c is defined in a way that
violates the commutativity. To check whether the precondition f > 0 of
step c1 holds, first c1∗ is composed: {p2, c2} ∪ {p1} ∪ {c1}. The set of all
possible linearisations is as follows:

{(p1, p2, c1, c2), (p1, p2, c2, c1), (p1, c1, p2, c2), (p1, c1, c2, p2), (p1, c2, p2, c1),
(p1, c2, c1, p2), (p2, p1, c1, c2), (p2, p1, c2, c1), (p2, c2, p1, c1), (c2, p1, p2, c1),
(c2, p1, c1, p2), (c2, p2, p1, c1)}

If now all 4-tuples of the set of linearisations are cut before c1, the resulting
set represents all possible orderings of actions that can occur before c1 and
influence the precondition:

{(p1, p2), (p1, p2, c2), (p1), (p1, c2, p2), (p1, c2), (p2, p1), (p2, p1, c2),
(p2, c2, p1), (c2, p1, p2), (c2, p1), (c2, p2, p1)}

Now it is checked if the precondition is fulfilled for every possible execution
of steps before c1. This validation can be seen in Table 4.1(a). The precondi-
tion is not achieved as it is not fulfilled for every linearisation.

One possible refinement to fulfil the precondition f > 0 is to add the or-
dering constraint c1 < c2 to O. The resulting validation is presented in
Table 4.1(b).

The test whether a numerical precondition is achieved in an environment
without commutativity of actions is much more costly.

Action costs

It can be beneficial to assign costs to actions as this provides a method to
influence planning decisions. If for instance two actions have similar effects
and preconditions but one of these should be preferred, a lower action cost
could be assigned to it. The planning process is responsible to analyse such

168 Failure recovery

(a) Precondition not
achieved

(p1, p2) 2 4

(p1, p2, c2) -1 8

(p1) 1 4

(p1, c2, p2) 0 8

(p1, c2) -1 8

(p2, p1) 2 4

(p2, p1, c2) -1 8

(p2, c2, p1) 0 8

(c2, p1, p2) 1 4

(c2, p1) 0 8

(c2, p2, p1) 1 4

(b) Precondition
achieved

(p1, p2) 2 4

(p1) 1 4

(p2, p1) 2 4

Table 4.1: Verification of a numerical precondition in a non-commutative environ-
ment

action costs. In the following section it will become clear how the failure
recovery engine handles this.

With the consideration of costs, the definition of actions changes slightly:

(:action ACTION_NAME [:costs COSTS]

[:parameters (PARAM_1 ... PARAM_N)]

[:precondition PRECOND_FORMULA]

[:effect EFFECT_FORMULA]

)

Flaw and plan selection

Partial order planning has many advantages like a high flexibility and sup-
port of expressive planning definition languages. The main reason to decide
in favour of a partial order causal link planning scheme is the generation of
partially ordered plans which can be executed efficiently and flexible, par-
ticularly in distributed environments. State-space planners do not have the
ability to find parallel plans in an efficient way [Has00]. CSP planners like
GRAPHPLAN only output a very restricted class of parallel plans [NK01].

However, the plain POP algorithm has a poor performance in comparison to
the fastest heuristic state-space planners like UNPOP and CSP planners like
GRAPHPLAN respectively. To overcome this issue, sophisticated flaw and
plan selection strategies can be applied. The flaws of a plan are the union of
its open conditions and unsafe causal links, also called threats.

Flaw and plan selection help the recovery engine to efficiently search

4.4 Failure recovery engine 169

through the space of plans. The POP algorithm presented before in Algo-
rithm 13 does not clarify the search character of the planning process but
represents one single planning step. At several points of the algorithm, de-
cisions are taken like the selection of a certain open condition/subgoal and
the selection of an action to achieve it. However, to ensure the complete-
ness of the algorithm, if the planner comes to a dead end, the planner must
backtrack to try other options.

In Algorithm 15, a different notation of the POP algorithm is presented
which does not focus on a single planning step but on the search strategy. It
is stated similarly to [PJP97].

Algorithm 15 Search scheme of the POP algorithm
1: function POP
2: N = {NULL PLAN}
3: while N 6= ∅ do
4: π = choose and remove plan from N . Plan selection
5: if π is solution then return π . Solution found
6: else
7: select flaw φ from π . Flaw selection
8: add all possible refinements of π,
9: in order to achieve φ, to N

10: end if
11: end while
12: return ’failure’ . Problem lacks solution
13: end function

The flaw selection of Line 7 basically corresponds to “Select subgoal” and
“6. Resolve threats” of Algorithm 13. The plan selection of Line 4 is covered
by “3. Select action” in Algorithm 13.

The search decisions - plan and flaw selection - have a great influence on the
planning performance. The plan selection strategy often is implemented as
a search heuristic of the A∗ [HNR72] search. Therefore, the term planning
heuristic is used synonymously for plan selection.

Poet et al. [PS93] demonstrate that the planning efficiency of partially or-
dered planners may be vastly improved by the use of alternative threat re-
moval strategies. Common threat removal strategies are to remove threats
as they are discovered, used e.g. in SNLP [MR91], or to delay the threat
resolution partially or completely like in SIPE [Wil88].

Joslin et al. [JP94] describe a least-cost flaw repair strategy to guide the flaw
selection during planning. This can be seen as a generalisation of [PS93] in
which the least-cost flaw repair strategy treats all flaws uniformly.

Gerevini et al. [GS96] propose techniques to accelerate partial order plan-

170 Failure recovery

ners. Therefore they propose to adjust the default A∗ plan selection heuristic
used by UCPOP, to apply zero commitment plan refinements and to prune the
search.

REPOP [NK01] of Nguyen and Kambhampati is a partial-order planner
based on UCPOP. It is based on the key insight that techniques responsible
for the efficiency of other planning paradigms like distance based heuris-
tics, reachability analysis, and disjunctive constraint handling can also be
adapted to dramatically improve the POP algorithm. Their results show
that REPOP outperforms GRAPHPLAN in several parallel domains. More-
over the plans tend to be more flexible than those generated by state-space
planners or GRAPHPLAN.

VHPOP [YS03b] is a partial order causal link planner which combines
known and proposes new flaw and plan selection techniques resulting in
a planner competitive with established CSP-based and heuristic state-space
planners.

Especially REPOP and VHPOP show that the performance of partial order
planners can keep up with planners that are based on other paradigms. The
focus in developing the planning engine has not been on performance im-
provements using well investigated standard techniques. The intention of
this work is to propose a framework for self-healing. To incorporate com-
plex flaw and plan selection techniques as used in VHPOP is not scope of
this work and might be addressed in the future.

The following flaw and plan selection strategies are currently available for
the planning engine.

Flaw selection A flaw is either an open condition or a threat. Whenever a
threat arises in a partial plan, it is addressed before remaining open condi-
tions. For open conditions and the case of more than one threat, two simple
flaw selection strategies are implemented:

FIFO: Flaws arising first are selected first.

LIFO: Flaws arising last are selected first.

Plan selection The planning engine uses an A∗ search. This algorithm
requires a heuristic function f (π) = g(π) + h(π). The function g(π) repre-
sents the cost of getting from the initial plan to the investigated plan π. h(π)
is an estimate for the remaining costs to reach the goal, a complete plan.

The partial order causal link plan π consists of a set of steps ST , ordering
constraints O, and causal links CL. The set OC is the set of open condi-
tions of the plan and corresponds to the list agenda in Algorithm 13. The

4.5 Evaluation 171

following plan selection strategies are available:

Simple

g(π): Sum of the action costs of steps within ST .
h(π): Number of open conditions, i.e. |OC|.

Achieve

g(π): Sum of the action costs of steps within ST .
h(π): Only those open conditions in |OC| which do not match to any

effect of any step within ST are counted. Thus it is taken into ac-
count that some open conditions might be achieved by just link-
ing an existing step to it.

EqualDist Simple domain independent heuristic designed for a distributed
planning process. It aims to ensure the equal distribution of plan steps
among the nodes of the system.

g(π): Sum of the action costs of steps within ST , and multiple step
assignments to nodes are penalised.

h(π): Number of open conditions in |OC|

The same definition of the estimation function h(π) as used in Simple and
EqualDist is proposed in [SG95]. The definition of the cost function g(π) in
Simple and Achieve is similarly used in VHPOP [YS03b], here with additional
consideration of action costs.

Note that the introduced flaw and plan selection techniques are quite sim-
ple. Deriving more sophisticated techniques especially adapted to dis-
tributed planning seems to be an interesting field of research and might be
addressed in future work. The main purpose of the introduced strategies for
flaw and plan selection is to provide a better classification of the evaluation
results, presented in the following section.

4.5 Evaluation

In this section an evaluation for the introduced failure recovery engine is
provided. It serves as a proof of concept for the proposed mechanisms and
demonstrates benefits of the presented extensions.

The evaluation is conducted on the basis of two scenarios. These are derived
from applications of two projects which are part of the priority programme
“Organic Computing” [ACE+03] funded by the German Research Founda-
tion (DFG). The chosen application scenarios are used within these projects
to demonstrate developed Organic Computing principles.

172 Failure recovery

The first scenario, a simple production cell, is taken from the project “Formal
Modeling, Safety Analysis, and Verification of Organic Computing Applica-
tions (SAVE ORCA)”, led by Prof. Dr. Wolfgang Reif from the University
of Augsburg. The project deals with the systematic, top-down design and
construction of highly reliable and adaptive OC applications.

The second scenario, a smart office/building environment called “Smart
Doorplates”, is taken from the project “OCµ - Organic Computing Middle-
ware for Ubiquitous Environments”, led by Prof. Dr. Theo Ungerer from
the University of Augsburg. The main goals of this project are the design of
a middleware toolkit and the investigation of self-x techniques.

The evaluation presented in the following has been conducted in the course
of Thorge Andersen’s diploma thesis [And08].

4.5.1 Production cell scenario

The investigated production cell scenario represents a modified version of
the production cell used before in Section 4.4.3 to explain the planning en-
gine’s functionality. It is more focused on the processing of single work-
pieces and the specification of the carts’ transport action is directly based
on the robots itself rather than on their tasks. This way to model the produc-
tion cell is more closely related to the currently used production cell scenario
of SAVE ORCA.

The goal of the production cell, consisting of three robots (r1, r2, r3), and
two carts (c1, c2), is to correctly process workpieces. Therefore, a hole needs
to be drilled, a screw inserted, and tightened whereas any robot has three
corresponding tools. The predicates D, I, T describe whether a workpiece
has already been processed by the drilling, the inserting, or the tightening
tool. The predicate wpat indicates the location of a workpiece, task declares
whether a robot already is using a tool, while transport states similarly for
carts whether they already adopt a transport task.

The goal of the production cell is to produce workpieces having a tightened
screw:

(:goal (T)))

It is assumed that initially no tasks are assigned. Any node, either a robot or
a cart, has only local information. The view of e.g. robot r1 is as follows:

4.5 Evaluation 173

(:types robot cart - object)

(:predicates (wpat ?r - robot) (task ?r - robot) (D) (I) (T))

(:init

(not (D))

(not (I))

(not (T))

(wpat r1)

(not (task r1))

)

(:action drill

:precondition (and (not (D)) (wpat r1) (not (task r1)))

:effect (and (D) (task r1))

)

(:action insert

:precondition (and (not (I)) (D) (wpat r1) (not (task r1)))

:effect (and (I) (task r1))

)

(:action tighten

:precondition (and (not (T)) (I) (wpat r1) (not (task r1)))

:effect (and (T) (task r1))

)

The view of a cart is different, c1 for instance has the following environmen-
tal information:

(:types robot cart - object)

(:predicates (wpat ?r - robot) (task ?r - robot)

(D) (I) (T) (transporting ?c - cart)

)

(:init

(not (transporting c1))

)

(:action transport

:parameters (?r1 ?r2 - robot)

:precondition (and (wpat ?r1) (not (wpat ?r2))

(not (transporting c1)))

:effect (and (not (wpat ?r1)) (wpat ?r2)

(transporting c1))

)

174 Failure recovery

The different views of the nodes result from each node having a local partial
view on the system.

The resulting partial order plan of a distributed planning process, which
works as described in Section 4.4.3, applied to the production cell looks as
follows:

(r1, drill)→ (c1, transport r1 r2)→ (r2, insert)→
(c2, transport r2 r3)→ (r3, tighten)

For evaluation purposes the planning engine configures the initial produc-
tion cell using different flaw and plan selection techniques. Figure 4.21 il-
lustrates the results of these experiments.

 0

 100

 200

 300

 400

 500

 600

 700

 800

FIFO LIFO

N
um

be
r

of
 p

la
nn

in
g

st
ep

s

Flaw selection technique

Simple
Achieve

EqualDist

Figure 4.21: Evaluation results: Production cell

The y-axis shows the number of planning steps, more precisely the number
of partial plans which are refined until a valid plan is found. Fewer steps
represent a more efficient planning process. Different flaw (x-axis) and plan
selection (see legend) strategies as proposed in the previous section are ap-
plied.

The LIFO outperforms the FIFO flaw selection in all experiments. The
EqualDist plan selection proposed in this work as a simple heuristic for
distributed planning achieves the best results compared to Simple and
Achieve.

4.5 Evaluation 175

In the following the much more complex and dynamic Smart Doorplate sce-
nario is discussed where the self-healing and failure recovery aspects will be
given more prominence.

4.5.2 Smart Doorplate scenario

The Smart Doorplate [TBPU03b] project envisions the use of smart door-
plates within an office building. The doorplates are amongst others able to
display current situational information about the office owner and to direct
visitors to his current location based on a location-tracking system.

The Smart Doorplate system in the variant discussed here consists of sensor
nodes to provide basic location-tracking functionality and service nodes which
are able to host different kinds of services. The system is arranged into
sections and one section normally contains three sensor nodes. To ensure
adequate location-tracking, per section at least one active sensor node is
needed. The bigger the Smart Doorplate system the more service nodes
are necessary. A system with n sections typically has n service nodes. The
computers within the offices could for example be used as such.

Two basic location-tracking techniques based on radio or supersonic exist,
while the latter usually provides better results. Sensor nodes have the tech-
nical equipment for either of them or both.

There are three different types of services supposed to run on service nodes.
Location-tracking services compute locations of humans in the smart environ-
ment based on the raw data sensor nodes are providing. Prediction services
are able to predict the next location of humans based on their habits. A hy-
brid prediction service uses several different prediction services as input to
provide a higher quality prediction.

The following predicates are used to describe sensor nodes:

hasRadio: Sensor node is equipped with radio unit.

hasSupersonic: Sensor node is equipped with supersonic unit.

radio: Sensor node’s radio unit is active.

supersonic: Sensor node’s supersonic unit is active.

providesLoc: Sensor node provides location-tracking data (either with ra-
dio or with supersonic unit).

inSection: Assignment of sensor nodes to sections.

176 Failure recovery

Numerical resources are needed to model service nodes:

LTS: Number of location tracking services.

PS: Number of prediction services.

HPS: Number of hybrid prediction services.

SEC: Constant number of sections of the system.

ram: Currently available memory of a service node.

cpu: Currently available CPU resources of a service node.

numLTS: Number of location tracking services on a service node.

numPS: Number of prediction services on a service node.

numHPS: Number of hybrid prediction services on a service node.

The system’s goal is stated as follows:

(:goal (and (forall (?sec - section)

(exists (?n - sensornode)

(providesLoc ?n ?sec)))

(>= (HPS) 1)

(>= (LTS) (SEC)))

)

This means, (1) in all sections at least one sensor node must provide a
location-tracking functionality. (2) In the whole system at least one hybrid
predictor must be available. (3) The number of location-tracking services
which are processing the data of active sensor nodes must be greater or
equal than the number of sections. The sensor nodes are responsible to
check property (1) for their corresponding section, the service nodes moni-
tor (2) and (3).

The information available to a sensor node is demonstrated by the example
of sensor_n1 for a Smart Doorplate system consisting of two sections:

(:types

node section - object

sensornode servicenode - node

)

(:predicates

(hasRadio ?sn - sensornode)

(hasSupersonic ?sn - sensornode)

(radio ?n - sensornode)

(supersonic ?n - sensornode)

(providesLoc ?n - sensornode ?sec - section)

(inSection ?n - sensornode ?sec - section))

4.5 Evaluation 177

(:objects

sec1 sec2 - section

sensor_n1 sensor_n2 - sensornode

)

(:init

(hasRadio sensor_n1)

(not (radio sensor_n1))

(not (hasSupersonic sensor_n1))

(not (supersonic sensor_n1))

(not (providesLoc sensor_n1 sec1))

(not (providesLoc sensor_n1 sec2))

(inSection sensor_n1 sec1)

(not (inSection sensor_n1 sec2))

)

(:action startLocRadio : 1.1

:parameters (?sec - section)

:precondition (and (not (providesLoc sensor_n1 ?sec))

(hasRadio sensor_n1)

(inSection sensor_n1 ?sec))

:effect (and (providesLoc sensor_n1 ?sec)

(radio sensor_n1))

)

(:action startLocSupersonic

:parameters (?sec - section)

:precondition (and (not (providesLoc sensor_n1 ?sec))

(hasSupersonic sensor_n1)

(inSection sensor_n1 ?sec))

:effect (and (providesLoc sensor_n1 ?sec)

(supersonic sensor_n1))

)

(:action stopLocRadio : 0.9

:parameters (?sec - section)

:precondition (and (radio sensor_n1))

:effect (and (not (providesLoc sensor_n1 ?sec))

(not (radio sensor_n1)))

)

(:action stopLocSupersonic

:parameters (?sec - section)

:precondition (and (supersonic sensor_n1))

:effect (and (not (providesLoc sensor_n1 ?sec))

(not (supersonic sensor_n1)))

)

178 Failure recovery

Thus, sensor nodes have a quite restricted view, basically concerning only
their own status. Their main purpose is to provide location-tracking func-
tionality within a section by starting either the radio or the supersonic unit.
To prefer the supersonic unit, the starting action of the radio unit has a
slightly higher execution cost. The contrary is holding for the corresponding
stopping actions.

The information available to a service node is demonstrated by the example
of the node service_n1:

(:types

node section - object

sensornode servicenode - node

)

(:functions

(ram ?n servicenode)

(cpu ?n servicenode)

(numLTS ?n servicenode)

(numPS ?n servicenode)

(numHPS ?n servicenode)

(LTS) (PS) (HPS) (SEC)

)

(:objects

sec1 sec2 - section

)

(:init

(= (ram service_n1) 512)

(= (cpu service_n1) 500)

(= (LTS) 1)

(= (PS) 3)

(= (HPS) 1)

(= (SEC service_n1) 2)

(= (numLTS service_n1) 1)

(= (numPS service_n1) 1)

(= (numHPS service_n1) 0)

)

(:action startLTS

:precondition (and (>= (ram service_n1) 150)

(>= (cpu service_n1) 200))

:effect (and (decrease (ram service_n1) 150)

(decrease (cpu service_n1) 200)

(increase (numLTS service_n1) 1)

(increase (LTS) 1))

)

4.5 Evaluation 179

(:action startPS

:precondition (and (>= (ram service_n1) 200)

(>= (cpu service_n1) 200))

:effect (and (decrease (ram service_n1) 200)

(decrease (cpu service_n1) 200)

(increase (numPS service_n1) 1)

(increase (numPS) 1))

)

(:action startHPS

:precondition (and (>= (ram service_n1) 512)

(>= (cpu service_n1) 350)

(>=(PS) 3))

:effect (and (decrease (ram service_n1) 512)

(decrease (cpu service_n1) 350)

(increase (numHPS service_n1) 1)

(increase (HPS) 1))

)

Service nodes are able to start and stop location-tracking, prediction, and
hybrid prediction services. The stopping actions are omitted for a shorter
presentation. To start any service, enough resources have to be available.
As further requirement, for hybrid prediction services it is declared that at
least three prediction services must be running somewhere in the system.

Consider a system consisting of two sections, with three sensor nodes per
section and a total of two service nodes. Assume furthermore that the sys-
tem is in a “blank” state - all sensor nodes are inactive and no service is
running on the service nodes. The resulting plan for such a situation might
look as illustrated in Figure 4.22.

Figure 4.22: Plan to configure the Smart Doorplate system

Albeit the recovery engine is capable of configuring the system in its ini-
tial state, the focus of this work is to enable self-healing. The evaluation
conducted using the Smart Doorplate scenario takes this into account. To
investigate the properties of the failure recovery engine, properly running

180 Failure recovery

Smart Doorplate systems of different sizes are considered, while a failure
injection component simulates node failures.

The investigated scenarios are denominated as follows:

#Sections - #Node failures

In detail, Scenario x − y means that a operating Smart Doorplate system
consisting of x sections is considered and the failure injection simulates the
simultaneous failure of y random nodes. Cases impossible to recover the
system are omitted, like for instance a complete failure of all service nodes.
The failure recovery engine recovers the system and it is measured how
many planning steps are necessary to find a valid recovery plan. To ensure
representative values, any scenario is repeated 100 times and the results
are averaged. The experiments range from a system with two sections and
a single node failure (2− 1) to a system with 32 sections and 8 node fail-
ures (32− 8). As any section entails four nodes, three sensor and one ser-
vice node, the investigated systems range from 8 to 128 nodes. Figure 4.23
presents the evaluation results.

 0

 50

 100

 150

 200

 250

2-1
3-1

4-1
4-2

8-1
8-2

8-4
16-1

16-2
16-4

16-8
32-1

32-2
32-4

32-8

N
um

be
r

of
 p

la
nn

in
g

st
ep

s

Scenario

 0

 50

 100

 150

 200

 250

2-1
3-1

4-1
4-2

8-1
8-2

8-4
16-1

16-2
16-4

16-8
32-1

32-2
32-4

32-8

N
um

be
r

of
 p

la
nn

in
g

st
ep

s

Scenario

Simple
SmartDoorplate

Figure 4.23: Evaluation results: Smart Doorplate

The y-axis shows the average number of planning steps. The x-axis de-
scribes the different scenarios in the syntax mentioned above. As flaw se-
lection technique only LIFO is illustrated which performs better than FIFO
in all cases. The legend contains the two applied plan selection strategies,

4.5 Evaluation 181

Simple and Smart Doorplate. The former is the above introduced domain
independent heuristic, while the latter is a new domain dependent heuris-
tic which performed best compared to Simple,Achieve, and EqualDist. It is
adapted to the Smart Doorplate scenario and it is based on EqualDist but
additionally penalises service stopping actions (stopPS, stopHPS, stopLTS).
In Figure 4.23, the columns in the background without borders correspond
to the planning engine without recovery-oriented planning, the bordered
columns in the foreground represent the planning engine using recovery-
oriented planning as proposed in Section 4.4.4.

Recovery-oriented planning which is based on the incorporation of knowl-
edge accumulated in the analyse phase influences the results much more
than any flaw or node selection strategy. Especially if only small parts of
the system fail the savings applying recovery-oriented planning are enor-
mous. In the scenario 32− 1 and the Simple heuristic the recovery-oriented
planning saves about 97% of the planning steps.

The introduced extension of planning with numerical resources provides
the possibility to apply the self-healing approach to the Smart Doorplate
application. Note that the variant “Causal link planning with fluents” is
used in the evaluation to plan with numerical resources as it allows a better
cooperation with recovery-oriented planning.

In the Smart Doorplate application, the possibility to assign costs to actions
is used to influence the recovery engine to prefer supersonic to radio sensor
units.

The planning for the scenario 32 − 8 without recovery-oriented planning
and the Simple heuristic, i.e. the most complex setting, took on average 16.5
seconds and in the worst case 81.5 seconds. The simulations have been con-
ducted on a standard PC with an Intel R© CoreTM 2 Quad processor with 2.4
GHz, whereas the simulation environment is not designed to use more than
one core.

The modelling of the Smart Doorplate domain as presented here mainly
deals with the consistent assignment of services to nodes but does not con-
sider data recovery after a node failure with subsequent reconfiguration.
Especially the prediction services maintain a knowledge base consisting of
movement patterns of persons. If such information is stored only locally on
the current host of a service, a node failure results in the loss of that data. Re-
stored services have to start from scratch when recovered. To avoid that, the
Smart Doorplate environment provides a distributed data store [TEP+07]
which allows a safe and redundant storage of data distributed over the net-
work. Alternatively to the usage of this data store, all nodes monitoring an-
other node (see Chapter 3) could be made responsible to mirror the knowl-
edge bases of services running on the latter. Every time a service stores a
new movement pattern into its own knowledge base, an automatic notifi-

182 Failure recovery

cation of the monitoring nodes is triggered, containing this new entry to
update the remote instances.

4.6 Conclusions and future work

In this chapter a failure recovery engine based on automated planning is
proposed. It is a goal-oriented approach where a description is provided for
the system which defines its desired properties. It is left to the recovery en-
gine to monitor the system, and, if necessary, generate a plan to recover the
system and perform the plan’s steps. As the approach is based on a sound
and complete algorithm it can be trusted in the behaviour of the system: If
a solution exists it is guaranteed that the system finds it, and all successful
executions of generated plans lead to a desired state.

A technique is proposed which allows a distributed consistency check of
system objectives specified in PDDL. A distributed planning algorithm
called DPOP has been developed to enable the nodes of a distributed sys-
tem to derive a plan which recovers the system in the case of a violation of
the system’s objectives. The presented plan execution method provides the
ability to concurrently execute plans in distributed systems.

Several extensions are presented which aim to provide extra functionality
or better self-healing performance. Recovery-oriented planning incorpo-
rates knowledge accumulated during the monitoring phase to improve the
planning process. Two new approaches to plan with numerical resources
are proposed, and one of these approaches uses partial order causal link
planning for numerical resources. This allows a consistent treatment of nu-
merical and non-numerical facts for partial order planners. The developed
planning engine supports action costs as well as the usage of flaw and plan
selection strategies.

The functionality of the proposed approach has been evaluated within dif-
ferent scenarios. The production cell scenario shows that the failure recov-
ery approach is also appropriate for configuring a system from its starting
point. It clarifies how different plan and flaw selection can be used and
how they influence the planning performance. The Smart Doorplate sce-
nario gives a proof of concept that the approach is suitable to autonomically
manage quite complex systems with more than 100 nodes. The recovery-
oriented planning approach proposed in this work saved up to 97% of over-
head in the planning process, much more than any flaw and node selection
technique. The modelling of the Smart Doorplate scenario uses the numeri-
cal planning features as well as the possibility to assign action costs.

The dissimilarity of the two investigated evaluation scenarios indicate the

4.6 Conclusions and future work 183

broad capabilities of the proposed failure recovery approach. The limits of
the introduced approach are defined only by the expressivity of the subset
of PDDL used to model domains. Furthermore, the planning complexity
has to be considered which depends on the complexity of a domain and the
way it is modelled.

Interesting starting points for future work are more sophisticated flaw and
node selection strategies for distributed systems which might dynamically
adapt to the actual environment. The next chapter provides a further dis-
cussion of future work.

5
Towards an architecture for highly

complex systems

5.1 Introduction

In this chapter, ideas for a generic architecture of self-healing distributed
systems are presented. It can be seen as an outlook for this dissertation and
extends the concepts of the previous chapters. The aim is to provide self-
healing capabilities for highly complex distributed systems. It is proposed
that each entity of a distributed system is managed by a so called node man-
ager. For the design of these components, psychological concepts have been
consulted. Sociological ideas form the basis of the cooperation capabilities
of these distributed managers.

5.2 Survey of psychological and sociological
concepts

As psychological and sociological concepts are consulted, these are intro-
duced in the following mainly taken from Zimbardo et al. [ZG99].

185

186 Towards an architecture for highly complex systems

5.2.1 Psychological concepts

The human nervous system refers to all nerve cells in the body. The nervous
system consists of two major parts: the central nervous system (CNS) and the
peripheral nervous system (PNS). The CNS represents the largest part of the
nervous system, and consists of the brain and the spinal cord. The CNS is like
a central control tower which controls the permanent “approach” of stimuli
and “departure” of commands and reactions [ZG99]. The spinal cord con-
nects the brain with the PNS and has connections to sensory receptors of the
whole body, to muscles, and to glands. The spinal cord is also responsible
for simple reflexes without involvement of the brain: Animals whose brain
is disconnected from its spinal cord are able to pull back a leg from a painful
stimulus [ZG99]. The brain is normally informed about such events but the
action is executed without it.

The PNS is the part of the nervous system that resides outside the CNS. It is
a network of sensory and motor neurons and transmits information to and
from the CNS.

Figure 5.1 summarises the hierarchical structure of the nervous system.

Figure 5.1: The human nervous system

The nervous system is made up of electrically excitable cells, the neurons.
They are the basic building blocks of the nervous system and can be divided
into three functional classes:

Sensory neuron: Also called afferent neuron. Inward neuron that sends in-
formation from the sensory organs, through the nerves, into the CNS.

Motor neuron: Also called efferent neuron. Outward neuron that transmits
messages from the CNS to the muscles and glands.

Interneurons: These neurons are located in the CNS and connect other neu-
rons.

The simplest form of behaviour controlled by the nervous system are au-
tomatic reflexes which can occur without an involvement of the brain. An
example is the reflectory pull back of a finger after a painful stimulus due

5.2 Survey of psychological and sociological concepts 187

to touching something sharp or hot. If the receptors for pain are stimulated
they send information via sensory neurons to an interneuron which is lo-
cated in the spinal cord. The interneuron itself stimulates motor neurons
activating muscles that cause the pulling back of the finger from the pain-
causing object. After the reaction the brain is informed. Thus, the body is
able to react very quickly to prevent injuries due to the reflective process
and the brain is able to store this experience afterwards to avoid such a sit-
uation in the future. The reflex arc, the processing pathway for a reflex is
illustrated in Figure 5.2.

Figure 5.2: Simple reflex arc

A reflex provides a very fast reaction to a stimulus. To make this possible
the stimulus is not subject to costly processing mechanisms of the brain but
processed in a quite straightforward way. Beyond this simple mechanism
the human perception is based on changing and interpreting sensory infor-
mation. Zimbardo et al. [ZG99] split the process of cognition into

1. sensation,

2. organisation, and

3. identification and classification.

Sensation is the process of receiving and coding stimuli from the environ-
ment. Men have nine modalities for sensory experiences: seeing, hearing,
smelling, tasting, touching, temperature sense, equilibrium sense, kinaes-
thesis, and sensation of pain. In every modality cognition starts with the
detection of a stimulus by detectors. These transform the physical signal
into a sensory signal which can be processed by the nervous system. A sen-
sory threshold is the level at which a stimulus or a change of stimulus can
be detected. There are two different kinds of thresholds: absolute thresh-
olds and difference thresholds. An absolute threshold is the minimal level
of intensity at which a physical energy causes a sensation. The smallest
difference between two physical stimuli that can be discriminated is the dif-
ference threshold.

The organisation of the perception means the transformation of a stimulus
into an interior representation. This includes the integration and combina-

188 Towards an architecture for highly complex systems

tion of different sensory information like sound and shape into one percept
of an object that can be recognised later on. In the last step, the identifica-
tion and classification, the percepts are assigned to a meaning. This is a high
level cognitive process that is based on the memories and the knowledge of
a person. An example of a process of this step is to assign a thing of a certain
shape, colour, sound, and so on to the category “car”.

Another aspect affecting our process of perception is attention. It can be
seen as a filter that helps to cope with the heavy load of information that are
arriving all the time. It blocks the majority of this flood of data; only letting
certain relevant information pass. This is very important as our brain has a
limited processing capability that would be overburdened by the surplus of
stimuli.

All creatures have a certain learning potential. This potential varies from
species to species: some animals are dominated by inherent reactions on
certain stimuli and learn rather few new things while the behaviour of oth-
ers is less pre-assigned and they have a greater ability to learn. There are
different models of learning, however all of them are based on experiences,
i.e. the things that happen to an individual. Especially interesting types of
learning for this work are inductive and observational learning as well as
exchange of knowledge. Inductive learning is learning by example, where
a general rule is induced from a set of observed instances. Observational
learning refers to the ability to learn by the observation of another indi-
viduals’ actions. The exchange of knowledge guarantees that the (learnt)
knowledge of an individual is propagated for the benefit of many others.
Observational learning and the exchange of knowledge are very efficient,
and allow tedious and sometimes dangerous trial-and-error procedures of
other types of learning to be avoided.

The memory gives us the ability to absorb, store, and recall information. It
is a storage for knowledge of the world, like facts, beliefs, and so on. All of
our cognitive processes are based on our memory. It can be separated into
declarative and procedural memory. The declarative memory is a fact base
and contains facts or events like names or the last visit to a soccer match. The
procedural memory contains knowledge about how things are done and is
used to acquire, store, and apply certain abilities like riding a bicycle. From
an information-processing point of view the memory can be separated into
the stages of sensory memory, short-term memory, and long-term memory.
For every modality of sensation we have a sensory memory. It is a collec-
tion of sensory information after a stimulus has been received. The sen-
sory memory is transient to guarantee that old sensations do not interfere
with new sensations. However it is also persistent enough to provide some
kind of continuity of the sensations. A common example to demonstrate the
short-term memory is the looking up of a telephone number in a telephone
book, holding it in memory long enough to dial the number but to forget

5.2 Survey of psychological and sociological concepts 189

it afterwards. The short-term memory has a limited capacity which results
from the human beings’ inability to deal with every aspect of the environ-
ment that is surrounding us. Like the filtering property of attention the
limited capacity of the short-term memory serves to focus our processing
powers onto certain things. The recall of information from the short-term
memory is very fast. It also serves as a working memory where informa-
tion are edited, reconceived, and restructured. The information comes from
the sensory or the long-term memory. The long-term memory represents
the store of general knowledge, experiences, abilities, emotions, words and
so on. Information stored there can often be recalled lifelong while its ca-
pacity is theoretically unlimited. It does not only contain our experiences
but also information derived from these experiences together with plans for
behaviour.

Problem solving and reasoning are central cognitive abilities. A problem con-
sists of an initial state, a target state, and a set of operators. The initial state is
a current unsatisfying state that should be transformed into a desired target
state. The operators are the available possibilities to affect the environment.
A well-defined problem has a clear definition of the initial state, the target
state, as well as the available operations. If one of these three components is
unclear the problem is called ill-defined. Reasoning is the process of draw-
ing conclusions based on knowledge to solve problems, generate derived
knowledge, and so on which is the basic feature that enables us to act intel-
ligently and autonomically.

We have a lot of information about our environment which are uncertain
but we need to make decisions anyway to act properly. Furthermore, of-
ten a fast but good enough action is better than an optimal but late action.
These are issues we have to deal with every day and to cope with them goes
beyond linear problem solving or reasoning: judgement and decision-making.
Judgement is the process of forming an opinion, to draw a conclusion, and
to rate existing information. Decision making refers the process that leads
to the selection of a course of action among options. Judgement heuristics
are important to generate efficient judgements and to make fast decisions as
they reduce the set of possible choices. They allow us to act quickly despite
our limited processing capacities and the limited information we have. But
they also can lead to wrong assessments that could have been avoided using
more expensive reasoning.

5.2.2 Sociological concepts

The psychological approach taken so far covers the characteristics of indi-
viduals. Sociology as an inter-individual discipline goes beyond that and
provides concepts to analyse and explain properties of an aggregation of in-

190 Towards an architecture for highly complex systems

dividuals. A social role can be seen as expectations that society places on the
behaviour of an individual in a certain situation. A role typically includes
rights and obligations and can change over time. ’Student’ and ’professor’
are examples of social roles - here in a university context. An individual that
has the role ’professor’ in one situation also can have the role ’husband’ in
another. These examples also demonstrate that roles can interfere with each
other.

All social acting by individuals is influenced by norms which are specifica-
tions, instructions, or rules. They help the individual to behave appropri-
ately and support the common welfare. They provide a scale of values for a
society. A social network is a network of relationships between individuals,
groups, or organisations. The relations can be based on spatial proximity,
frequency of communication, friendship, financial exchange, similar ideas,
and other forms of social interaction. Social networks often form a small-
world structure where the maximal number of hops between its members
is low. Social networks enjoy a growing research interest as they seem to
adequately represent the relations of a person in many aspects.

The introduced concepts from psychology and sociology form the basis of
the node manager that is presented in the following section.

5.3 Architecture

In this section the architecture of the node manager is presented. The node
manager is a concept to autonomically control the nodes of a distributed
system. It is supposed that there exists some kind of middleware that is
running on every node to provide to the node manager a basic infrastructure
to send and receive messages.

The node managers control the nodes in a distributed manner with no cen-
tral instance. They act autonomically, ensuring the system is in a desired
state defined by the administrator or user respectively. The intelligence
to act properly in complex environments is inspired by psychological con-
cepts. While there is no central instance of control, the node managers fol-
low social communication, interaction patterns, roles, and norms to realise
global targets.

The node managers are able to observe their environment through recep-
tors or sensors that are able to sense certain types of stimuli. The data these
sensors provide are called sensory information. An example of a certain
kind of sensor is a failure detector - it provides information about the fail-
ure of other nodes. Further examples are temperature sensors as used in
sensor networks, a sensor that informs the node managers about the avail-

5.3 Architecture 191

able memory of a node, and so on. Basically all data or information reaching
the node manager is sensory information. As a cooperative, distributed sys-
tem is considered, communication with other node managers also form an
important source of information. From an exterior point of view the node
managers are a black box with sensory information as an input and actions
as an output. The actions the node managers perform are intended to main-
tain the distributed system in a desired, user-defined state. If it is impossi-
ble to meet all desired conditions the actions should at least lead to graceful
degradation.

The task of a node manager is to autonomically control applications or ser-
vices running on the nodes. A typical software layer architecture is consid-
ered with an operating system hosting a middleware. Application services
are running on the middleware as parts of user applications. The node man-
ager depends on the middleware as it needs to communicate with other
node managers, at least if non-local properties have to be achieved or main-
tained. It autonomically controls application services and the middleware
and is designed to carry over responsibilities from the user or administrator
to the node manager. The node manager has certain goals which are deter-
mined by the administrator while the preservation of these goals are left to
the node managers. The PNS of the node manager is the connector between
the environment and the CNS. It receives sensory information and trans-
mits it to the CNS that processes it. If the CNS takes a decision to act, it is
the PNS that triggers its actual execution. Figure 5.3 illustrates the described
integration of the node managers into the software architecture.

In the following the particular functionality of the node manager is ex-
plained. Therefore its typical workflow as illustrated in Figure 5.4 is con-
sidered.

As described above, the starting point are stimuli or sensory information.
At first, these pass a sensory filter which can be attributed to the PNS and
only transmits sensory information of a certain defined form. This prevents
useless information to even reach the CNS to minimise the waste of pro-
cessing capabilities. After this barrier the stimulus has reached the CNS,
more precisely the spinal cord. There it can trigger a reflex if a fast reaction
is necessary. In this case the CNS immediately sends an instruction to the
PNS which initiates its execution. Anyway the stimulus is transferred to
the brain, where a component organises, identifies, and classifies it. The re-
sult of this process is stored into a memory component. The memory forms
a knowledge base for the high-level capabilities of the node manager. A
learning component enables it to generate new knowledge to improve per-
formance, adaption, and so on. A decision-making component provides
reasoning capabilities to the node manager. Thus it can autonomically gen-
erate plans for achieving the desired properties of the distributed system.
The node manager has knowledge about social behaviour that affects partic-

192 Towards an architecture for highly complex systems

Figure 5.3: Architectural overview of a node

Figure 5.4: Typical workflow of the Node Manager

ularly the decision-making component and leads to coordination and coop-
eration with the other node managers. The execution of the planned actions
is again left to the PNS.

Now all the main concepts of the node manager have been touched on. In
the following they will be explained in detail.

5.3 Architecture 193

5.3.1 Sensory filter

The node managers perceive their environment with sensors. The term sen-
sor or sense refers in this work to every facility that contributes to gather
information about external or internal states. This could be a real hard-
ware temperature sensor but also a sensor that provides information about
the current workload of the node or about the state of some application or
service. It is assumed that there are two kinds of sensors, depending on
whether they provide continuous or discrete values. Let S be the set of
existing senses, and P be the corresponding set of possible perceptions. A
function ρ : S → P maps a sensor to its corresponding value set which is
either discrete or continuous. A temperature sensor St ∈ S could for ex-
ample be matched to the value set [−10C◦, 70C◦] ∈ P if it provides values
within this range.

Be P ∈ P the possible percepts of an arbitrary sensor. The sensory filter
function ϕP : P → {0, 1} determines which perceptions are discarded and
which are further processed. The perceptionsPϕ ⊆ P that are not discarded
and pass the filter are defined as follows: Pϕ := {x ∈ P | ϕP (x) = 1}. A
simple filter function for the temperature sensor could be:

ϕPt(x) =

{
1 if x ≥ 0C◦

0 if x < 0C◦

where temperatures smaller than 0C◦ are filtered out. Also, percepts from
the percept history can be used in the filter if the sensory memory contains
them. In this way, filters similar to relative threshold filters can be defined,
e.g. to only let pass temperature perceptions that have changed more than
1C◦ compared to the last percepted temperature x−1:

ϕPt(x) =

{
1 if |x− x−1| > 1C◦

0 otherwise.

5.3.2 Reflexes

A reflex is a concept that allows very fast reactions to perceptions after
having passed the sensory filter. Reflexes are modelled by simple rules of
the form IF condition THEN action what represents a reflex arc. For the
specification and processing of these rules a rule engine like JESS1 might be
used.

A rule of a rule engine is quite similar to an IF ... THEN statement of a
program language. However, rule engines can be much more efficient. JESS

1http://herzberg.ca.sandia.gov/jess/

194 Towards an architecture for highly complex systems

for instance is using the RETE [For82] algorithm which can be many orders
of magnitude faster than equivalent IF ... THEN statements.

Reflexes are defined as follows:

reflex REFLEXNAME

(CONDITIONS) =>

(ACTIONLIST)

REFLEXNAME is just a name for the reflex. The CONDITIONS define under which
conditions the actions of the ACTIONLIST are fired. Each element of the
ACTIONLIST is an element of A. The CONDITIONS, the facts the reflex rules
operate on, are based on the filtered percepts Pϕ of the sensors of the node
manager. They have the same structure as the preconditions of actions of a
planning language, as introduced in the previous chapter.

5.3.3 Organisation, identification, and classification of
stimuli

Organisation, identification, and classification is necessary to transform the
stimuli into a representation suitable for further processing. This transfor-
mation is also conducted with rules. These have the form:

oic OICNAME

(CONDITIONS) =>

(FACTS)

The term CONDITIONS is again the precondition that has to be true for the
rule to be executed. However, the rules produce facts that are stored in
the memory, more precisely the short term memory, instead of triggering
actions. To get a better impression on how the OIC-rules are used, consider
the following example:

oic weather

(temperature in [15, 25] &&

humidity < 80% &&

wind < 50 km/h) ?

=> (goodweatherconditions) :

=> (NOT goodweatherconditions)

The rule classifies the weather conditions into the categories or concepts of
good and not good dependent on temperature, humidity, and wind. If this

5.3 Architecture 195

information is sufficient for decision-making then this classification repre-
sents a huge reduction of complexity for this process. The set of percepts P
is transformed by the OIC-rules to a set of facts F .

5.3.4 Memory

The memory is separated into sensory memory, short term memory, and
long term memory. The sensory memory is modelled by queues of a certain
size, one for each sense. If only the latest value is of interest the size can be
set to one, otherwise it is set to a certain higher value. After every sensing
cycle the actual values are inserted into the sensory memory.

The short term memory stores recognised concepts, facts, and so on. In-
formation which is accessed frequently, or other impressive and essential
information, is moved to the long-term memory. The main difference be-
tween these two types of memory is the storage time of knowledge.

In literature, the long term memory is further divided into several cate-
gories. The most interesting subcategories are probably the semantic and
the episodic memory. The semantic memory stores knowledge like ’humans
have two legs’ while the episodic consists of stored experiences.

An adequate storage and retrieval of information is very important for
decision-making and learning. The memory component is only sketched
as it is beyond the scope of this work to derive a fine-grained model.

5.3.5 Decision-making

Each node manager has a number of actions it is able to perform. Decision-
making is choosing between such alternatives. The core of this component
for the node managers is a reasoning engine, for instance an automated
planner as proposed in the previous chapter. Due to the simplification of
the stimuli by the organisation, identification, and classification component,
and learning progress, the reasoning becomes more efficient. As a planning
engine is presented in detail in the previous chapter, a further explanation
of basic reasoning concepts is omitted here.

It is desirable that a decision-making component follows the idea of anytime
execution, i.e. a solution is available at anytime, but the more time that is
available, the more accurate the processing performance will be.

196 Towards an architecture for highly complex systems

5.3.6 Learning

The consequences of past decisions of the decision-making component are
used as feedback to enable learning from past situations. Especially inter-
esting types of learning for this work are inductive and observational learn-
ing as well as exchange of knowledge. Inductive learning is learning by
example, where it is tried to induce a general rule from a set of observed
instances. Observational learning refers to the ability to learn by the obser-
vation of other individuals’ actions.

As distributed systems consists of many node managers, observational, co-
operative learning and exchange of experiences are valuable. Thus, if a node
manager is able to derive a successful behaviour all node managers benefit
from that.

5.3.7 Cooperation

The cooperation among node managers is necessary to fulfil the system’s
goals and to guarantee scalability. Because of limited processing power,
memory, and information, a central node manager is not able to control a
complex distributed system. Social knowledge is necessary to enable a rea-
sonable cooperation of the node managers. Furthermore, the social knowl-
edge comprises the goals and requirements of the whole system which have
to be maintained by the node managers. This is encoded as common norms
and supports the “welfare” of the distributed system. All acting is influ-
enced by these norms.

Roles are adopted by and distributed among the node managers to ensure
a scalable assignment of things such as tasks which need to be performed.
The relations between the node managers are mapped to social networks.
For very complex systems higher level networks are possible, i.e. a network
consisting of networks. To give an idea of the benefits of such an organisa-
tion consider a node manager needing assistance to execute an action, it can
start to ask for this assistance in its local network first and broadens the re-
quest gradually. The closer other entities are to the node manager the more
information it should know about it. With this functionality it should be
possible to keep communication locally and to distribute information intel-
ligently. The grouping algorithms of Chapter 3 could provide some funda-
mental capability to form such social networks. As a global understanding
of the node managers is necessary for communication and cooperation and
the node managers do not necessarily share the same implementation, an
abstraction of the virtual environment is needed. For this purpose an ontol-
ogy can be used. An ontology is a formal specification of a set of concepts
and its relationships.

5.4 Conclusions 197

5.4 Conclusions

In this concluding chapter, an architecture for self-healing in highly complex
distributed systems is sketched. The design of the architecture is inspired by
psychological and sociological aspects. Many of the techniques presented in
the previous chapters could be taken up in this architecture. The planning
engine presented in Chapter 4 could serve as a basis of the architecture’s
decision-making component. The cooperation of the node managers based
on social networks could be built upon the grouping algorithms proposed in
Chapter 3 which could be used to form such groups. In that case, the suit-
ability of two nodes which influences the grouping algorithms should be
defined based on social aspects. The node manager’s perception of the en-
vironment depends on sophisticated monitoring information. In distributed
environments it is especially tough to detect node crashes. To be able to de-
tect the failure of other node managers, monitoring input of a component,
like the failure detector of Chapter 2, is needed. Thus, this chapter provides
an overview of possible future research in the struck way of self-healing
systems.

There are two kinds of people, those
who finish what they start and so on.

Robert Byrne

6
Conclusions

This dissertation dealt with approaches to enable self-healing distributed
systems. Therefore, generic key issues have been identified and methods of
resolution have been provided.

Commonly accepted models of systems with self-x features suggest that the
main architectural blocks are an observing and a controlling instance. For
self-healing, the main tasks of observation and control are the detection of
flaws and their correction.

The detection of node failures is a generic, non-trivial task in distributed
environments. In this work a new failure detection algorithm has been pro-
posed. It is flexible, adaptive, and has outperformed all other considered
algorithms in the evaluated settings. Different variants of the basic detec-
tion algorithm have been investigated and further improvements could be
achieved. The evaluations suggest that the developed algorithm is the best
heartbeat-style failure detector if message loss is considered. In some cases
the algorithm proposed in this work makes about 90% fewer wrong suspi-
cions than other algorithms. Furthermore, a method called lazy monitor-
ing has been developed to reduce the overhead of failure detectors which
depend on heartbeat messages. Besides the reduction of overhead the lazy
monitoring also contains the possibility of a faster adaption to changing net-
work conditions and better detection quality. In the considered testbed the
usage of lazy monitoring reduced the traffic to 1.2% and the number of mes-
sages to 1% of the benchmark. At the same time 10 times more information
about the environment could be gathered what helps failure detectors to
perform better.

199

200 Conclusions

To allow for scalable systems which have the ability to monitor themselves,
the problem of an autonomous installation of monitoring relations in dis-
tributed systems has been investigated. This novel problem has been de-
fined in a concise way and three algorithms to solve this problem have been
derived. They have been compared regarding their efficiency, suitability,
and the failure tolerance they are providing. The evaluation shows that the
overhead of all proposed algorithms is independent from the network size
and therefore suitable for complex large scale distributed system. Each al-
gorithm needs only a very limited number of messages per node in order to
fully install monitoring relations.

A failure recovery engine has been developed to manage distributed sys-
tems and recover them from unwanted states. It is a generic approach ap-
plicable to any scenario whose features can be represented by the provided
modelling language. Humans only need to specify the desired system prop-
erties while it is left to the engine to reach them. Thus, responsibilities are
shifted from users and administrators to the system itself. The failure re-
covery engine is reliable and trustworthy as it is based on a sound and
complete automated planning approach. Therefore it contributes to cope
with more and more complex systems and minimises human error. To iden-
tify unwanted system states, a technique allowing a distributed consistency
check has been introduced. A distributed planning algorithm called DPOP
has been developed. A plan execution method provides the ability to con-
currently execute plans in distributed systems. Several extensions are pre-
sented which aim to provide extra functionality and better performance.
The functionality of the proposed approach is evaluated within different
scenarios. These provide a proof of concept that the approach is suitable to
autonomically manage quite complex systems with more than 100 nodes.
An introduced technique called recovery-oriented planning resulted in sav-
ing up to 97% of planning steps, especially if only small parts of a system
fail.

One chapter has been dedicated to sketch an architecture to manage highly
complex distributed systems as starting point for future work. It is inspired
by psychology and sociology and tries to adapt concepts which enable hu-
mans to cope with its highly complex environment to technical systems.
Many of the techniques introduced in the main chapters could be integrated
in such an architecture.

Bibliography

[ACE+03] R. Allrutz, C. Cap, S. Eilers, D. Fey, H. Haase, C. Hochberger,
W. Karl, B. Kolpatzik, J. Krebs, F. Langhammer, P. Lukow-
icz, E. Maehle, J. Maas, C. Müller-Schloer, R. Riedl, B. Schal-
lenberger, V. Schanz, H. Schmeck, D. Schmid, W. Schröder-
Preikschat, T. Ungerer, H.-O. Veiser, and L. Wolf. Organic
Computing - Computer- und Systemarchitektur im Jahr 2010
(in German), 2003. VDE/ITG/GI position paper.

[AHT90] James Allen, James Hendler, and Austin Tate, editors. Readings
in Planning. Morgan Kaufmann, San Mateo, CA, 1990.

[AHW04] Naveed Arshad, Dennis Heimbigner, and Alexander L. Wolf.
A planning based approach to failure recovery in distributed
systems. In David Garlan, Jeff Kramer, and Alexander L. Wolf,
editors, WOSS, pages 8–12. ACM, 2004.

[ALR04] Algirdas Avizienis, Jean-Claude Laprie, and Brian Randell.
Dependability and its threats - A taxonomy. In René Jacquart,
editor, IFIP Congress Topical Sessions, pages 91–120. Kluwer,
2004.

[And98] Jesper Andersson. Reactive dynamic architectures. In ISAW
’98: Proceedings of the third international workshop on Software
architecture, pages 1–4, New York, NY, USA, 1998. ACM.

[And08] Thorge Andersen. Automatisches Planen für selbstheilende
verteilte Systeme (in German). Diploma thesis, University of
Augsburg, 2008.

[ARLV01] C. Asavathiratham, S. Roy, B. Lesieutre, and G. Verghese. The
influence model. Control Systems Magazine, IEEE, 21(6):52–64,
Dec 2001.

[Bar96] Valmir C. Barbosa. An introduction to distributed algorithms.
MIT Press, Cambridge, MA, USA, 1996.

[BF95] Avrim Blum and Merrick Furst. Fast planning through plan-
ning graph analysis. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence (IJCAI 95), pages 1636–1642,
August 1995.

201

202 Bibliography

[BMMSP06] J. Branke, M. Mnif, C. Müller-Schloer, and H. Prothmann. Or-
ganic computing addressing complexity by controlled self-
organization. Leveraging Applications of Formal Methods, Ver-
ification and Validation, 2006. ISoLA 2006. Second International
Symposium on, pages 185–191, Nov. 2006.

[BMS02] Marin Bertier, Olivier Marin, and Pierre Sens. Implementation
and performance evaluation of an adaptable failure detector.
In DSN ’02: Proceedings of the 2002 International Conference on
Dependable Systems and Networks, pages 354–363, Washington,
DC, USA, 2002. IEEE Computer Society.

[BMS03] Marin Bertier, Olivier Marin, and Pierre Sens. Performance
analysis of a hierarchical failure detector. In Proceedings 2003
International Conference on Dependable Systems and Networks
(DSN 2003), pages 635–644, San Francisco, CA, USA, June
2003. IEEE Computer Society.

[Bol93] Jean-Chrysotome Bolot. End-to-end packet delay and loss be-
havior in the internet. In SIGCOMM ’93: Conference proceedings
on Communications architectures, protocols and applications, pages
289–298, New York, NY, USA, 1993. ACM.

[BS72] B. S. Baker and R. Shostak. Gossips and telephones. Discrete
Math., 2(3):191–193, June 1972.

[Car88] J. G. Carbonell. PRODIGY: an integrated architecture for plan-
ning and learning. In Symposium for methodologies for intelligent
systems 3, Turin, October 1988.

[CASD85] F. Cristian, H. Aghali, R. Strong, and D. Dolev. Atomic broad-
cast: From simple message diffusion to byzantine agreement.
In Proc. 15th Int. Symp. on Fault-Tolerant Computing (FTCS-15),
pages 200–206, Ann Arbor, MI, USA, 1985. IEEE Computer So-
ciety Press.

[CDK00] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Sys-
tems: Concepts and Design. Addison-Wesley, third edition, 2000.

[Cha87] D. Chapman. Planning for conjunctive goals. Artificial Intelli-
gence, 32:333–377, 1987.

[CHT96] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg.
The weakest failure detector for solving consensus. Journal of
the ACM, 43(4):685–722, 1996.

[CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable failure
detectors for reliable distributed systems. Journal of the ACM,
43(2):225–267, 1996.

[CTA00] Wei Chen, Sam Toueg, and Marcos Kawazoe Aguilera. On the
quality of service of failure detectors. In Proceedings of the In-

Bibliography 203

ternational Conference on Dependable Systems and Networks (DSN
2000), New York, 2000. IEEE Computer Society Press.

[DGH+87] Alan J. Demers, Daniel H. Greene, Carl Hauser, Wes Irish,
and John Larson. Epidemic algorithms for replicated database
maintenance. In Proceedings of the Sixth Annual ACM Sympo-
sium on Principles of Distributed Computing, pages 1–12, Van-
couver, British Columbia, Canada, 10–12 August 1987.

[DGM02] Abhinandan Das, Indranil Gupta, and Ashish Motivala.
SWIM: Scalable weakly-consistent infection-style process
group membership protocol. In DSN ’02: 2002 International
Conference on Dependable Systems and Networks, pages 303–312.
IEEE Computer Society, 2002.

[DLS88] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the
presence of partial synchrony. Journal of the ACM, 35(2):288–
323, 1988.

[DN98] Kaushik K. Dam and Lionel M. Ni. Design and implemen-
tation of a network emulator. Technical Report MSU-CPS-
ACS-98-16, Department of Computer Science and Engineer-
ing, Michigan State University, May, 1998.

[DS82] D. Dolev and H. R. Strong. Distributed commit with bounded
waiting. In Proceedings of the Second Symposium on Reliability
in Distributed Software and Database Systems, Pittsburgh, pages
53–59. IEEE, July 1982.

[EH04] Stefan Edelkamp and Joerg Hoffmann. PDDL2.2: The lan-
guage for the classical part of the 4th international planning
competition. report00195, Institut für Informatik, Universität
Freiburg, January 21 2004.

[EMW97] Michael D. Ernst, Todd D. Millstein, and Daniel S. Weld. Auto-
matic sat-compilation of planning problems. In In Proceedings
of the Fifteenth International Joint Conference on Artificial Intelli-
gence, pages 1169–1176. Morgan Kaufmann, 1997.

[FDGO99] P. Felber, X. Défago, R. Guerraoui, and P. Oser. Failure detec-
tors as first class objects. In Proceedings of the International Sym-
posium on Distributed Objects and Applications (DOA’99), pages
132–141, Edinburgh, Scotland, 1999.

[Fel70] W. Feller. An Introduction to Probability Theory and its Applica-
tion, Vol. 1. John Wiley and Sons, New York, 1970.

[FL98] Maria Fox and Derek Long. The automatic inference of state
invariants in TIM. Journal of Artificial Intelligence Research,
9:367–421, 1998.

204 Bibliography

[FL01] Maria Fox and Derek Long. STAN4: A hybrid planning
strategy based on subproblem abstraction. The AI Magazine,
22(1):81–84, 2001.

[FL03] Maria Fox and Derek Long. PDDL2.1: An extension to PDDL
for expressing temporal planning domains. Journal of Artificial
Intelligence Research, 20:61–124, 2003.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson.
Impossibility of distributed consensus with one faulty process.
Journal of the ACM, 32(2):374–382, 1985.

[Fly72] M. J. Flynn. Some computer organizations and their effective-
ness. IEEE Transactions on Computers, C-21:948–960, September
1972.

[FN71] R. Fikes and N. J. Nilsson. STRIPS: A new approach to the
application of theorem proving to problem solving. Artificial
Intelligence-4, 1971, 2:189–208, 1971.

[For82] Charles Forgy. Rete: A fast algorithm for the many pat-
terns/many objects match problem. Artificial Intelligence,
19(1):17–37, 1982.

[Fox02] Armando Fox. Toward recovery-oriented computing. In
VLDB ’02: Proceedings of the 28th International Conference on Very
Large Data Bases, pages 873–876. VLDB Endowment, 2002.

[FRT01] Christol Fetzer, Michel Raynal, and Frederic Tronel. An adap-
tive failure detection protocol. In PRDC ’01: Proceedings of the
2001 Pacific Rim International Symposium on Dependable Comput-
ing, page 146, Washington, DC, USA, 2001. IEEE Computer
Society.

[FvR97] Roy Friedman and Robbert van Renesse. Packing messages
as a tool for boosting the performance of total ordering pro-
tocols. In Symp. on High Performance Distributed Computing,
HPDC, pages 233–242, 1997.

[GAKM02] Gillen, Al, Dan Kusnetzky, and Scott McLaron. The role of
linux in reducing the cost of enterprise computing, 2002. IDC
white paper.

[GCG01] Gupta, Chandra, and Goldszmidt. On scalable and efficient
distributed failure detectors. In PODC: 20th ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, 2001.

[GJ90] Michael R. Garey and David S. Johnson. Computers and In-
tractability; A Guide to the Theory of NP-Completeness. W. H.
Freeman & Co., New York, NY, USA, 1990.

Bibliography 205

[GL05] Alfonso Gerevini and Derek Long. Plan constraints and pref-
erences in pddl3. Technical report, Department of Electronics
for Automation, University of Brescia, August 2005.

[GM82] Hector Garcia-Molina. Elections in a distributed computing
system. IEEE Transactions on Computers, C-31(1):48–59, January
1982.

[GNT04] M. Ghallab, D. Nau, and P. Traverso. Automated Planning: The-
ory and Practice. Morgan Kaufman, San Francisco, CA, 2004.

[GOR06] Matthias Güdemann, Frank Ortmeier, and Wolfgang Reif. For-
mal modeling and verification of systems with self-x proper-
ties. In Laurence Tianruo Yang, Hai Jin, Jianhua Ma, and Theo
Ungerer, editors, ATC, volume 4158 of Lecture Notes in Com-
puter Science, pages 38–47. Springer, 2006.

[Gre69] Cordell Green. Application of theorem proving to problem
solving. pages 219–239. Morgan Kaufmann, 1969.

[GS96] Alfonso Gerevini and Lenhart Schubert. Accelerating partial-
order planners: Some techniques for effective search control
and pruning. Journal of Artificial Intelligence Research, 5:95–137,
1996.

[GSRU07] Debanjan Ghosh, Raj Sharman, H. Raghav Rao, and
Shambhu J. Upadhyaya. Self-healing systems - survey and
synthesis. Decision Support Systems, 42(4):2164–2185, 2007.

[Här91] W. Härdle. Smoothing Techniques with Implementation in S.
Springer Verlag, Berlin, 1991.

[Has00] Patrik Haslum. Admissible heuristics for optimal planning.
pages 140–149. AAAI Press, 2000.

[HDYK04] Naohiro Hayashibara, Xavier Défago, Rami Yared, and
Takuya Katayama. The f accrual failure detector. In 23rd
IEEE International Symposium on Reliable Distributed Systems
(SRDS’04), pages 66–78. IEEE Computer Society, 2004.

[HK97] Markus Horstmann and Mary Kirtland.
Dcom architecture. Technical report,
http://msdn.microsoft.com/library/backgrnd/html/
msdn dcomarch.htm, July 1997.

[HNR72] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. Correction
to ”a formal basis for the heuristic determination of minimum
cost paths”. SIGART Bulletin, (37):28–29, 1972.

[Hof01] Jörg Hoffman. FF: The fast-forward PLanning system. The AI
Magazine, 22(1):57–62, 2001.

206 Bibliography

[Hor01] Paul Horn. Autonomic computing: Ibm’s per-
spective on the state of information technology.
http://www.research.ibm.com/autonomic/, 2001.

[HTC05] Yuuki Horita, Kenjiro Taura, and Takashi Chikayama. A scal-
able and efficient self-organizing failure detector for grid ap-
plications. In SC’05: Proc. The 6th IEEE/ACM International
Workshop on Grid Computing CD, pages 202–210, Seattle, Wash-
ington, USA, November 2005. IEEE/ACM.

[IBM06] IBM. An architectural blueprint for autonomic computing, Jun
2006. White Paper, 4th edition.

[Jac88] V. Jacobson. Congestion avoidance and control. In SIGCOMM
’88: Symposium proceedings on Communications architectures and
protocols, pages 314–329, New York, NY, USA, 1988. ACM
Press.

[JP94] David Joslin and Martha E. Pollack. Least-cost flaw repair: A
plan refinement strategy for partial-order planning. In AAAI,
pages 1004–1009, 1994.

[JSHS05] Kaustubh R. Joshi, William H. Sanders, Matti A. Hiltunen, and
Richard D. Schlichting. Automatic model-driven recovery in
distributed systems. In Proceedings 24th IEEE Symposium on
Reliable Distributed Systems (24th SRDS’05), pages 25–38, Or-
lando, FL, USA, October 2005. IEEE Computer Society.

[KH00] Jana Koehler and Jörg Hoffmann. On reasonable and forced
goal orderings and their use in an agenda-driven planning al-
gorithm. Journal of Artificial Intelligence Research, 12:338–386,
2000.

[KNHD97] Jana Koehler, Bernhard Nebel, Jörg Hoffmann, and Yannis Di-
mopoulos. Extending planning graphs to an adl subset. In
ECP ’97: Proceedings of the 4th European Conference on Planning,
pages 273–285, London, UK, 1997. Springer-Verlag.

[Koe98] Jana Koehler. Planning under resource constraints. In European
Conference on Artificial Intelligence, pages 489–493, 1998.

[Kor88] R. E. Korf. Search: A survey of recent results, pages 197–237.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1988.

[KS86] R. Kowalski and M. Sergot. A logic-based calculus of events.
New Generation Computing, 4(1):67–95, 1986.

[KS92] Henry Kautz and Bart Selman. Planning as satisfiability. In
ECAI ’92: Proceedings of the 10th European conference on Artificial
intelligence, pages 359–363, New York, NY, USA, 1992. John Wi-
ley & Sons, Inc.

Bibliography 207

[KS96] Henry A. Kautz and Bart Selman. Pushing the envelope: Plan-
ning, propositional logic and stochastic search. In AAAI/IAAI,
Vol. 2, pages 1194–1201, 1996.

[KS98] Henry Kautz and Bart Selman. BLACKBOX: A new approach
to the application of theorem proving to problem solving. In
Workshop on Planning as Combinatorial Search, in conjunction
with AIPS-98 (Conference on Artificial Intelligence Planning Sys-
tems, pages 58–60, 1998.

[KS99] Henry Kautz and Bart Selman. Unifying SAT-based and
graph-based planning. In Thomas Dean, editor, Proceedings
of the Sixteenth International Joint Conference on Artificial Intelli-
gence, pages 318–325, San Francisco, 1999. Morgan Kaufmann.

[KWWW94] Samuel C. Kendall, Jim Waldo, Ann Wollrath, and Geoff
Wyant. A note on distributed computing. Technical report,
Mountain View, CA, USA, 1994.

[LAF99] Mikel Larrea, Sergio Arévalo, and Antonio Fernández. Effi-
cient algorithms to implement unreliable failure detectors in
partially synchronous systems. In Proceedings of the 13th In-
ternational Symposium on Distributed Computing, pages 34–48,
London, UK, 1999. Springer-Verlag.

[LF00] Derek Long and Maria Fox. Automatic synthesis and use of
generic types in planning. In Artificial Intelligence Planning Sys-
tems, pages 196–205, 2000.

[Lib00] Paolo Liberatore. On the complexity of choosing the branching
literal in DPLL. Artificial Intelligence, 116(1–2):315–326, 2000.

[Lif86] Vladimir Lifschitz. On the semantics of STRIPS. In Michael P.
Georgeff and Amy Lansky, editors, Reasoning about Actions and
Plans, pages 1–9. Morgan Kaufmann, Los Altos, California,
1986.

[LLS+07] Mikel Larrea, Alberto Lafuente, Iratxe Soraluze, Roberto
Cortiñas, and Joachim Wieland. On the implementation
of communication-optimal failure detectors. In 3rd Latin-
American Symp. on Dependable Computing, LADC, volume 4746
of LNCS, pages 25–37, Morelia, Mexico, 2007. Springer Verlag.

[Lyn89] N. Lynch. A hundred impossibility proofs for distributed com-
puting. In PODC ’89: Proceedings of the eighth annual ACM Sym-
posium on Principles of distributed computing, pages 1–28, New
York, NY, USA, 1989. ACM Press.

[McC68] John McCarthy. Situations, actions and causal laws. In M. Min-
sky, editor, Semantic Information Processing, pages 410–417. MIT
Press, 1968.

208 Bibliography

[McC86] John McCarthy. Applications of circumscription to formaliz-
ing common sense reasoning. Artificial Intelligence, 28:89–116,
1986.

[McD98] D. McDermott. Pddl — the planning domain definition lan-
guage, 1998.

[MR91] David A. McAllester and David Rosenblitt. Systematic nonlin-
ear planning. In AAAI, pages 634–639, 1991.

[MS99] Rob Miller and Murray Shanahan. The event calculus in classi-
cal logic - alternative axiomatisations. Electron. Trans. Artificial
Intelligence, 3(A):77–105, 1999.

[Muk92] Amarnath Mukherjee. On the dynamics and significance of
low frequency components of internet load. Technical Report
MIS-CIS-92-83, University of Pennsylvania, December, 1992.

[NFF+05] Alexander Nareyek, Eugene C. Freuder, Robert Fourer, Enrico
Giunchiglia, Robert P. Goldman, Henry Kautz, Jussi Rintanen,
and Austin Tate. Constraints and ai planning. IEEE Intelligent
Systems, 20(2):62–72, 2005.

[NK01] XuanLong Nguyen and Subbarao Kambhampati. Reviving
partial order planning. In Bernhard Nebel, editor, Proceedings
of the seventeenth International Conference on Artificial Intelligence
(IJCAI-01), pages 459–466, San Francisco, CA, August 4–10
2001. Morgan Kaufmann Publishers, Inc.

[NS72] A. Newell and H. A. Simon. Human problem solving. Prentice-
Hall, 1972.

[OGT+99] P. Oreizy, M.M. Gorlick, R.N. Taylor, D. Heimhigner, G. John-
son, N. Medvidovic, A. Quilici, D.S. Rosenblum, and A.L.
Wolf. An architecture-based approach to self-adaptive soft-
ware. Intelligent Systems and Their Applications, IEEE [see also
IEEE Intelligent Systems], 14(3):54–62, May/Jun 1999.

[Pap84] A. Papoulis. Probability, Random Variables and Stochastic Pro-
cesses. McGraw-Hill, second edition, 1984.

[Pat02] David Patterson. Embracing failure: Recovery oriented com-
puting (ROC). In The Conference on High Speed Computing,
page 9, Salishan Lodge, Gleneden Beach, Oregon, April 2002.
LANL/LLNL/SNL. LA-UR-02-2865.

[PBB+02] David Patterson, Aaron Brown, Pete Broadwell, George Can-
dea, Mike Chen, James Cutler, Patricia Enriquez, Armando
Fox, Emre Kiciman, Matthew Merzbacher, David Oppen-
heimer, Naveen Sastry, William Tetzlaff, Jonathan Traupman,

Bibliography 209

and Noah Treuhaft. Recovery oriented computing (ROC): Mo-
tivation, definition, techniques,. Technical report, March 26
2002.

[Ped89] Edwin P. D. Pednault. Adl: exploring the middle ground be-
tween strips and the situation calculus. In Proceedings of the
first international conference on Principles of knowledge represen-
tation and reasoning, pages 324–332, San Francisco, CA, USA,
1989. Morgan Kaufmann Publishers Inc.

[PJP97] Martha E. Pollack, David Joslin, and Massimo Paolucci. Flaw
selection strategies for partial-order planning. Journal of Artifi-
cial Intelligence Research, 6:223–262, 1997.

[PRT+08] Holger Prothmann, Fabian Rochner, Sven Tomforde, Jürgen
Branke, Christian Müller-Schloer, and Hartmut Schmeck. Or-
ganic control of traffic lights. In Chunming Rong, Martin Gilje
Jaatun, Frode Eika Sandnes, Laurence Tianruo Yang, and Jian-
hua Ma, editors, ATC, volume 5060 of Lecture Notes in Computer
Science, pages 219–233. Springer, 2008.

[PS93] Mark A. Peot and David E. Smith. Threat-removal strategies
for partial-order planning. In AAAI, pages 492–499, 1993.

[PTC06] Barry Porter, Francois Taiani, and Geoff Coulson. Generalised
repair for overlay networks. In SRDS ’06: Proceedings of the 25th
IEEE Symposium on Reliable Distributed Systems, pages 132–142,
Washington, DC, USA, 2006. IEEE Computer Society.

[PW92] J. S. Penberthy and D. S. Weld. UCPOP: A sound, complete,
partial order planner for ADL. In Proceedings of the Third Inter-
national Conference on Knowledge Representation and Reasoning
(KR-92), pages 103–114, October 1992.

[PW94] J. Scott Penberthy and Daniel S. Weld. Temporal planning with
continuous change. In AAAI, pages 1010–1015, 1994.

[R D05] R Development Core Team. R: A language and environment for
statistical computing. R Foundation for Statistical Computing,
Vienna, Austria, 2005.

[Rei01] Ray Reiter. On knowledge-based programming with sensing
in the situation calculus. ACM Transactions on Computational
Logic (TOCL), 2(4):433–457, October 2001.

[RMB+06] Urban Richter, Moez Mnif, Jürgen Branke, Christian Müller-
Schloer, and Hartmut Schmeck. Towards a generic ob-
server/controller architecture for organic computing. In
Christian Hochberger and Rüdiger Liskowsky, editors, IN-
FORMATIK 2006 – Informatik für Menschen, volume P-93 of GI-

210 Bibliography

Edition – Lecture Notes in Informatics, pages 112–119, Bonn, Ger-
many, September 2006. Köllen Verlag.

[RMH98] Robbert Van Renesse, Yaron Minsky, and Mark Hayden. A
gossip-style failure detection service. Technical Report TR98-
1687, Cornell University, Computer Science, May 28, 1998.

[RN95] Stuart Russell and Peter Norvig. Artificial Intelligence: A Mod-
ern Approach. Prentice Hall, 1995.

[Ros81] S. J. Rosenschein. Plan synthesis: A logical perspective. In
Proceedings 7th IJCAI, pages 331–337, 1981.

[RWS06] Sandip Roy, Yan Wan, and Ali Saberi. Algorithmic Aspects of
Wireless Sensor Networks, volume 4240/2006 of LNCS, chap-
ter A Flexible Algorithm for Sensor Network Partitioning and
Self-partitioning Problems, pages 152–163. Springer Berlin /
Heidelberg, 2006.

[Sac74] E. Sacerdoti. Planning in a hierarchy of abstraction spaces. Ar-
tificial Intelligence, 5:115–135, 1974.

[Sac90] Earl D. Sacerdoti. The nonlinear nature of plans. In James
Allen, James Hendler, and Austin Tate, editors, Readings in
Planning, pages 162–170. Morgan Kaufmann publishers Inc.:
San Mateo, CA, USA, 1990.

[SAGJ93] Dheeraj Sanghi, Ashok K. Agrawala, Olafur Gudmundsson,
and Bijendra N. Jain. Experimental assessment of end-to-
end behavior on internet. In INFOCOM ’93: Proceedings of
the Twelfth Annual Joint Conference of the IEEE Computer and
Communications Societies. Networking: Foundation for the Future,
pages 867–874, 1993.

[SG95] Lenhart Schubert and Alfonso Gerevini. Accelerating partial
order planners by improving plan and goal choices. In In Pro-
ceedings of the Seventh International Conference on Tools with Arti-
ficial Intelligence, pages 442–450. IEEE Computer Society Press,
1995.

[Sil86] B. W. Silverman. Kernel density estimation technique for
statistics and data analysis. In Monographs on statistics and ap-
plied probability, volume 26. Chapman and Hall, London, 1986.

[SKC95] Bart Selman, Henry Kautz, and Bram Cohen. Local search
strategies for satisfiability testing. In AAAI-92: Proceedings 10th
National Conference on AI, DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science. American Mathe-
matical Society, January 1995.

[SPTU05] Roy Sterritt, Manish Parashar, Huaglory Tianfield, and Rainer

Bibliography 211

Unland. A concise introduction to autonomic computing. Ad-
vanced Engineering Informatics, 19(3):181–187, 2005.

[SPTU07a] Benjamin Satzger, Andreas Pietzowski, Wolfgang Trumler,
and Theo Ungerer. A new adaptive accrual failure detector for
dependable distributed systems. In SAC 2007: Proceedings of
the 22nd ACM symposium on Applied computing, pages 551–555,
New York, NY, USA, 2007. ACM.

[SPTU07b] Benjamin Satzger, Andreas Pietzowski, Wolfgang Trumler,
and Theo Ungerer. Variations and evaluations of an adap-
tive accrual failure detector to enable self-healing properties in
distributed systems. In ARCS 2007: Proceedings of the 20th In-
ternational Conference on Architecture of Computing Systems, vol-
ume 4415 of Lecture Notes in Computer Science, pages 171–184.
Springer, 2007.

[SPTU08a] Benjamin Satzger, Andreas Pietzowski, Wolfgang Trumler,
and Theo Ungerer. A lazy monitoring approach for heartbeat-
style failure detectors. In ARES 2008: Proceedings of the 3rd
IEEE International Conference on Availability, Reliability and Se-
curity, IEEE Transactions, pages 404–409. IEEE Computer So-
ciety, 2008.

[SPTU08b] Benjamin Satzger, Andreas Pietzowski, Wolfgang Trumler,
and Theo Ungerer. Using automated planning for trusted self-
organising organic computing systems. In ATC 2008: Proceed-
ings of the 5th International Conference on Autonomic and Trusted
Computing, volume 5060 of Lecture Notes in Computer Science,
pages 60–72. Springer, 2008.

[Sri05] Biplav Srivastava. The case for automated planning in auto-
nomic computing. In ICAC ’05: Proceedings of the Second In-
ternational Conference on Automatic Computing, pages 331–332,
Washington, DC, USA, 2005. IEEE Computer Society.

[ST96] John Slaney and Sylvie Thiebaux. Linear time near-optimal
planning in the blocks world. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence (AAAI-96), pages
1208–1214, Portland, Oregon, USA, August 1996. AAAI Press
/ The MIT Press.

[SU08] Benjamin Satzger and Theo Ungerer. Grouping algorithms for
scalable self-monitoring distributed systems. In Autonomics
2008: Proceedings of the 2nd ACM/ICST International Conference
on Autonomic Computing and Communication, 2008.

[Sus75] Gerald Jay Sussman. A Computer Model of Skill Acquisition.
American Elsevier Publishing Co., New York, 1975.

212 Bibliography

[SW99] David E. Smith and Daniel S. Weld. Temporal planning with
mutual exclusion reasoning. In Dean Thomas, editor, Proceed-
ings of the 16th International Joint Conference on Artificial Intel-
ligence (IJCAI-99-Vol1), pages 326–337, S.F., July 31–August 6
1999. Morgan Kaufmann Publishers.

[Tat77] A. Tate. Generating project networks. In Proceedings of the 5th
International Joint Conference on Artificial Intelligence, pages 888–
893, 1977.

[TBPU03a] Wolfgang Trumler, Faruk Bagci, Jan Petzold, and Theo Un-
gerer. Smart Doorplate. In First International Conference on
Appliance Design (1AD), pages 24–28, Bristol, GB, May 2003.
Reprinted in Personal Ubiquitous Computing (2003) 7: 221-
226.

[TBPU03b] Wolfgang Trumler, Faruk Bagci, Jan Petzold, and Theo Un-
gerer. Smart doorplate. Personal and Ubiquitous Computing,
7(3-4):221–226, March 2003.

[TBPU05] Wolfgang Trumler, Faruk Bagci, Jan Petzold, and Theo Un-
gerer. Amun - autonomic middleware for ubiquitous environ-
ments applied to the smart doorplate. In Advanced Engineering
Informatics, volume 19, pages 243–252, Washington, DC, USA,
2005. ELSEVIER.

[TEP+07] Wolfgang Trumler, Jörg Ehrig, Andreas Pietzowski, Benjamin
Satzger, and Theo Ungerer. A distributed self-healing data
store. In Autonomic and Trusted Computing, 4th International
Conference, ATC 2007, Hong Kong, China, July 11-13, 2007, Pro-
ceedings, volume 4610 of Lecture Notes in Computer Science,
pages 458–467. Springer, 2007.

[Tru06] Wolfgang Trumler. Organic Ubiquitous Middleware. PhD thesis,
Universität Augsburg, July 2006.

[Tuk77] J. Tukey. Exploratory Data Analysis. Addison-Wesley, Reading,
MA, 1977.

[TvS02] A. S. Tanenbaum and M. van Steen. Distributed Systems: Prin-
ciples and Paradigms. Prentice Hall, 2002.

[VR81] Yaakov L. Varol and Doron Rotem. An algorithm to gener-
ate all topological sorting arrangements. The Computer Journal,
24(1):83–84, 1981.

[VR99] Vincent Vidal and Pierre Régnier. Total order planning is more
efficient than we thought. In AAAI/IAAI, pages 591–596, 1999.

[WAS98] Daniel S. Weld, Corin R. Anderson, and David E. Smith. Ex-
tending graphplan to handle uncertainty & sensing actions. In
AAAI/IAAI, pages 897–904, 1998.

Bibliography 213

[Wel94] Daniel S. Weld. An introduction to least commitment plan-
ning. AI Magazine, 15(4):27–61, 1994.

[Wil88] David E. Wilkins. Practical Planning: Extending the Classical
AI Planning Paradigm. Morgan Kaufmann Publishers Inc., San
Mateo, CA, 1988.

[WW99] Steven A. Wolfman and Daniel S. Weld. The LPSAT engine and
its application to resource planning. In Proceedings of the Six-
teenth International Joint Conference on Artificial Intelligence (IJ-
CAI’99), pages 310–316, Stockholm, Sweden, July 31-August 6
1999. Morgan Kaufmann.

[YS03a] Håkan L. S. Younes and Reid G. Simmons. VHPOP: Versatile
heuristic partial order planner. Journal of Artificial Intelligence
Research, 20:405–430, 2003.

[YS03b] Håkan L. S. Younes and Reid G. Simmons. VHPOP: Versatile
heuristic partial order planner. Journal of Artificial Intelligence
Research, 20:405–430, 2003.

[ZG99] Philip G. Zimbardo and Richard J. Gerrig. Psychologie.
Springer, Berlin, 7th edition, 1999.

List of Figures

1.1 Autonomic computing reference architecture 4
1.2 MAPE cycle of an autonomic manager 4
1.3 Observer/controller architecture 5
1.4 Organic Traffic Control Architecture 6

2.1 Communication model . 11
2.2 push failure detection . 16
2.3 pull failure detection . 17
2.4 Design of the failure detector 20
2.5 Histogram of the sampled inter-arrival times in S 22
2.6 Cumulative frequencies of the sampled inter-arrival times in

S. An approximation of the CDF by Pf ail. 23
2.7 Computation of a failure probability 32
2.8 Sampling window as histograms with different bin widths . . 33
2.9 Cumulative frequencies based on histograms with different

bin widths . 34
2.10 Histogram smoothing . 35
2.11 Smoothed histograms . 36
2.12 Cumulative frequencies based on smoothed histograms 37
2.13 Test centre for failure detection algorithms 41
2.14 Exemplified output of the test centre 44
2.15 Simplified class diagram of the test centre 45
2.16 Gamma distribution . 46
2.17 Experiment 1.1: η: 1000, χ: 2%, κ: 1 49
2.18 Experiment 1.2: η: 1000, χ: 5%, κ: 1 49
2.19 Experiment 1.3: η: 1000, χ: 10%, κ: 1 50
2.20 Experiment 1.4: η: 1000, χ: 2%, κ: 5 50
2.21 Experiment 1.5: η: 1000, χ: 5%, κ: 5 51
2.22 Experiment 1.6: η: 1000, χ: 10%, κ: 5 51
2.23 Experiment 1.7: η: 20000, χ: 2%, κ: 1 52
2.24 Experiment 1.8: η: 20000, χ: 5%, κ: 1 52
2.25 Experiment 1.9: η: 20000, χ: 10%, κ: 1 53
2.26 Experiment 1.10: η: 20000, χ: 2%, κ: 5 53
2.27 Experiment 1.11: η: 20000, χ: 5%, κ: 5 54
2.28 Experiment 1.12: η: 20000, χ: 10%, κ: 5 54

215

216 List of Figures

2.29 Experiment 2.1: η: 1000, χ: 2%, κ: 1 56
2.30 Experiment 2.2: η: 1000, χ: 5%, κ: 1 56
2.31 Experiment 2.3: η: 1000, χ: 10%, κ: 1 57
2.32 Experiment 2.4: η: 1000, χ: 2%, κ: 5 57
2.33 Experiment 2.5: η: 1000, χ: 5%, κ: 5 58
2.34 Experiment 2.6: η: 1000, χ: 10%, κ: 5 58
2.35 Experiment 2.7: η: 20000, χ: 2%, κ: 1 59
2.36 Experiment 2.8: η: 20000, χ: 5%, κ: 1 59
2.37 Experiment 2.9: η: 20000, χ: 10%, κ: 1 60
2.38 Experiment 2.10: η: 20000, χ: 2%, κ: 5 60
2.39 Experiment 2.11: η: 20000, χ: 5%, κ: 5 61
2.40 Experiment 2.12: η: 20000, χ: 10%, κ: 5 61
2.41 Experiment 3.1: η: 1000, χ: 2%, κ: 1 63
2.42 Experiment 3.2: η: 1000, χ: 5%, κ: 1 63
2.43 Experiment 3.3: η: 1000, χ: 10%, κ: 1 64
2.44 Experiment 3.4: η: 1000, χ: 2%, κ: 5 64
2.45 Experiment 3.5: η: 1000, χ: 5%, κ: 5 65
2.46 Experiment 3.6: η: 1000, χ: 10%, κ: 5 65
2.47 Experiment 3.7: η: 20000, χ: 2%, κ: 1 66
2.48 Experiment 3.8: η: 20000, χ: 5%, κ: 1 66
2.49 Experiment 3.9: η: 20000, χ: 10%, κ: 1 67
2.50 Experiment 3.10: η: 20000, χ: 2%, κ: 5 67
2.51 Experiment 3.11: η: 20000, χ: 5%, κ: 5 68
2.52 Experiment 3.12: η: 20000, χ: 10%, κ: 5 68
2.53 Comparison lazy/non-lazy sampling 82
2.54 Effect of process imprecision on failure detection 83
2.55 Adaptive lazy monitoring results, sampling window size: 1000 85
2.56 Adaptive lazy monitoring results, sampling window size:

20000 . 86

3.1 Hierarchical failure detectors 90
3.2 Types of monitoring relations 94
3.3 MERGE scenarios . 99
3.4 Merge and consecutive split . 99
3.5 SPECIES scenarios . 102
3.6 Handover of group members 102
3.7 Evaluation network of 100 nodes 105
3.8 Scalability of grouping algorithms regarding network size

(κ = 50) . 107
3.9 Scalability of grouping algorithms regarding group size (κ =

100) . 108
3.10 Scalability of grouping algorithms regarding group size -

without INDIVIDUAL . 108
3.11 Resulting group sizes caused by different values for m 109
3.12 Suitability of grouping algorithms (κ = 10) 110

List of Figures 217

3.13 Suitability of grouping algorithms (κ = 50) 110
3.14 Suitability of grouping algorithms (κ = 100) 111
3.15 Suitability of grouping algorithms (κ = 1000) 111
3.16 Suitability of grouping algorithms 112
3.17 Failure tolerance of grouping algorithms (10% failure) 114
3.18 Failure tolerance of grouping algorithms (50% failure) 115
3.19 Failure tolerance of grouping algorithms (90% failure) 115
3.20 Failure tolerance of INDIVIDUAL 116

4.1 Operators of the blocks world 124
4.2 Initial state and objective . 124
4.3 Blocks world . 125
4.4 Domain definition of the blocks world in PDDL 126
4.5 State-space planning . 127
4.6 Plan-space planning . 129
4.7 Partial order plan for the lazy evening 130
4.8 Total order plans for the lazy evening 130
4.9 Usage of planning graphs . 132
4.10 A planning graph . 133
4.11 A planning problem within the blocks world 134
4.12 Planning graph for the blocks world planning problem 134
4.13 Mutex conditions for actions . 135
4.14 The “Sussman anomaly” planning problem 139
4.15 Partial plans for the “Sussman anomaly” 140
4.16 Partial plans for the “Sussman anomaly” 141
4.17 Final plan for the “Sussman anomaly” 142
4.18 Production cell . 144
4.19 Distributed partially ordered plan 155
4.20 Planning with numerical resources 165
4.21 Evaluation results: Production cell 174
4.22 Plan to configure the Smart Doorplate system 179
4.23 Evaluation results: Smart Doorplate 180

5.1 The human nervous system . 186
5.2 Simple reflex arc . 187
5.3 Architectural overview of a node 192
5.4 Typical workflow of the Node Manager 192

List of Tables

2.1 Classes of failure detectors regarding accuracy and complete-
ness . 14

2.2 Common freshness point strategy 30
2.3 New freshness point strategy 30
2.4 Qualitative analysis . 39
2.5 Comparison non-lazy/lazy failure detection 79
2.6 Comparison non-lazy/lazy failure detection within the Smart

Doorplate Project . 80

4.1 Verification of a numerical precondition in a non-commutative
environment . 168

219

List of Algorithms

1 Basic failure detection algorithm 24
2 A failure detection algorithm of class ♦P 26
3 Self-adjusting failure detector 28
4 Failure detection algorithm with a different freshness point

strategy . 31
5 Traditional heartbeat sampling 72
6 Lazy heartbeat sampling . 75
7 Simple MSS . 78
8 Adaptive MSS . 78
9 Adaptive lazy heartbeat sampling 84

10 INDIVIDUAL . 98
11 MERGE . 100
12 SPECIES . 103
12 SPECIES - continued . 104

13 The POP algorithm . 138
14 The DPOP algorithm . 151
15 Search scheme of the POP algorithm 169

221

Benjamin Satzger
Curriculum Vitae

Personal Information
Date of birth May 3, 1979
Place of birth Kaufbeuren, Bavaria, Germany

Nationality German
Marital status Married, one child

Education
2006–present Research and teaching assistant, Systems and Networking, Department of Computer

Science, University of Augsburg.
2005 Diploma in Computer Science, University of Augsburg, Degree: Dipl.-Inf. (compa-

rable to Master’s degree), final grade: “very good” – A.
2005 Computer science studies, University of Valencia, Spain.

2001–2005 Computer science studies, University of Augsburg, Germany.
1999–2001 Professional training, Hirschvogel Automotive Group, Software engineer graduation.
1998–1999 Civilian service, AWO Bildungsstätte, Pforzen.
1989–1998 Grammar school, Jakob-Brucker-Gymnasium, Kaufbeuren, with graduation.
1985–1989 Basic education, VS Stöttwang-Westendorf.

First Author Publications

Benjamin Satzger and Theo Ungerer. Grouping algorithms for scalable self-monitoring
distributed systems. In Autonomics 2008: Proceedings of the 2nd ACM/ICST Interna-
tional Conference on Autonomic Computing and Communication, 2008.

Benjamin Satzger, Andreas Pietzowski, Wolfgang Trumler, and Theo Ungerer. Us-
ing automated planning for trusted self-organising organic computing systems. In
ATC 2008: Proceedings of the 5th International Conference on Autonomic and Trusted
Computing, volume 5060 of Lecture Notes in Computer Science, pages 60–72. Springer,
2008.

Benjamin Satzger, Andreas Pietzowski, Wolfgang Trumler, and Theo Ungerer. A lazy
monitoring approach for heartbeat-style failure detectors. In ARES 2008: Proceedings
of the 3rd IEEE International Conference on Availability, Reliability and Security, IEEE
Transactions, pages 404–409. IEEE Computer Society, 2008.

Benjamin Satzger, Andreas Pietzowski, Wolfgang Trumler, and Theo Ungerer. Vari-
ations and evaluations of an adaptive accrual failure detector to enable self-healing
properties in distributed systems. In ARCS 2007: Proceedings of the 20th International
Conference on Architecture of Computing Systems, volume 4415 of Lecture Notes in
Computer Science, pages 171–184. Springer, 2007.

Benjamin Satzger, Andreas Pietzowski, Wolfgang Trumler, and Theo Ungerer. A new
adaptive accrual failure detector for dependable distributed systems. In SAC 2007:
Proceedings of the 22nd ACM symposium on Applied computing, pages 551–555, New
York, NY, USA, 2007. ACM.

Benjamin Satzger, Markus Endres, and Werner Kießling. A preference-based recom-
mender system. In EC-Web 2006: Proceedings of the 7th International Conference
on E-Commerce and Web Technologies, volume 4082 of Lecture Notes in Computer
Science, pages 31–40. Springer, 2006.

Further Publications

Faruk Bagci, Florian Kluge, Benjamin Satzger, Andreas Pietzowski, Wolfgang Trumler,
and Theo Ungerer. Experiences with a smart office project. In Laurence T. Yang,
editor, Mobile Intelligence: Mobile Computing and Computational Intelligence. John
Wiley & Sons, Inc., 2008.

Wolfgang Trumler, Markus Helbig, Andreas Pietzowski, Benjamin Satzger, and Theo
Ungerer. Self-configuration and self-healing in AUTOSAR. In 14th Asia Pacific Auto-
motive Engineering Conference, Hollywood, California, USA, August 2007. SAE Inter-
national.

Wolfgang Trumler, Jörg Ehrig, Andreas Pietzowski, Benjamin Satzger, and Theo Un-
gerer. A distributed self-healing data store. In Autonomic and Trusted Computing, 4th
International Conference, ATC 2007, Hong Kong, China, July 11-13, 2007, Proceedings,
volume 4610 of Lecture Notes in Computer Science, pages 458–467. Springer, 2007.

Wolfgang Trumler, Andreas Pietzowski, Benjamin Satzger, and Theo Ungerer. Adap-
tive self-optimization in distributed dynamic environments. In Giovanna Di Marzo
Serugendo, Jean-Philippe Martin-Flatin, Mark Jélasity, and Franco Zambonelli, edi-
tors, First IEEE International Conference on Self-Adaptive and Self-Organizing Systems
(SASO 2007), pages 320–323, Cambridge, Boston, Massachussets, 2007. IEEE Com-
puter Society.

Andreas Pietzowski, Benjamin Satzger, Wolfgang Trumler, and Theo Ungerer. Using
positive and negative selection from immunology for detection of anomalies in a self-
protecting middleware. In Informatik 2006, Informatik für Menschen, volume P-93,
pages 161–168, Dresden, Germany, October 2006. Gesellschaft für Informatik e.V.,
LNI.

M. Güdemann, F. Nafz, A. Pietzowski, W. Reif, B. Satzger, H. Seebach, and T. Un-
gerer, editors. Applications and architectures in Organic Computing (DFG SPP 1183
Organic Computing). Technical report, Department of Computer Science, University
of Augsburg, 2006.

Andreas Pietzowski, Benjamin Satzger, Wolfgang Trumler, and Theo Ungerer. A bio-
inspired approach for self-protecting an organic middleware with artificial antibodies. In
Self-Organising Systems, First International Workshop (IWSOS 2006), volume 1, pages
202–215, Passau, Germany, September 2006. Springer.

	Abstract
	Zusammenfassung
	Acknowledgements
	Introduction
	Terminology
	Related work
	Challenges
	Contributions and outline
	Publications

	Failure detection
	Introduction
	Distributed systems
	Communication
	Synchrony
	Failure models

	Taxonomy, definitions, and survey of failure detectors
	Unreliability
	Quality of Service
	Monitoring strategy
	Adaptiveness
	Laziness
	Accrualty

	The failure detector
	Design
	Basic idea of the algorithm
	The algorithm in detail

	Extensions and variations of the algorithm
	Variation for partially synchronous systems
	Self-adjusting failure detector
	Freshness point strategy
	Sampling window

	Evaluation
	Qualitative Evaluation
	Quantitative Evaluation
	Discussion of the evaluation results

	Lazy monitoring
	Lazy monitoring approach
	Message selection strategy
	Evaluation
	Processing delays

	Conclusions

	Monitoring groups
	Introduction
	Related work
	Contribution
	Problem statement
	Grouping algorithms
	Evaluation
	Scalability
	Suitability
	Failure tolerance

	Conclusions and future work

	Failure recovery
	Introduction
	Related work
	Introduction to Automated Planning
	Formal representation
	Planning techniques

	Failure recovery engine
	Pop algorithm
	Planning language
	Failure recovery process
	Extensions

	Evaluation
	Production cell scenario
	Smart Doorplate scenario

	Conclusions and future work

	Towards an architecture for highly complex systems
	Introduction
	Survey of psychological and sociological concepts
	Psychological concepts
	Sociological concepts

	Architecture
	Sensory filter
	Reflexes
	Organisation, identification, and classification of stimuli
	Memory
	Decision-making
	Learning
	Cooperation

	Conclusions

	Conclusions
	Bibliography
	List of Figures
	List of Tables
	List of Algorithms
	Curriculum Vitae

