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Abstract— This work addresses path planning for nonholo-
nomic robots moving in two-dimensional space. The problem
consists in computing a sequence of line segments that leads
from the current configuration of the robot to a target location,
while avoiding a given set of obstacles. We describe a planning
algorithm that has the advantage of being very efficient,
requiring less of one millisecond of CPU time for the case
studies that we have considered, and produces short paths. Our
method relies on a search in a Voronoi graph that characterizes
the possible ways of moving around obstacles, followed by a
string-pulling procedure aimed at improving the resulting path.

I. INTRODUCTION

We consider the general problem of planning the motion
of an autonomous nonholonomic robot in two-dimensional
space, the goal being to reach a given configuration while
avoiding some set of obstacles. For many applications, the
ability of the robot to react quickly is crucial, and a strong
emphasis must be placed on the efficiency of path planning,
which often has to be carried out with the limited amount
of computing power available on the robot. The objective is
then not to find an optimal solution, but to develop a method
that can very quickly synthesize a trajectory for reaching
the target in acceptable time, and that is consistent with the
physical limitations of the robot (e.g., sufficient clearance
is ensured with respect to obstacles, speed and acceleration
bounds are respected at all times). In addition, in order to
be able to deal with dynamic environments, absence of any
preprocessing of obstacles information is preferred.

Our approach to motion planning consists in dividing
the problem in two major steps. The first one is aimed at
finding a path that avoids obstacles and manages to reach
the destination. Such a path takes the form of a sequence of
straight line segments that clears the obstacles at a specified
safety distance. The second step is to convert this path into
a smooth trajectory that can be followed by the robot, taking
into account its physical constraints.

In this paper, we focus on the first step, introducing
a method for computing piecewise linear paths that lead
from an origin to a destination while avoiding some set of
obstacles with a given clearance. We consider differential
drive robots, but our results are also applicable to tricycle
platforms. This work has been motivated by the Eurobot?
contest, in which autonomous mobile robots have to
compete against opponents in a small game area strewn
with obstacles. This application requires, by nature, a high
level of reactivity, which can only be achieved with fast
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trajectories, and low computation times for generating them.
Our solution has been successfully implemented in the
robots that we have built for this contest, together with
the method described in [15] for carrying out the second
step. In this setting, the main advantage of our approach,
besides its efficiency, is that it provides detailed advance
information about the trajectories that will be followed by
the robot. This makes it possible to implement coordinated
actions between several robots, or between the locomotion
system and other actuators (e.g., picking up objects while
moving).

II. BACKGROUND

There exist a large number of methods for solving the
shortest path planning problem for a point robot in the
Euclidean plane; these methods can broadly be classified
into three major approaches: cell decomposition, roadmap
and potential field [11], [13]. They all have different pros and
cons; none of them solves the problem completely, optimally,
and efficiently.

A. Cell Decomposition

Cell decomposition methods consist in decomposing the
set C'fre Of the configurations that stand clear from obstacles,
into simpler regions called cells. If this decomposition can
be made in such a way that paths can easily be generated
between any two configurations in a cell, then motion
planning reduces to finding paths in a graph that represents
the connectivity between those cells.

The decomposition of Cj. into cells can be performed
exactly, for instance using the trapezoidal decomposition
method [2], suited for convex polygonal obstacles, or by
introducing approximations, as the quadtree decomposition
algorithm described in [7].

It has been established that the exact cell decomposition of
a set of disjoint convex polygonal obstacles can be computed
in O(nlogn) time, where n is the number of edges in the
obstacles representation [2]. This method as the advantage
of being complete, but it does not easily extend into one
that takes into account a given amount of clearance from
obstacles. Approximate methods, on the other hand, may
not be complete but, by increasing the grid resolution, can
produce results that are nearly optimal at arbitrary precision
levels, at the expense of a high computation time.

B. Roadmap

The main principle behind roadmap methods is to capture
the connectivity between the configurations in Clc. within a



graph called the roadmap. The path planning problem then
reduces to computing three subpaths: one that leads from
the initial configuration to a node of the roadmap, another
moving within the roadmap, and a final one connecting a
node of the roadmap with the target configuration.

There exist several methods to build a roadmap. A first
approach is to construct a visibility graph, the nodes of which
correspond to points located at the boundaries of obstacles,
with an edge connecting two nodes iff the line segment
that connects the underlying points does not conflict with
obstacles (i.e., is entirely contained in Clye). In the case of
polygonal obstacles, the nodes correspond to their vertices.
For more general convex sets, one can define edges as the
free bitangents between obstacles, and the vertices as the
points of tangency. The visibility graph can be computed in
O(k + nlogn) time, where k is the number of edges in
the graph and n the number of obstacles [16]. The main
drawback of this approach is the fact that a visibility graph
can admit as many as O(n?) edges.

If obstacles have to be cleared at a given safety distance,
then the visibility graph can be constructed after dilating
obstacles, but one then needs to check whether these are still
disjoint from each other. A procedure is introduced in [17]
for constructing a roadmap that is complete and optimal (in
terms of traveled distance), with respect of a given clearance.
The computation time is O(n?logn) where n is the total
number of vertices, which is not efficient enough for our
intended applications.

Another strategy for obtaining a suitable roadmap is to
build the Voronoi diagram of the set of obstacles [3]. In
the case of a set of individual points (called sites), this
diagram partitions the plane into convex cells that are each
associated to one site, and that contains all the points that
are closer (with respect to Euclidean distance) to this site
than the others. Voronoi diagrams can be generalized to
more complex sites such as line segments or polygons; in
this case, borders of Voronoi cells are no longer necessarily
line segments, but can also take the form of parabolic arcs.
As discussed in [4], [1] Voronoi diagrams can efficiently
be computed in O(nlogn) time and O(n) space, where
n is the number of sites. Note that dealing with sites that
are more complex than single points can be difficult in
practice. For many applications, this problem can be avoided
by approximating such sites by finite sets of points.

In a Voronoi diagram, an edge separating two cells clears,
by definition, the corresponding sites at the largest possible
distance. As a consequence, Voronoi-based path planning
methods are complete, and can easily be extended in order
to take into account some amount of clearance. On the
other hand, paths extracted from the graph are generally not
optimal, and need to be further refined.

Finally, there exist other strategies for obtaining roadmaps,
such as Probabilistic Roadmaps [5] and Rapidly-exploring
Random Trees [12], [8]. These methods are usually very
efficient as their cost mainly depends on the complexity of
the generated paths, but do not generally produce optimal
paths, and are only probabilistically complete.

C. Potential Field

The idea behind this approach, first mentioned in [9], is
to view the robot as a particle moving under the influence of
an artificial potential field. If the target location generates
a strong attractive potential, and the obstacles produce a
repulsive potential in order to avoid collisions, a path leading
to the target can be found by following the direction of the
fastest descent of the potential.

This class of methods can be very efficient and can
sometimes be computed in real time. However, like other
descent optimization techniques, those methods can get
stuck in local minima that do not correspond to the target,
and usually rely on parameters that must be finely tuned to
the actual application [10].

III. PATH PLANNING ALGORITHM
A. Outline

The main goal is to generate piecewise linear paths for a
point robot moving from a source location S' to a destination
D, avoiding obstacles with a specified clearance C,,.
Obstacles are represented by convex polygons, or by sets
of individual points.

Our proposed method is based on the Voronoi diagram
roadmap approach outlined in Section II-B. The first step
consists in computing the Voronoi diagram of the set of
obstacles. Source and destination locations are then inserted
into the diagram, by connecting them to the vertices of their
Voronoi cell. In the resulting diagram, one then removes
edges that conflict with obstacles because of insufficient
clearance. This procedure produces a roadmap in which all
admissible paths from source to destination are represented.
The next step is then to search this graph for the path that
maximizes some objective function, which is done using the
A* algorithm.

As explained in Section II-B, this method guarantees
that an admissible path will be obtained iff one exists, but
since the edges in Voronoi diagrams maximize the clearance
with obstacles, the result will generally not be optimal. We
improve the computed path by applying a string-pulling
procedure that reduces its length, getting it closer to the
obstacles while still satisfying the clearance requirement. The
final result takes the form of a short path that avoids the ob-
stacles, represented by a sequence of straight line segments.
This path can later be interpolated into a trajectory that is
consistent with the physical constraints of the robot [15].

We now describe in detail the individual steps of this
algorithm.

B. Construction of a Voronoi Diagram

Voronoi diagrams are easy to obtain for obstacles repre-
sented by single points. In the case of polygonal or more
general convex obstacles, the main issue is to approximate
sufficiently precisely these shapes with finite sets of points. It
is shown in [6] that good approximations can be obtained by
placing sites at the boundaries of obstacles, and then deleting



the Voronoi edges that appear between different sites of a
common obstacle.

In order to be able to compute efficiently a roadmap, the
goal is to create as few sites as possible without sacrificing
too much accuracy. Consider for instance the case of two
obstacles respectively represented by a straight line ¢, and
a point p that does not belong to ¢. There exists a path
moving between this pair of obstacles with clearance C',;;,
provided that the distance between p and ¢ is at least equal to
2Cmin. Assume now that the line is approximated by discrete
points sampled at the resolution d. By remaining at a distance
greater or equal to C',;, from those points, it may now be
possible to have a path that only clears p and ¢ at the distance
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It follows from this expression that choosing d = %

leads to a relative error that is less than 1%. This approx-
imation is precise enough for most practical applications,
since an additional safety margin is usually required anyway
to take into account positioning or sensor errors.

It is worth mentioning that the shape of the paths obtained
with this discretization of obstacles does not always match
those found in exact Voronoi diagrams. For instance, a
path going between two parallel lines sampled at uniform
resolution may take the form of a jagged line. This is not
at all problematic for our path planning method, since such
paths are smoothed out later in the procedure by the string-
pulling operation that will be discussed in Section III-D.

We now introduce another mechanism that makes it
possible in some situations to reduce the number of sites
needed for approximating obstacles. Consider once again our
example of two obstacles represented by a straight line ¢ and
a point p. The corresponding Voronoi diagram contains one
edge that takes the form of a parabola, the apex of which
is located at the midpoint of the segment linking p to its
orthogonal projection p’ on £. Notice that, in order to clear
both obstacles, only the sites p and p’ are relevant and thus
provide a sufficient approximation of the problem.

This principle can, a priori, be applied to all obstacles: The
line segments that define an obstacle can be approximated
by their extremities, and by the orthogonal projection of
the vertices of nearby obstacles on these segments. This
suffices to characterize all paths that have enough clearance.
The naive implementation of this method requires O(n?)
time in the number of obstacle points n, but this figure
can be substantially lowered by first triangulating the set of
obstacles, which brings the cost down to O(nlogn), or by
applying heuristically the method to only a restricted set of
obstacles. In the Eurobot case study, we choose to project
onto the borders of the playing field the obstacles that are
the closest to them, which dramatically reduces the number
of sites needed for representing these borders. An illustration
is provided in Figure 1(c).

C. Insertion of Source and Destination, Edge Deletion, and
Roadmap Search

In order to be able to use the roadmap that we have built
for discovering paths from the source to the destination, these
two locations must first be connected to the nodes of the
Voronoi graph. We perform this operation by identifying,
for each of these two points, the Voronoi cell to which they
belong. Note that each point must clear the underlying site of
its cell by a distance that is at least equal to C',;,,, otherwise
the path planning problem can trivially not be solved. The
insertion of a source or destination point is then achieved by
connecting this point to all the vertices of its cell. Note that
some of the edges that are created by this operation might
clear the site of the cell by an insufficient distance, in which
case they will be deleted at the next step of the procedure.
It is easily shown that, in each cell, there exists at least one
edge that allows to get away from the site, and will thus
avoid deletion.

The next step consists in removing from the Voronoi
diagram all the edges that have insufficient clearance. By
definition of of Voronoi diagrams, it follows that the sites
that are located at the smallest distance from an edge are
necessarily the ones that are bisected by this edge. Checking
the clearance of an edge can thus be done in constant time,
by measuring its distance to is associated pair of sites. Since
a Voronoi diagram with n sites has O(n) nodes and edges,
the deletion process can be carried out in O(n) time. Note
that undesirable edges generated by the approximation of
obstacles by finite sets of points can also be removed during
this step.

The resulting graph provides a roadmap that contains
at least one path between source and destination, avoiding
obstacles with clearance C,;,, iff one exists. Such a path
can be discovered using a shortest path algorithm such as
Dijkstra’s or A*, weighing the edges of the graph with their
length. This operation is performed in O(nlogn) time.

D. String Pulling

The path obtained as the result of the previous step is
usually far from being optimal. In addition to the artifacts
that might have been introduced by the approximations
discussed in Section III-B, the computed path may contain
lots of unneeded direction changes, and only clear obstacles
at unnecessarily large distances. This is not at all surprising,
since our roadmap graph is based on a Voronoi diagram, in
which the edges are constructed so as to maximize clearance.

We thus need an additional optimization step aimed at
simplifying the path and lowering its length, which usually
also reduces the time needed for following it. This can be
done efficiently using a so called string-pulling method.

Consider that the computed path describes the shape of a
virtual rope, and that each Voronoi site represents a virtual
pulley of radius C,;,. The optimization consists in pulling
the string at the source and destination points until it becomes
taut. This procedure can obviously not increase the length of
the path. The presence of the pulleys guarantees sufficient
clearance with the obstacles.



This operation can be performed efficiently using a result
from [14]. Given a triangulated polygon P with n vertices,
and two points s an t located inside P, a shortest path
between s and ¢ that remains entirely within P can be
computed in O(n) time employing the so-called funnel algo-
rithm. This algorithm requires P to satisfy some properties
that systematically hold if P is constructed from a sequence
of cells extracted from a Voronoi diagram.

In the particular case C,,;, = 0, the funnel algorithm can
directly be applied to the string-pulling problem, defining P
as the union of all Voronoi cells visited by the current path
(which straightforwardly provides the required triangulation).
The more general case C,,;;, > 0 can be handled by adapting
the funnel algorithm. Intuitively, instead of searching for
paths that connect sites, one needs to consider the lines that
are tangent to disks of radius C,,;, centered on these sites.
The time cost of the procedure remains O(n), where n is
the number of nodes visited by the path.

The result of this procedure is a path composed of straight
line segments (from one pulley to the next) and circle arcs
(going around pulleys). The final step consists of replacing
the circle arcs with straight line segments in order to obtain
a path represented by a broken line. This operation is
performed by ensuring that the deviations between circle
arcs and the line segments that approximate them remain
small. This can easily be achieved by imposing an upper
bound on the absolute difference of orientation between
adjacent segments (or, equivalently, on the rotation angle of
the corresponding circle arc). For the Eurobot case study, we
set this bound at 7 in order to satisfy the requirements of
our path interpolation method [15].

E. Illustration

We illustrate the successive steps of our path planning
method in Fig. 1, on a problem taken from the Eurobot case
study. Fig. 1(a) shows the area with the obstacles, source
point S and destination point D. Fig. 1(b) and Fig. 1(c)
show how the obstacles and the borders of the area are
approximated by finite set of points and their projections.
Fig. 1(d) gives the Voronoi diagram of the considered set
of points. Fig. 1(e) illustrates the insertion of source and
destination points, as well as the deletion of the edges
that conflict with obstacles. Fig. 1(f) shows the result of
the A* shortest path search. The string-pulling operation
is illustrated in Fig. 1(g), and the final result is shown in
Fig. 1(h). The complete algorithm executes on a i5-460M
processor running at 2.53GHz in less than 500us. Fig. 1(h)
also shows the interpolated path produced by [15], which is
computed in milliseconds on the same processor.

IV. REFINEMENTS AND FUTURE WORK

We now discuss some possible refinements and improve-
ments of our path planning method.

A. Dealing with the Shape of the Robot

Robots are not always symmetrical, and can not generally
be accurately represented by a single point. For a differential

drive robot, it is usually sufficient to consider the smallest
disk that covers the robot, centered at the midpoint of the
segment that links the two locomotion wheels. Our path
planning method can be adapted to such robots by adding the
radius of this disk to the required clearance. The generated
path then corresponds to the one that will be followed by
the center of the robot. Whatever the orientation taken by
the robot along the path, it will never come closer to an
obstacle than the imposed clearance.

It should be stressed out, however, that this approximation
leads to a path planning strategy that may not be complete
anymore, in the sense that some feasible paths may be
missed. A long rectangular robot moving along its longer
border could, for instance, be prevented from moving be-
tween two close obstacles. This problem could be alleviated
by employing a refined criterion for detecting the edges of
the Voronoi diagram that need to be deleted. In the Eurobot
case study, approximating robot shapes by disks turned out
to be sufficient.

One can however carry out the string-pulling operation
using a smaller clearance than for the path discovery step.
Indeed, it is sufficient to only consider the largest distance
between the center of the robot and its border, measured
perpendicularly to its direction of travel. Intuitively, since
the path that is considered already avoids obstacles by
construction, and the direction of travel of the robot is tangent
to this path, only lateral clearance of the robot with respect
to the obstacles has to be ensured.

B. Imposing Initial and Final Orientation

We have defined the source S and destination D of
a path as the locations initially and finally taken by the
robot but, in most applications dealing with nonholonomic
robots, one additionally needs to impose the orientation at
that points. This can easily be achieved by constructing
small line segments [SS’] and [D’D] that are traveled in
the appropriate directions, and that will respectively be
prepended and appended to a path computed from S’ to
D’. The lengths of such segments must be consistent with
the physical constraints imposed on the robot, for instance,
a reasonable strategy is to make |SS’| at least equal to
the braking distance of the robot at its initial speed. These
segments must also clear obstacles. This approach has the
advantage of generating paths with zero initial and final
curvatures, which simplifies chaining successive paths.

C. Misled Searches

Using a Voronoi-based roadmap graph has many advan-
tages, but since edges of Voronoi diagrams are located at
the largest possible distance from obstacles, this approach
has the drawback of distorting the length of paths. This can
sometimes mislead the search algorithm, as the shortest path
in the roadmap does not necessarily translate into the optimal
one after performing the string-pulling operation.

This issue is illustrated in Fig. 2, which shows a problem
instance for which our path planning algorithm generates a
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Fig. 1. Illustration of the path planning method. (a) Problem statement. (b) Approximation of obstacles. (c) Projections added to borders. (d) Voronoi
diagram. (e) Insertion of source and destination & edge deletion. (f) A* search. (g) String pulling. (h) Smoothed solution.



S, D S, D
. D\ O / (
N
(a) (b)
S, D S, D
~Q O
(©) (d)

Fig. 2. Issue with the Voronoi-based search. (a) Voronoi-based roadmap.
(b) Shortest path in the roadmap. (c) Solution. (d) Overall shortest path.

path that is not optimal. This problem is especially noticeable
when Cly. contains large zones that are free from obstacles.

We propose three solutions for dealing with this issue.
First, one can insert in large empty zones of Cl. virtual
obstacles that provide additional sites for constructing the
Voronoi diagram, but are not considered during the edge
deletion step. Second, the shortest path search algorithm can
be tuned by using an heuristic that reduces the weight of the
edges that are far from obstacles, since such edges are likely
to benefit the most from reductions by the string-pulling
operation. This solution has the advantage of being easy
to implement, but does not guarantee optimality. A third
approach would be to integrate the string-pulling operation
inside the search for the shortest path in the roadmap, which
would produce an optimal solution. This last technique and
its efficient implementation are still work in progress.

V. CONCLUSIONS

In this work, we have introduced an efficient path planning
method for mobile robots. The computed path is made up
of straight line segments, and can then be interpolated into a
feasible trajectory for a differential drive or a tricycle robot,
taking into account its physical constraints [15].

Strictly speaking, our algorithm is only complete for
perfectly cylindrical robots, but this limitation is not an
issue for the vast majority of applications, especially when
robots are nearly symmetrical. The method does not provide
a guarantee of optimality, but always produces paths that are
reasonably short.

The algorithm needs O(nlogn) total time, where n de-
notes the number of points considered for approximating
the obstacles. Indeed, the corresponding Voronoi diagram
can be computed in O(nlogn) time, and contains O(n)
nodes. Inserting source and destination points, and deleting

conflicting edges, is then performed in O(n) time. The search
for a shortest path in the roadmap is carried out in O(nlogn)
time, and produces a path with at most O(n) nodes. This path
is then refined in O(n) time by the string-pulling procedure.

The results presented in this paper have been successfully
implemented in the robots built for Eurobot at the University

of Liege since 2008, together with the path interpolation
algorithm introduced in [15]. In this framework, the very
low computational cost of this approach made it possible to
perform near-optimal trajectory planning in real-time, which
provided a clear competitive advantage.
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