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Abstract

We study the freeness problem for matrix semigroups. We show that the freeness
problem is decidable for upper-triangular 2 x 2 matrices with rational entries
when the products are restricted to certain bounded languages. We also show
that this problem becomes undecidable for sufficiently large matrices.
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1. Introduction

In this paper we study the freeness problem over matrix semigroups. In
general, if S is a semigroup and X is a subset of S, we say that X is a code if for
any integers m,n > 1 and any elements x1,...,Zny,y1,...,y, € X the equation

T1T2 .. Tm = Y1Y2-.-Yn

implies that m = n and x; = y; for 1 < i < m. The freeness problem over S
consists of deciding whether a finite subset of S is a code.

The freeness problem over S can also be stated as follows. Suppose X is a
finite nonempty alphabet and p : ¥7 — S is a morphism. Then the freeness
problem over S is to decide whether p is injective.

For a general introduction to freeness problems over semigroups see [1].

An interesting special case of the freeness problem concerns freeness of ma-
trix semigroups. Let R be a semiring and let £ > 1 be an integer. Then the
semiring of k X k matrices (resp. upper-triangular k x k matrices) is denoted
by RF* (resp. Rﬁ;ﬁ). The sets R¥** and Rﬁ;t’i are monoids, and the freeness
problem over RF*F is to decide whether a given morphism

[ X* — RFXE

*Corresponding author
ITel: 43243669384, E-mail address: echarlier@ulg.ac.be.
2E-mail address: juha.honkala@utu.fi.

Preprint submitted to Elsevier February 11, 2014



is injective. Most cases of this problem are undecidable. In fact, Klarner, Birget
and Satterfield [2] proved that the freeness problem over N3*3 is undecidable.
Cassaigne, Harju and Karhumaéki [3] improved this result by showing that the
problem remains undecidable for N i;g Both of these undecidability results use
the Post correspondence problem. Cassaigne, Harju and Karhuméki also discuss
the freeness problem for 2 x 2 matrices having rational entries (also see [4]). This
problem is still open, even for upper-triangular 2 x 2 matrices having rational
entries. On the other hand, Bell and Potapov [5] have proved that the freeness
problem is undecidable for diagonal matrices over quaternions. For some special
decidable cases of the freeness problem for 2 x 2 matrices see [1, 3, 6, 7.
In this paper we discuss the problem whether a given morphism p : ¥* —
ﬁ;tlﬁ is injective on certain bounded languages. This approach is inspired by the
well-known fact that many language-theoretic problems which are undecidable
in general become decidable when restricted to bounded languages. Recall that a
language L C ¥* is called bounded if there is an integer s and words wy, ..., ws €
¥* such that L C wjwj...w}. Our main result is that we can decide the
injectivity of a given morphism p : {2, 21,...,2¢41}* — Qi;tzr on the language
Ly = z12%200% 23 ... 2422441 for any t > 1, provided that the matrices p(z;)
are nonsingular for 1 < ¢ < ¢t + 1. To prove this result we will study the
representation of rational numbers in a rational base.

On the other hand, we will show that if we consider sufficiently large matri-
ces, the injectivity problem becomes undecidable, even if restricted to certain
very special bounded languages. Hence, contrary to the common situation in
language theory, the restriction of the freeness problem over bounded languages
remains undecidable. The proof of our undecidability result will use a reduction
from Hilbert’s tenth problem in a way which is commonly used to obtain various
undecidability results for rational power series (see [8]) and which is also used in
[9] to prove that the mortality problem is undecidable on a bounded language.

2. Results and examples

As usual, Z and Q are the sets of integers and rational numbers. If £ > 1
is an integer, the set of k x k matrices having integer (resp., rational) entries is
denoted by ZF** (resp., Q¥**) and the set of upper-triangular k¥ x k matrices
is denoted by Zﬁ;tlﬁ (resp., Qﬁ;t’i).

We will consider two special families of bounded languages. Suppose ¢t > 1

is a positive integer. Let
Ye={z,z1,..., 241}
be an alphabet having ¢ + 2 different letters and let
A ={x,y, 21,22}

be an alphabet having four different letters. Define the languages L; C ¥} and
Ly = 212" 200" 25 - - 242" 2411



and
* )t—l

K =z(x™y ¥ 29.

We can now state our results.

Theorem 1. Let t be a positive integer. It is decidable whether a given mor-
phism

pr X5 — Qi;th
such that p(z;) is nonsingular for i =1,...,t + 1, is injective on L.

Theorem 2. There ezist two positive integers k and t such that there is no
algorithm to decide whether a given morphism

. * kxk
He: A - Zuptr

18 injective on K.

Observe that Theorem 1 still holds if ¥; and L; are replaced by A and Ky,
respectively.

Intuitively, the languages K; of Theorem 2 are the simplest bounded lan-
guages for which we are able to show that the injectivity problem is undecidable,
while the languages L; of Theorem 1 are the most general bounded languages
for which we are able to show decidability. The study of the injectivity problem
on bounded languages is motivated by the fact that while bounded languages
have a simple structure, the induced matrix products already can be used to
represent very general sets, as we will see in the proof of Theorem 2.

Our proof of Theorem 2 gives a method to compute the integers k£ and ¢
in Theorem 2. Indeed, if we are given a polynomial which has the required
universality property for Hilbert’s tenth problem, the computation of k is a
tedious but straightforward task which is left to the interested reader. The
resulting value of k is large.

We will continue with examples which illustrate the problem considered in
Theorem 1. In the examples we assume that ¢ is a positive integer, and

* 2x2
ot Zt — u;tr
is a morphism such that u(z;) is nonsingular for ¢ = 1,...,¢+ 1. We write

w(x) = M and p(z;) = N;

fori=1,...,t+ 1.

Example 3. Assume that ¢ = 2. Let p(z) = ( g (1) ) and let p(z) =
2 1
( 0 3 ) Then

2.3mtn  gm
“(mmmn):< 0 3 )

for all m,n € N. Hence p is injective on Ls.



Example 4. Assume that ¢ = 1. Let M = c( 117
¢ # 0. Then

(1) ) where b,c € Q and

n nf 1 nb
M:C(o 1)

for all n > 0. It follows that there exist distinct integers m,n > 0 such that
M” = M

if and only if ¢ € {—1,1} and b = 0. Hence p is injective on L; if and only if
cg{-1,1} or b #0.

Example 5. Assume that t = 2 and let M be as in Example 4. Let

e (4 8)

where As, By, Cy € Q. Then

- Ay Asbn + Bo + Cobm
__ . m+n 2 2 2 2
M "NoM" = ¢ ( . o )

for all m,n > 0. This implies that if ¢ ¢ {—1,1}, then p is injective if and only
if Agb # Cob. If ¢ € {—1,1}, then u is not injective on Lo.
Example 6. Assume that ¢t > 3. Let M and N> be as in Example 5 and let

m=(7 e

where Az, B3, C3 € Q. Then we can find two different triples (my, mo, m3) and
(n1,n2,n3) of nonnegative integers such that

mi + mo +ms =ny + ne + ng
and
CoCsmq + AsC3mo + Ay Agmg = CoC3nq + AsCsng + AsAsns.

This implies that

mo ns3

M NoM ™ NsM™ = M NyM"> NsM ™,

which shows that u is not injective on L.



3. Proof of Theorem 1

3.1. From matrices to representations of rational numbers

For any rational number m, we introduce a corresponding letter m. We
regard the elements of the set Q; = {m | m € Q} as digits. For any r € Q\ {0}
and any word w = W,_1 - -+ w; wg, where the w;’s belong to Q1, we define the
value of w with respect to the base r to be the number

n—1
val,.(w) = Z w; T
i=0
Observe that val,.(77) = m holds for any m € Q. If v and v are words over Q
and k is a positive integer, then
val,. (uv) = rl*Ival, (u) + val,.(v)

and
val, (uf) = (r*=Dlul gl qyval, (u).

The following lemma is straightforward.

Lemma 7. LetM:c( g ll) ) where ¢,a,b € Q. Then
n_ nf a® vala(gn)
M =c ( 0 1

for anyn > 1.

The following lemma shows that in order to prove Theorem 1 we can study
representations of rational numbers in a rational base.

Lemma 8. Let s > 1 be a positive integer, let M = c( 8 [1) ) with a,b,c € Q

} A; B .
and, fori=1,...,s+1, let N; = ( Oz CZ- ) with A;, B;,C; € Q. Then there
K3
exist rational numbers qi,...,qs+1,P1,---,DPs such that for all positive integers
mi,..., Mg,

NiM™ Ny N;M™ Noyq
(1)
mg—1 _

— — —_—m -1 [
— cm1+-“+ms ( Al R As+1am1+m+m” Vala(ql P q2--- Q4sPs ! qurl) > .
0 Cl A CS+1



PRrROOF. We proceed by induction on s. Suppose first that s = 1. If m; > 1,
Lemma 7 implies

ma (A B\ @™ val, (™) Ay By
= (58 e () (V8
_ le Ala,ml AlVala (Bml) + Bl AQ BQ
B 0 Cy 0

— o A;Asa™ Ay Boa™® + A16’2vala(5m1) + B1Cy
N 0 C1Cs

mp—1
— m Ai1Aza™  val, (A1B2 A1C50 CQ(Alb + B1)>
0 C1Cs
This implies the claim for s = 1.

Let then s > 1 and assume inductively that we have computed rational
numbers qi, ..., qs+1,P1, - - -, Ds such that (1) holds for all mq,...,ms > 1. Let

ms4+1 > 1 and let Ngpo = ( AB” gs+2 ) For the sake of brevity, let us
542
denote dy = Ay -+~ Ay i1, do = Cy -+ Cypq and Nyjo = ( ‘g g ) Then

NiM™ NoM™* Ny Ny y M Nyyo

— mitetms dygmitotms e QMs+1 Vala(EmS“) A B
B O dg 0 1 O C

_ gt man dya™ttms Aa™=+1 Ba™+1 + Cval,(b")
o 0 do 0 C

_ gmitebma dy Agmattmas gy gt tms (Bamett 4 Cval, (b)) + OT
N 0 doC

s—1 mq—1

where T = val, (G p1 Gz - s Ps Gs+1)- Wecomputedi A = Ay -+ Agya,
dQO = 01 e CS+2 and

dya™F M (Ba™e 4 Cval, (b)) + CT
-1 mg—1 mq—1

—val, (B 4,06 Cldb+q) Cpr . Cq ---Cq. Cpa -+ Cor)-

This concludes the proof.

3.2. Comparison of the representations
If ¥ is an alphabet, we let $ be the alphabet defined by

i:{[g; ]:01,0262}.



A word in 2* given by
|: ! ] |: - :| o |: ’ :|
le O—j2 Uj@

|: Uilaiz .. 'o-i[ ]
041043 """ 0jy,

will be written as

In what follows it is important to observe that if we have a word [ 51 } in
2

$* then necessarily the words w; and wy have equal lengths.
The next lemma shows that in comparing the representations of rational
numbers we can use regular languages.

Lemma 9. Let S C Q be a finite nonempty set, let Sy = {3: s € S} and let
X =05;. Letr € Q\ {-1,0,1}. Then the language

L= {{ Z; } € X :val(w) =Valr(w2)}

1s effectively regular.
PRrOOF. First, observe that

val, (xn, -+ - x120) = val,. (yn - - y1%0)
holds if and only if

val,—1 (zoz1 - - Ty) = val—1 (Yoy1 - - Yn)
holds (here, the x;’s and y;’s are digits). Indeed, we have
Tt 4T+ o =Y+ YT + Yo
if and only if
cor "4z " b, =yor T ey,

Because the class of effectively regular languages is closed under reversal, we
may assume |r| > 1 without loss of generality.
Next, we assume without loss of generality that

S={-m+1,-m+2,...,-1,0,1,...,m—2,m— 1}

where m is a positive integer. In other words, we will assume that

Xz{[%}:a,be{—m+1,—m—|—2,...,—1,0,1,...,m—2,m—1}}.



Let r = &, where u,v € Z do not have any nontrivial common factor. Let

d= T;T:f We define the nondeterministic automaton A = (Q, X,0,{q0},{q0})

as follows:

Q=Aq:1€[~d,dNZL}
and ¢
[a | gy, ii_—l—a—b:rj;
5(‘1“{ b ]) { 0, if et ¢ [—d,dNZ.
We will prove L(A) = LT. (Here L7 is the reversal of L.)
Assume first that

[ N TR B T
L llm ] la]er
or, equivalently,
ag+air+--+apr” =bg+bir + -+ byr™. (2)

We claim that there exist states gy,, ¢y, - -, ¢y,,, € @ such that

5(‘10’{2:2}[%}"'{%]):%“ 3)
and
Yidl + Gig1+ - FaprT T =l o DT (4)

hold for all ¢ =0,...,n.
We first show the existence of ¢,,. Since (2) implies

apv™ + aquv™ "t 4 - 4 apu™ = bov"™ 4+ bruv™ - byu”,
we have ag = by (mod u). Hence

ag — bo (ao — bo)U

"= =
r u

is an integer. Then since |ag] < m — 1 and |by| < m — 1, we have

lao = bol <d

|71| = |7’| = W,

and hence the state ¢,, exists.
Further, we have

5(%7 [ Z:E }) =4y

and
Y Far+agr A apr™ = by bor -+ by

This proves the claim for ¢ = 0.



Assume then j € {1,...,n} and assume that there exist ¢,,,...,q,, € Q
such that (3) and (4) hold for i =0,...,j — 1. From (4) it follows

v +a; =b; (mod u).
Hence

vita;—b; (v +a;—bjv

r u

Vi+1 =
is an integer. Because we have
i +a; =bil _ hultla =l _d+2m—2 _d+d(r[-1)

[Vje1] = =d,

7] 7] |7 7|

the state q,,,, exists. Further, we have

ag [ a1 a; a;
5(‘]07[ B H by } { i ]) 26(%_7., [ Fj b = Gy
and
Vi1 F @t o+ anr™ I = b b 4 b

This concludes the proof of the claim.
From the claim it follows

o [ ][5 ] [ D=
and
Tn+1 = 0.

Therefore - o o

i U | La Je e
Hence LT C L(A).

Suppose now that
[R5 ][]

Then there exist states ¢,,,Gy,- -, @y,,, € Q such that

a;

5(‘1%'7 |: E }) = Gvipa
for i =0,...,n and v9 = Y41 = 0. By the definition of A we have
Yi +a; — by =1y
for i = 0,...,n. This implies
a0+a1r+~~+anr”:bo+bl7’+~-~+bnr".

Hence

T[] [E] e

Therefore L(A) C LT.



8.8. A decidability method for Theorem 1

We are now ready for the proof of Theorem 1.
Let t be a positive integer and assume that

p: Xy — ﬁﬁfr
is a morphism such that u(z;) is nonsingular for ¢ = 1,...,¢ + 1.

First, we consider the particular case where u(x) is singular. Suppose p(z) =
-1

a b 0 b . . n_ on
( 0 0 ), the case u(x) = ( 0 ¢ ) being symmetric. Then p(z™) = a™ tu(x)

for all n > 1. If t = 1, then p in injective on Ly if and only if a & {—1,0,1}. If
t > 2, then the equation p(2%292) = p(x2z22?) implies that u is not injective on
L.

For the rest of the proof we suppose that p(z) is not singular. Let

u(a?):Mzc(g 11))

and, fori=1,...,t+ 1, let

== (4 2)

where a,b,c,A;, B;,C; € Q fori=1,...,t+ 1. Because M and N; are nonsin-
gular, a,c, A;, C; are nonzero for i = 1,...,¢t+ 1.

If a = —1, then M? = 1. If t > 2, then p is not injective on L; because
we have Ny M?Ny = NyNoM?2. If t = 1 and ¢ € {—1,1}, then y is not injective
on L; because NyNo = NyM?N,. If t =1 and ¢ & {—1,1}, it follows from the
equation det(M™) = (—c¢)™ that p is injective on L.

For the rest of the proof we suppose in addition that a # —1. We also
suppose that a # 1. In fact, we have already proved Theorem 1 if @ = 1 in
Examples 4, 5 and 6.

For each subset K C {1,...,t}, let

Li(K) = {z12™ 2902™225 - - zz2™ 2441 : my =0 fori € K, m; > 1 fori & K}.

Now L; is the union of the disjoint languages L;(K) where K runs over all the
subsets of {1,...,t}. This implies the following lemma.

Lemma 10. With the notation explained above, the morphism p is injective on
L, if and only if

(i) for each K C{1,...,t}, p is injective on Li(K); and

(ii) if K1, Ko C{1,...,t} with K1 # K, then there does not exist two words
wy € Li(K7) and wy € Li(K3) such that p(wy) = p(ws).

To conclude the proof of Theorem 1 we have to show that conditions (i) and
(ii) in Lemma 10 are decidable. We first prove that (ii) is decidable.

10



Lemma 11. Condition (ii) of Lemma 10 is decidable.

PROOF. For wy € Ly(K7) and we € Li(Ks3), we have

ks1 nrr

plw) = N{M* NyM™ Nj--- NI M ™ N.

and
p(ws) = NYM"“ Ny M Ny - NI M NI
where sy = t—|Ky|, 50 =t—|Ky|, k; > 1fori=1,...,5,¢; > 1forj=1,...,5
and
NiNy---Nypy = N{Ny---N; ., = N/Ny---N_ .

S

In view of Lemma 8, deciding (ii) is equivalent to deciding the following two
problems:

A : Given positive integers s1, s3 and rational numbers p1, ..., Ps;, 15 - -+, sy +1,
Qly.voy Qsyy P1y.- .5 Bsy+1, decide whether there exist positive integers
ki,...,ksy, £1,...,4s, such that the two matrices

ke -1 R TE S
Ck1+...+ksl < Ay At+1ak1+"'+ksl vala((h D1 ! q2 *** (Gs; Psy ' QS1+1) >
0 Ch-Crn

and
— lg—1 — — 1=
bl ( Ay Apa®+t s val(Biar 2 Ba o Boy @yt Boart) )
0 Cy - Chpq
(6)
are equal.

B : Given a positive integer s and rational numbers ¢, p1,...,Ps,q1,. -, qs+1,
decide whether there exist positive integers ki,..., ks such that the two
matrices

ki+-+ks ___ks—1__ k-1 __
cFrttks < Ay Apaa val, (q1 P1 q2 - g4sPs Ts+1) )
0 Cy - Copr
(7)
and
Ay A q
8
( 0 Cr-+-Ciia ®)
are equal.

11



Problem B corresponds to the case where one of the subsets K7 and K> is
equal to {1,...,t}. Because the products ac, A;---Asyq and Cy---Ciyq are
nonzero, a necessary condition for the equality of (7) and (8) is

ak1+“'+ks —1.
Because a ¢ {—1,1} this condition never holds and Problem B has no solutions.

We now turn to Problem A. Because the products ac, Aj---Aiy1 and
Cy - -+ Cyy1 are nonzero, (5) and (6) are equal if and only if

gFrttksy — a€1+---+€s2’ (9)
cFitotksy — it tls, (10)
and
o ksy—1 I T — fep—1— Y 2 o
val, (q1 p1 q2 " 4sy Psy Ts11) = vala (81 a7 B2 Bs, Os, Bsyt1)-
(11)
Because a ¢ {—1,0,1} (9) and (10) hold if and only if
ki+- ks =0+ + L, (12)

Let now S = {q17"'7Aq81+1,p17'"apslaﬁla"'7582+17a17"'7a52}7 let Sl =
{s: s € S} and let X = S5;. Let

L= {{ z; } € X :valy(u) = Vala(UQ)}

and let

u * e e
Tl:{[ u; } €EX tui EEPL @ Toy Por” Toy il

ws € Bt By o By @y Bt )

By Lemma 9, L is effectively regular. Clearly, so is 77. In fact, it is easy
to construct a finite automaton which accepts 77. Now we can decide (ii) by
checking whether

LNTy =0.

Ui

U
positive integers ki1, ..., ks, 41, .., s, such that

Indeed, suppose a word { } € X* belongs to L NTy. Then there exist

777951—1 _ k=1 _
Uy = q1p1 q2 * (s, Psy s +1

and
131

— J— [ R
Ba -+ /832 s, ﬁsz+1~

12



Uy
Uz
latter condition means that

Because [ ] € LNTy, we have val,(u;) = valy(u2) and |ug| = |uz|. The

ks, + - +ki+1=40l,+--+0+1

which gives (12). Hence (5) and (6) are equal. Conversely, if there exist positive
integers k1, ..., ks,, 01, ..., s, such that the matrices (5) and (6) are equal, then

ksy—1 ky—1

[ apl gﬁp‘;l qs;+1 :|€LmT1

e, -1 -1
Blal : 52 .”682 asz ! 552+1

Lemma 12. Condition (i) of Lemma 10 is decidable.

PROOF. We have to decide a variant of Problem A where s; = s, p; = «; and
gj =B for 1 <i<s1,1<j <5+ 1 and we have to determine whether there
exist two different si-tuples (ki,...,ks;) and (¢1,...,¢s,) of positive integers
such that (11) and (12) hold. Before we can proceed as we did above in case
(ii), we have to check whether there exist different sqi-tuples (k1,...,ks, ) and
(€1,...,4s,) of positive integers such that

sy —1 i1 —1 L5 —1 /1 —1

—_ 77k [ [ 77[ [
q1pP1 q2 " (gs; Ps; ds:+1 = q1P1 q2 *** (Gs; Psy sy +1-

Observe that such s;-tuples may exist; for example, they do exist if p; = g2 = po.
However, it is easy to decide whether there are such s;-tuples. If there are, p is
not injective on L;(K). We continue with the assumption that such s;-tuples
do not exist. Then we can decide (i) proceeding as we did above. The only
difference is that we replace 17 by

ng{{Z; } Eleulséug}.

This is done because we do not want 715 to include words [ Zl } such that
2

Uy = q1p1 q2 - s, Psy dsi+1,

£ -1

U2 = q1 D1 q2 - Qs, Ps; Qs1+1

and
(K1, k) = (b1,..., Ls,).

Observe that we did not have this problem in case (ii) because there the lan-
guages L;(K7) and L;(K>) were disjoint.

13



4. Proof of Theorem 2

Let us fix some notation first. If Ay, As,..., As are matrices, then their
direct sum A1 @ Ay @ --- @ Ay is

A 0 0
0 A 0
0 O A

If A= (aij)mxn and B are matrices, then their Kronecker product A ® B is

anB  a2B -+ a1, B
a21B GQQB e agmB
a1 B amaB -+ amaB

In both cases, we have used block notation.
The direct sum and the Kronecker product have the following properties: if
Ay, As, ... Ag are m X m matrices and B1, Bo, ..., Bs are n X n matrices, then

(A1 @ B1)(A2 ® Ba) -+ (As ® Bs) = (A1As -+ Ay) & (B1B2 -+ By)
and
(A1 ® B1)(A2 ® By) -+ (As @ Bs) = (A1 Ag -+ A;) ® (B1 By - - - By).

For more details on the Kronecker product, see for example [10, Chapter 12] or
[8].

If k is a positive integer, then Ej = (e;;)kxk is the k X k matrix whose only
nonzero entry is e = 1.

The main idea of our proof of Theorem 2 is to use the undecidability of
Hilbert’s tenth problem combined with the following result. Suppose that ¢ is a

positive integer and that p(z1,...,2:) is a polynomial with integer coefficients.
We want to find a positive integer k& and matrices A, M, N, B € Zﬁfft’ﬁ such that

AM" NM™N---NM" B =play,...,a:)Ep

for all nonnegative integers a, ..., a;.
Fix the value of t.

kxk

uptr Such

Lemma 13. There is a positive integer k and matrices A, N,B € 7Z

that for any i € {1,...,t} there is a matriz M € Zﬁ;ﬁ such that

AM™* NM™N.---NM" B = a;E},

for all nonnegative integers aq, ..., az.

14



PROOF. Let k = 2t,

1 0 0 0 0 0

0 0 0 0 0 0
A: . a,ndB_ 5

0 0 0 0 0 1

- 11 /10
where A, B € ZEXE. Let B = (0 1)andI—(O 1>.Let

M=I¢--- oI E®DID---DI,

where there are ¢ summands of which E is the ith one, and let

0o I 0 --- 0
o0 I --- 0
N = Co :
00 0 --- I
0 0 0 --- 0

be a k x k matrix where each 0 stands for the 2 x 2 zero matrix.
Then A, M, N, B € ZF** and we have

uptr
M = I¢®---0I0E"oI®---1
1
_ 1@---@1@(0 1)@1@ @1

for all n € N.
Now, if D is any matrix in Zuptr then the only nonzero entry of ADB is the
last entry in the first row, which is equal to D1;. Let us compute this entry for

AM* NM™N...NM" B

where aq, . ..,a; are nonnegative integers. For this, we regard M and N as t x ¢
matrices consisting of 2 x 2 blocks:

a

(M*NM™N---NM"")y,
= (M )11 N12(M™®)92Naz - Ni_1i(M")iiNiip1 - Ne_1.e(M™ gy

M
—7.1-1-- ( ai) I

(o 1)

The results follows.

15



Lemma 14. Let py(z1,...,2¢) and pa(z1,...,2¢) be polynomials with integer
coefficients. Suppose there exist 51,59 > 1, A1, My, Ny, By € Z°.X°" and Ay, My, Ny, By €

uptr
L322 such that

Ay M, Ny M* Ny --- NyM," By = py(ay, ..., a)Es,

and
AgMSl N2M52N2 .. 'NQM;tBQ = pZ(al, . '?at)ESQ
forall ay,...,a; € N. Then

(i) there exist s3 > 1 and Az, M3, N3, By € Z;25°* such that

A3My' N3My* N3 --- N3M,' By = (p1 +p2)(an, . .., a;)Es,

forallay,...,a; € N;

(1) there exist s4 > 1 and Ay, My, Ny, By € Z,25°* such that

uptr
A4MZIN4M22N4 : "N4MZtB4 = (p1 'P2)(a1, .. -,at)ES4

forallay,...,a; € N;

(i) if ¢ € Z, then there exists As € Zyb ™ such that
A5M;1 NleQNl e NletBl =C ~p1(a1, ey at)Esl
forallay,...,a; € N.

PRrROOF. To prove (i) we take M3 = My & My, N3 = N1 & Ny,

1 1 1
00 --- 0
Az=1 . . | (Ao A)
0 0 0
and
0 --- 0 1
0 - 0 1
Bz = (B, © By) - : :
0 --- 0 1

To prove (11)7 we take A4 = A1 ® AQ, M4 = M1 X MQ, N4 = N1 X N2 and
By = By ® By. To prove (iii) it suffices to take A5 = cA;. Then the claims
follow by simple computations which are left to the reader.

Now our goal is achieved and we can state the following lemma.
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Lemma 15. Let t be any positive integer and p(x1,...,x:) be any polynomial
with integer coefficients. Then there effectively exists a positive integer k and
matrices A, M, N, B € ZF** such that

uptr
o - 0 p(a‘lv"'aat)
ay as a o --- 0 0
AM "NM "N---NM B = )
0 0 0

forallay,...,a; € N.

Remark 16. Lemma 15 is closely related to the well-known fact stating that
if p(x1,...,2¢) is a polynomial having integer coefficients, then the series

Z p(n17~--,nt) J?nlyxn?y...yxnt

is Z-rational; see for example [11]. The purpose of Lemma 15 is to show explicitly
that we can get this result using only upper-triangular matrices.

We will use a strong version of the undecidability of Hilbert’s tenth problem
as stated in the following theorem (see [12, Theorem 3.10]).

Theorem 17. There exists a polynomial P(x1,x2,...,ZTym) with integer coeffi-
cients such that no algorithm exists for the following problem: given a positive
integer a, decide whether there exist nonnegative integers ba, ..., b,, such that

P(a,bg,...,bm) = 0.
For k = 2,3,..., define the Cantor polynomials Cs, Cs, ... as follows:

1
Ca(z1,22) = 5(3:1 + 2) (21 + 22 + 1) + 22,
Cry1(z1, .. 2eq1) = Co(Cr(wy,...,ok), Tpy1).
These polynomials are injective on N¥. In other words, for all nonnegative
integers ny,...,ng,my ..., mg, if Cr(ny,...,ng) = Cx(mq,...,my) then ny =
mai,...,n, = mg. Note that the C}’s are not injective on Vi
Let P(x1,...,Zm,) be as in Theorem 17. Take a new indeterminate ;41

and define the polynomial Q(x1,...,Zm, Tm+1) by

Q(x1,. . Ty Ting1) = €+ Copg1 (21, -« o, Tny P21, - - . 7xm)2 CTng1)s

where e is a positive integer chosen such that @) has integer coeflicients.

Lemma 18. Let a be a positive integer. Then the equation P(a,x2,...,Tm) =0
has a solution in nonnegative integers if and only if there exist nonnegative
integers ba, ..., bymi1,Co, ..., Cme1 Such that
Q(a,ba, ..., bymy1) = Qa,cay ... Cmt1) (13)
and
(bss - bms1) # (€ -y Cmp). (14)
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PROOF. Suppose first that there exist ds,...,d,, € N such that
P(a,ds,...,dy) =0.
Then we have
Qa,da,...,dm,x) =€ Cpi1(a,da,...,dm,0)
for any « € N. Hence, if we choose
(ba, ..., bmy1) = (day...,dm, 1) and (ca,...,cmy1) = (da, ..., dm,2),

then (13) and (14) hold.
Suppose then that P(a,ds,...,d;,) # 0 for all dy, ..., d,, € N. Suppose that

Q(a’a b27 tety bm+1) = Q(a’a C2,. -+, Cm+1)

where ba, ..., byn11,Co, ..., cme1 € N. Hence
Crnt1(a,ba, .. by P(a,bay . by )?bimi1)

= Chpt1(a,ca, ... cm, Pla,ca, ... ,cm)20m+1).
Because C), ;1 is injective on N™*+1 we obtain
bQZCQ,...,bm:Cm (15)
and
P(a,by,...,bp) b1 = P(a,cay ...y Cm) gt
Using (15) and the assumption

P(a,ba,...,by) = Pla,cay...,cm) #0,

we obtain b, 11 = ¢my1. Consequently, if P(a, s, ..., 2,) = 0 does not have a
solution in nonnegative integers, then there does not exist ba, ..., bmt1,C2, ..., Cmt1 €
N such that (13) and (14) hold.

We are now ready for the proof of Theorem 2.
Let P(x1,...,2m) and Q(x1,...,Zm41) be as above. By Lemma 15 there is
a positive integer k and a morphism p: A* — ZF*k such that

uptr

plzrx®yx®y - yxtmtizg) = Qa, ..., ame1) Bk
for all ay,...,amy1 € N. For each a € N define the morphism p,: A* — Zﬁ;tlﬁ
by

ta(21) = (212%Y), pa() = (), paly) = p(y) and pa(ze) = p(z2).

Then

o218y -+ Y2 23) = Q(ayas, .. ., ams1) B
forany @ > 1 and ag, ..., a;,+1 € N. By Lemma 18, for any a > 1, the morphism
Lo is injective on K, if and only if the equation P(a,z3...,%,) = 0 does not

have a solution in nonnegative integers. Now Theorem 2 follows by Theorem 17.
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5. Concluding remarks

In the proof of our undecidability result we used singular matrices. On the
other hand, in Theorem 1 we require that u(z;) is nonsingular fori = 1,... t+1.
This assumption plays an essential role in our proof of the theorem. At present
we do not know how to avoid using this assumption.

The following examples illustrate the situations where some of the matrices
w(z;), 1 < i < t+ 1, are singular. The first two examples show that the
singularity of some pu(z;) often implies that p is not injective while the third
example shows that this is not always the case. In these examples we use the
notations of Section 3.

Example 19. Let ¢ > 2 and assume that there is an integer ¢, 1 < ¢ <t —1,

such that N; is of the form ( 8 g ), where B,C € Q. Then

N;MNiy1 = N;N; (1M,
which implies that p is not injective on L;.

Example 20. Let ¢ > 2 and assume that there is an integer ¢, 3 < ¢ <t + 1,

such that N; is of the form ( 61 g >7 where A, B € Q. Then

MN;_1N; = N;—1MN;,
which implies that p is not injective on L;.

Example 21. Let t > 1 and let

31 0 1 30
N1—N2—~~—Nt—<0 1),Nt+1—(0 1>,M—(0 1>,
Then for any myq, ..., m; > 0 we have
NiM™ NoM™* Ny .. .N;M"" Ny = ( 8 qj )

where

E = 3m1+--~+mt+t + 3m1+--~+mt71+t71 N 3m1+m2+2 + 377L1+1 4+ 1.

This implies that y is injective on Ly.
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