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Abstract

Smart Poultry acquires data from aviaries by means of sensor network at reduced intervals of time (every minute) that generate
hundred thousands of data. The conjunction of Internet of Things and Artificial Intelligence open the field of the real-time monitor-
ing of poultry and ,advance analytics and automation if data is from high quality. In this paper, we propose a scalable monitoring
of a poultry achieved with open hardware wireless sensors network and software. We use a Gated Recurrent Unit, an artificial
intelligence algorithm to validate and predicate environmental parameters.
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1. Introduction

Nowadays, recent advances in Edge Computing, Edge IoT, and Edge AI allow to propose autonomous efficient
and intelligent systems. According to Katare et al.[25] combining of AI and IoT are actually used in industries. Nev-
ertheless, the combination between both technologies offers many possibilities in term of advance machine learning
and deep learning in order to propose realtime prediction,better analytics, and visualization of data. The merge of
AI and IoT provides some capabilities to images and videos processing, object segmentation and tracking, and more
advanced automation, etc.
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In Poultry Houses, noxious gases such as ammonia (NH3) are produced by animal metabolism and animal wastes
break down. The ammonia production is due to microbial decomposition or reduction of nitrogenous substances, in
particular the decomposition of uric acid contained in the litter. The production and the concentration level of NH3
depend of multiple factors such as litter type and management, humidity, pH, and temperature. The temperature and
humidity must stay respectively in range 13 to 27°C and 50 to 70%. The conjunction of high temperature and humidity
promotes the growth of bacterial and consequently the production of ammonia by decomposition of the organic matter
[30]. In Poultry, the concentration of ammonia must be maintained between 10 and 25 ppm and not exceed 35 ppm
with an exposure type of maximum fifty minutes, the generally adopted limit is 15 ppm. The mean Hydrogen Sulfide
cannot exceed 10 ppm and not exceed 15 ppm during maximum fifty minutes. The Threshold Limit Value for Carbon
Dioxide concentration (CO2) is 5,000 ppm and must be normally maintained under 2500 ppm. Other gases are also
produced such as Methane (CH4), Hydrogen Sulfide (H2S), Carbon Monoxide (CO).

In this paper, our contribution is the monitoring and the prediction of air quality in poultry by means of Artificial
Intelligence algorithm.

2. Literature Review

The literature resumes on one hand our background accumulated in previous works and published in diverse papers
and on the other hand, a general literature review related works in smart poultry. Some relevant works of other authors
are described following three parts. The first part explains the use of Artificial Neural Network and Deep Learning in
smart poultry. The second part describes the main contributions to the use of AI in poultry houses. Finally, the third
part synthesizes sensors implemented in different papers and afterwards compare them.

2.1. Background

In our previous works, we have progressively developed a semantic driven and modular cloud centric Lambda
Architecture[18] through various uses cases: landslides monitoring[29], bee health[19], irrigation [5], elderly and
patient monitoring[13], AI-IoT[9], smart campus[4], smart home[8], smart city[10], smart building[16], cattle
behavior[7][15][6][11], phenotyping[14][17], urban gardening[2], climatic enclosure[12], smart bird[1].

In this paper, we develop the edge level which collaborate with our previously developed cloud architecture in
order to deploy micro services and artificial intelligence algorithms to analyze, validate, curate, compress data.

2.2. Related Works

Diverse authors have diversely applied artificial intelligence, edge computing, wireless sensor network, and Internet
of Things on smart poultry. We describe some of their contributions in the following paragraphs.

2.2.1. Artificial Intelligence and poultry
Artificial Neural Networks has been applied to smart poultry to (1) determine accurate action plans for poultry

management using ANNs of 4 layers with multiple output regression neurons from a set of data acquired through a
sensor network and external data such as the meteorological data, bibliography material, etc. in [33]; (2) to predict
moisture contained in poultry litter moisture in [34]; (3) to determine slaughter weight of chicken with an ANN with
an input layer of 7 neurons, 11 neurons in the hidden layer and one neuron in the output layer in [24].

2.2.2. Edge computing solution for smart poultry
Yang et al. in 2019 [37] proposed an Edge Computing solution to monitor chicken house. Temperature, humidity

and light intensity are measured and transmitted by end nodes to the gateway with ZigBee network. At the edge level
data is processed and is used on hand to control the light intensity and fan and on the other hand is uploaded to the
cloud.
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2.2.3. Internet of Things in poultry
Several authors have proposed divers Smart poultry solutions based on quality sensors, air temperature, and

relative humidity sensors. Air quality sensors which have been chosen are often inadequate for the environmental
parameters acquisition in an industrial poultry. Indeed, crucial parameters that must be monitored in a poultry are
concentration in Ammonia (NH3), Hydrogen Sulfide (H2), Carbon Dioxide (CO2), and Dioxygen (O2). Methane and
Nitrogen Dioxide are also produced but rarely monitored. A synthesis of sensors used by different authors is done in
Table 1. Technical characteristics are then compared in the Table 2.

The analyze of the literature shows that the different authors implemented temperature, relative humidity sensors.
Temperature sensors most often used are LM35 [21][3], DHT11 [22][28][23][35][31][37], and DHT22 [32][26][36]
while Humidity sensors most frequently used are DHT11 [22][23][35][31][37], DHT22 [32][26][36], SY-HS-220
[27][3].

Raj et al. [32] used a MQ137 gas sensor to measures uniquely ammonia concentration in the air. While other authors
use non specific gas sensors i.e: MQ135 to measures NH3 air concentration. Handigolkar et al. [28] implemented
MQ136, another kind of gas sensor to measure Hydrogen Sulfide (H2S) in the air.

3. Material and Method

Our proposition is built around a micro computer and a Wireless Sensors Network which allows to acquire envi-
ronmental data which are then processed at the edge level of the network.

(a) NVIDIA Jetson Nano (b) ESP32s Wi-Fi

Fig. 1: Micro computer & Microcontroller

3.1. Micro computer

NVIDIA Jetson Nano (472 GFLOPS) is a micro computer equipped of 128-core CUDA Maxwell which allows
to train and exploit Artificial Intelligence algorithms. The Jetson Nano contains also a Quad-core ARM A57@1.43
GHz, 4GB 64-bit LPDDR4@25.6 GB/s (Fig. 1a).

3.2. Microcontroller

The ESP32-Wroom-32 is equipped with a Wi-Fi and a Bluetooth interfaces that allows it to communicate with the
local gateway configurated as Access Point. We use Arduino IDE to program it in the same way as an Arduino UNO.
ESP-WROOM-32 contains a Xtensa dual-core 32-bit LX6 microprocessor at 240 MHz, 520 KiB SRAM, 4 MiB Flash
Memory. Moreover it provides 12-bit SAR ADC up to 18 channels, 2 DAC of 8-bit, 10 GPIO, 4 Serial Peripherical
Interface (SPI), 2 Inter-IC Sound (I2S ), 2 Inter-integrated Circuit (I2C). It is used to connect sensors inside buildings
(Fig. 1b).
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3.3. Sensors

The MQ4 is a digital sensor measuring Methane (CH4) concentration between 200ppm and 10000ppm. The MQ7
is a digital sensor which evaluate the Carbon Monoxide (CO) concentration in a range of 20ppm to 2000ppm. The
MQ136 is a long life and reliable stability digital sensor which detects the Hydrogen Sulfide (H2S) in range of 1
to 200 ppm. Its current consumption is 150mA with an operating voltage of DC 5V. The MQ137 digital sensor
measures ammonia (NH3) concentration comprised between 5 to 500 ppm. The MG811 carbon dioxide sensors. The
DS3231 is a low-cost, and extremely accurate I2C real-time clock (RTC) with an integrated temperature-compensated
crystal oscillator (TCXO). The temperature and Humidity I2C sensor used is AM2315 (Aosong) able to acquire the
temperature in a range of -40 to 85°C with a precision of ± 0.5°C. The HC-SR04 is digital ultrasonic sensors able to
measure distance between 2 and 400 cm with an accuracy of 3 mm in optimal condition. The sensors emits a sonar
wave composed of 8 pulses at 40 kHz. We use it to measure the water level in the tank. The HX711 is a 24-Bit
Analog-to-Digital Converter (ADC) for Load Cell. The TSL2591 (Adafruit Industries LLC) is a high dynamic range
digital light sensor using I2C bus which can detect light ranges from up to 188 µLux up to 88,000 Lux.

3.4. Implementation

Our system is composed of an NVIDIA Jetson Nano, several environmental sensor nodes, a Nutrition Nodes all
interconnected by means of a Wi-Fi gateway.

Environment Sensing Node. is based on an esp32s and equipped with following sensors to measure the rate of crucial
gas concentration in the air of : methane with the MQ4 sensor, ammonia with the MQ137, carbon monoxide with
MQ7, carbon dioxide with MG811 sensor. In addition, this node is also equipped with a temperature and humidity
sensor, a real-time clock to timestamp data and a light intensity sensor. The microcontroller with all these sensors
measure regularly ambient condition of the poultry. This kind sensor of node is suspended from the ceiling of the
building and transmit its data by Wi-Fi. The (Fig. 2a) shows a block diagram of the environment sensing node.

Nutrition Sensor Node. is built around of an esp32s, a real-time clock to timestamp data, a water level sensor to
measure the availability of water for chicken, and a load cell with its 24-bit ADC convertor measures the amount of
food available in animal feeders (Fig. 2b). This kind of node is placed near the ground. The esp32s transmit regularly
data by Wi-Fi to the gateway.

(a) Environment Sensing Node (b) Nutrition Sensing Node

Fig. 2: Block Diagram

4. Experimentation

Our experimentation uses a three environmental nodes and two Nutrition Sensing Node connected to a TP-Link
Archer C50 WiFi router offering a theoretical bandwidth of 1200 Mbps: 300 Mbps in 2.4 GHz and 867 Mbps in 5
GHz. Environmental Node send data each 5 minutes and Nutrition Sensing Nodes transmit then each 5 minutes to the
micro computer. The Jetpack 4.3 is installed on the Jetson Nano SD Card. It contains the L4T 32.3.1 OS, TensorRT
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6.0.1, cuDNN 7.6.3, CUDA 1.0.326 and OpenCV 4.1.1.
We have implemented a Gated Recurrent Unit (GRU) Which is a simplified Long Short-Term Memory cells (LSTM)
combining the cell state and hidden state together. These improvements allow to speed up both the training and the
prediction phase while avoiding the vanishing gradient problem from which the Recurrent Neural Network (RNN)
suffers. Our database contains poultry environmental data received every 5 minutes.

GRU layer of M neurons and N dimensional input is described by following equations:

rt = σ(Wir xt + Whrht−1 + br)

ut = σ(Wiuxt + Whuht−1 + bu)

ct = tanh(Wicxt + rt � (Whcht−1) + bc)

ht = (1 − ut) � ct + ut � ht−1

(1)

Where r, u, c ∈ RM are respectively the reset gate, the update gate and the cell state. Wi ∈ R
MxN , Wh ∈ R

MxM are
weight matrices and b ∈ RM are bias vectors. σ denotes the logistic sigmoid.

5. Results and discussion

The Figure 3 shows in blue the measurement of ammonia rate in ppm and in red the estimation obtained with the
GRU algorithm.

Fig. 3: Prediction of data based on GRU algorithm

The GRU algorithm is used on one hand to verify the data quality received from Environment Sensing Node and
Nutrition Sensing Node and to predict evolution of data in the near future. By comparison to predict value and the
measure value, it is possible to deduce if a sensor is failed or an anomaly data is produced.

GRU are simpler than LSTM and by consequence easier to modify. Moreover, GRU train faster and the per-
formance is on LSTM. These latter are utilizing different way if gating information to prevent vanishing gradient
problem. The GRU controls the flow of information like the LSTM unit, but without having to use a memory unit. It
just exposes the full hidden content without any control.

6. Conclusion and Future Works

In this paper, we propose an edge computing and Artificial Intelligence architecture for smart poultry which ex-
ploit new possibilities offered by Nvidia Jetson Nano to analyze, validate and aggregate sensors data coming from
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Environment Sensing Node and Nutrition Sensing Node. Jetson Nano also allows to process video and photo taken
with an USB HD webcam. In future works, we will implement video treatment and animal chicken analysis to detect
anomaly in the poultry such as abnormal mortality, stress, and viz.

Acknowledgements

The authors would like to express their gratitude to Mrs Meryem El Moulat for English editing of this paper.

References

[1] Ait abdelouahid, R., Debauche, O., Mahmoudi, S., Abdelaziz, M., Manneback, P., Lebeau, F., 2020. Smart nest box: IoT based nest mon-
itoring in artificial cavities, in: 2020 3rd International Conference on Advanced Communication Technologies and Networking (CommNet)
(CommNet’20), , Morocco.

[2] Ait Abdelouhahid, R., Debauche, O., Mahmoudi, S., Marzak, A., Manneback, P., Lebeau, F., 2020. Open phytotron: A new iot device for home
gardening, in: 2020 5th International Conference on Cloud Computing Technologies and Applications (Cloudtech), pp. 1–7.

[3] Choukidar, G.A., Dawande, N., 2017. Smart poultry farm automation and monitoring system, in: 2017 International Conference on Computing,
Communication, Control and Automation (ICCUBEA), IEEE. pp. 1–5.

[4] Debauche, O., Ait abdelouahid, R., Mahmoudi, S., Moussaoui, Y., Abdelaziz, M., Manneback, P., 2020a. Revo campus: a distributed open
source and low-cost smart campus, in: 2020 3rd International Conference on Advanced Communication Technologies and Networking (Comm-
Net) (CommNet’20), , Morocco.

[5] Debauche, O., El Moulat, M., Mahmoudi, S., Manneback, P., Lebeau, F., 2018. Irrigation pivot-center connected at low cost for the reduction
of crop water requirements, in: 2018 International Conference on Advanced Communication Technologies and Networking (CommNet), pp.
1–9. doi:10.1109/COMMNET.2018.8360259.

[6] Debauche, O., Mahmoudi, S., Andriamandroso, A., Manneback, P., Bindelle, J., Lebeau, F., 2018. Cloud services integration for farm animals’
behavior studies based on smartphones as activity sensors. Journal of Ambient Intelligence and Humanized Computing URL: https://doi.
org/10.1007/s12652-018-0845-9, doi:10.1007/s12652-018-0845-9.

[7] Debauche, O., Mahmoudi, S., Andriamandroso, A., P., M., J., B., Lebeau, F., 2017. Web-based cattle behavior service for researchers based on
the smartphone inertial central. Procedia Computer Science 110, 110 – 116. URL: http://www.sciencedirect.com/science/article/
pii/S1877050917313066, doi:https://doi.org/10.1016/j.procs.2017.06.127. 14th International Conference on Mobile Systems
and Pervasive Computing (MobiSPC 2017) / 12th International Conference on Future Networks and Communications (FNC 2017) / Affiliated
Workshops.

[8] Debauche, O., Mahmoudi, S., Belarbi, M.A., El Adoui, M., Mahmoudi, S.A., 2018a. Internet of things: Learning and practices. application
to smart home, in: 2018 International Conference on Advanced Communication Technologies and Networking (CommNet), pp. 1–6. doi:10.
1109/COMMNET.2018.8360247.

[9] Debauche, O., Mahmoudi, S., Doukha, R., Mahmoudi, S.A., Manneback, P., Lebeau, F., 2020b. A new edge architecture for ai-iot services
deployment. Procedia Computer Science The 17th International Conference on Mobile Systems and Pervasive Computing (MobiSPC) / The
15th International Conference on Future Networks and Communications (FNC 2020) / Affiliated Workshops.

[10] Debauche, O., Mahmoudi, S., Mahmoudi, S.A., 2018b. Internet of things: learning and practices. application to smart city, in: 2018 4th Inter-
national Conference on Cloud Computing Technologies and Applications (Cloudtech), pp. 1–7. doi:10.1109/CloudTech.2018.8713337.

[11] Debauche, O., Mahmoudi, S., Mahmoudi, S.A., Manneback, P., Bindelle, J., Lebeau, F., 2020c. Edge computing for cattle behavior analysis,
in: 2020 Second international conference on Embedded Distributed Systems (EDiS), pp. 1–5.

[12] Debauche, O., Mahmoudi, S., Mahmoudi, S.A., Manneback, P., Lebeau, F., 2020d. Edge computing and artificial intelligence semantically
driven. application to a climatic enclosure. Procedia Computer Science The 17th International Conference on Mobile Systems and Pervasive
Computing (MobiSPC) / The 15th International Conference on Future Networks and Communications (FNC 2020) / Affiliated Workshops.

[13] Debauche, O., Mahmoudi, S., Manneback, P., Assila, A., 2019. Fog iot for health: A new architecture for patients and elderly monitoring.
Procedia Computer Science 160, 289 – 297. URL: http://www.sciencedirect.com/science/article/pii/S1877050919317880,
doi:https://doi.org/10.1016/j.procs.2019.11.087. the 10th International Conference on Emerging Ubiquitous Systems and Perva-
sive Networks (EUSPN-2019) / The 9th International Conference on Current and Future Trends of Information and Communication Technolo-
gies in Healthcare (ICTH-2019) / Affiliated Workshops.

[14] Debauche, O., Mahmoudi, S., Manneback, P., Massinon, M., Tadrist, N., Lebeau, F., Mahmoudi, S.A., 2017. Cloud architecture for digital
phenotyping and automation, in: 2017 3rd International Conference of Cloud Computing Technologies and Applications (CloudTech), pp. 1–9.
doi:10.1109/CloudTech.2017.8284718.

[15] Debauche, O., Mahmoudi, S., Manneback, P., Tadrist, N., Bindelle, J., Lebeau, F., 2017. Improvement of battery life of iphones inertial
measurement unit by using edge computing application to cattle behavior, in: 2017 Symposium International sur les Sciences Informatiques et
Applications (ISCSA2017), pp. 1–4.

[16] Debauche, O., Mahmoudi, S., Moussaoui, Y., 2020. Internet of things learning: a practical case for smart building automation, in: 2020 5th
International Conference on Cloud Computing Technologies and Applications (Cloudtech), pp. 1–7.

[17] Debauche, O., Mahmoudi, S.A., De Cock, N., Mahmoudi, S., Manneback, P., Lebeau, F., 2020. Cloud architecture for plant phenotyping
research. Concurrency and Computation: Practice and Experience n/a, e5661. URL: https://onlinelibrary.wiley.com/doi/abs/

http://dx.doi.org/10.1109/COMMNET.2018.8360259
https://doi.org/10.1007/s12652-018-0845-9
https://doi.org/10.1007/s12652-018-0845-9
http://dx.doi.org/10.1007/s12652-018-0845-9
http://www.sciencedirect.com/science/article/pii/S1877050917313066
http://www.sciencedirect.com/science/article/pii/S1877050917313066
http://dx.doi.org/https://doi.org/10.1016/j.procs.2017.06.127
http://dx.doi.org/10.1109/COMMNET.2018.8360247
http://dx.doi.org/10.1109/COMMNET.2018.8360247
http://dx.doi.org/10.1109/CloudTech.2018.8713337
http://www.sciencedirect.com/science/article/pii/S1877050919317880
http://dx.doi.org/https://doi.org/10.1016/j.procs.2019.11.087
http://dx.doi.org/10.1109/CloudTech.2017.8284718
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5661


8 O. Debauche et al. / Procedia Computer Science 00 (2019) 000–000

10.1002/cpe.5661, doi:10.1002/cpe.5661, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5661. e5661
cpe.5661.

[18] Debauche, O., Mahmoudi, S.A., Mahmoudi, S., Manneback, P., 2018a. Cloud platform using big data and hpc technologies for distributed and
parallels treatments. Procedia Computer Science 141, 112–118.

[19] Debauche, O., Moulat, M.E., Mahmoudi, S., Boukraa, S., Manneback, P., Lebeau, F., 2018b. Web monitoring of bee health for researchers
and beekeepers based on the internet of things. Procedia Computer Science 130, 991 – 998. URL: http://www.sciencedirect.com/
science/article/pii/S1877050918304654, doi:https://doi.org/10.1016/j.procs.2018.04.103. the 9th International Confer-
ence on Ambient Systems, Networks and Technologies (ANT 2018) / The 8th International Conference on Sustainable Energy Information
Technology (SEIT-2018) / Affiliated Workshops.

[20] Dong, F., Zhang, N., 2009. Wireless sensor networks applied on environmental monitoring in fowl farm, in: International Conference on
Computer and Computing Technologies in Agriculture, Springer. pp. 479–486.

[21] Goud, K.S., Sudharson, A., 2015. Internet based smart poultry farm. Indian Journal of Science and Technology 8, 1.
[22] Handigolkar, L.S., Kavya, M., Veena, P., 2016. Iot based smart poultry farming using commodity hardware and software. Bonfring International

Journal of Software Engineering and Soft Computing 6, 171–175.
[23] Islam, M.M., Tonmoy, S.S., Quayum, S., Sarker, A.R., Hani, S.U., Mannan, M.A., 2019. Smart poultry farm incorporating gsm and iot, in:

2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), IEEE. pp. 277–280.
[24] Jahan, M., Maghsoudi, A., Rokouei, M., Faraji-Arough, H., 2019. Prediction and optimization of slaughter weight in meat-type quails using

artificial neural network modeling. Poultry Science .
[25] Katare, G., Padihar, G., Qureshi, Z., . Challenges in the integration of artificial intelligence and internet of things. International Journal of

Systems and Software Engineering 6, 10–15.
[26] Li, H., Wang, H., Yin, W., Li, Y., Qian, Y., Hu, F., 2015. Development of a remote monitoring system for henhouse environment based on iot

technology. Future Internet 7, 329–341. URL: https://www.mdpi.com/1999-5903/7/3/329, doi:10.3390/fi7030329.
[27] Mahale, R.B., Sonavane, S., 2016a. Smart poultry farm: An integrated solution using wsn and gprs based network. International Journal of

Advanced Research in Computer Engineering & Technology (IJARCET) Volume 5.
[28] Mahale, R.B., Sonavane, S., 2016b. Smart poultry farm monitoring using iot and wireless sensor networks. International Journal of Advanced

Research in Computer Science 7, 187–190.
[29] Moulat, M.E., Debauche, O., Mahmoudi, S., Brahim, L.A., Manneback, P., Lebeau, F., 2018. Monitoring system using internet of things

for potential landslides. Procedia Computer Science 134, 26 – 34. URL: http://www.sciencedirect.com/science/article/pii/
S1877050918311037, doi:https://doi.org/10.1016/j.procs.2018.07.140. the 15th International Conference on Mobile Systems
and Pervasive Computing (MobiSPC 2018) / The 13th International Conference on Future Networks and Communications (FNC-2018) /

Affiliated Workshops.
[30] Othman, J.K., Mahmood, J.R., et al., 2014. Design and implementation of smart relay based remote monitoring and controlling of ammonia

in poultry houses. International Journal of Computer Applications 103.
[31] Raghudathesh, G., Deepak, D., Prasad, G.K., Arun, A., Balekai, R., Yatnalli, V.C., Lata, S., Kumar, B.S., 2017. Iot based intelligent poultry

management system using linux embedded system, in: 2017 International Conference on Advances in Computing, Communications and
Informatics (ICACCI), IEEE. pp. 449–454.

[32] Raj, A.A.G., Jayanthi, J.G., 2018. Iot-based real-time poultry monitoring and health status identification, in: 2018 11th International Sympo-
sium on Mechatronics and its Applications (ISMA), pp. 1–7. doi:10.1109/ISMA.2018.8330139.

[33] Ribeiro, R., Casanova, D., Teixeira, M., Wirth, A., Gomes, H.M., Borges, A.P., Enembreck, F., 2019. Generating action plans for poultry
management using artificial neural networks. Computers and Electronics in Agriculture 161, 131–140.

[34] Rico-Contreras, J.O., Aguilar-Lasserre, A.A., Méndez-Contreras, J.M., López-Andrés, J.J., Cid-Chama, G., 2017. Moisture content prediction
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