
An Empirical Comparison of Dependency Issues
in OSS Packaging Ecosystems

Alexandre Decan, Tom Mens and Maëlick Claes
COMPLEXYS Research Institute

University of Mons, Belgium
Email: { first . last } @ umons.ac.be

Abstract—Nearly every popular programming language comes
with one or more open source software packaging ecosystem(s),
containing a large collection of interdependent software pack-
ages developed in that programming language. Such packaging
ecosystems are extremely useful for their respective software
development community. We present an empirical analysis of
how the dependency graphs of three large packaging ecosystems
(npm, CRAN and RubyGems) evolve over time. We study how
the existing package dependencies impact the resilience of the
three ecosystems over time and to which extent these ecosystems
suffer from issues related to package dependency updates. We
analyse specific solutions that each ecosystem has put into place
and argue that none of these solutions is perfect, motivating the
need for better tools to deal with package dependency update
problems.

Index Terms—software repository mining; software ecosystem;
package dependency management; software evolution; software
distribution

I. INTRODUCTION

Traditionally, software engineering research has focused on
understanding and improving the development and evolution
of individual software projects. The widespread use of col-
laborative open source software development tools (such as
Git and GitHub) has lead to an increased popularity of so-
called software ecosystems, and research focus is shifting to
understanding and improving their dynamics.

Software ecosystems are large collections of interdependent
software components that are maintained by large and geo-
graphically distributed communities of collaborating contrib-
utors. Typical examples of open source software ecosystems
are distributions for Linux operating systems and packaging
ecosystems for specific programming languages. Such pack-
aging ecosystems tend to be very large, containing from tens
to hundreds of thousands of packages, with even an order of
magnitude more dependencies between them.

Very few empirical studies have quantitatively analysed the
similarities and differences between packaging ecosystems.
Such comparative studies are urgently needed, in order to
understand how techniques and tools that are specific to
an ecosystem affect the evolution of its package depen-
dency structure. Empirical results observed for one ecosystem
may not necessarily generalise to another one, implying that
ecosystem-specific solutions may be needed, for example to
improve how package dependencies are managed in presence
of problematic package updates that may affect (transitively)
dependent packages.

This article studies issues related to the evolution of package
dependencies in three seemingly similar packaging ecosys-
tems, namely the npm, CRAN and RubyGems package
distributions for the JavaScript, R and Ruby programming
language, respectively. We observe that their dependency
structure is different, and evolves differently over time. Despite
these differences, the dependency graphs also reveal some
interesting commonalities. We also study to which extent the
versioning mechanism and the recommended use of version
constraints affects the evolution of each packaging ecosystem.
Our empirical findings are accompanied by quotes from dif-
ferent ecosystem contributors that highlight the reasons for,
and potential impact of, the observed differences.

The remainder of this article is structured as follows.
Section II discusses related work. Section III motivates the
selected packaging ecosystems, presents the data extraction
process, and introduces the empirical research questions. Sec-
tions IV to VIII each target a specific research question. Sec-
tion IX presents the threats to validity of our study. Section X
concludes by summarising the main research findings and
outlining future work.

II. RELATED WORK

Bogart et al. [1] carried out a qualitative comparison of
three different ecosystems (npm, CRAN, Eclipse) in order to
understand the impact of community values, tools and policies
on breaking changes. Their analysis relied on interviews with
developers, and provided useful insights. It is complementary
to the quantitative analysis presented here, which is based on
an empirical historical comparison of the package dependency
structure of the packaging ecosystems npm, CRAN and
RubyGems.

Our current paper extends the results of [2] in which
we compared the dependency graphs of three programming
language packaging ecosystems without taking the temporal
dimension into account. In the current paper, we study and
compare structural issues related to transitive package depen-
dencies and how these issues evolve over time.

Many researchers have studied package dependencies issues
in different programming language packaging ecosystems.
Wittern et al. [3] studied the evolution of JavaScript packages
in npm. The CRAN packaging ecosystem has been studied
previously [4], [5], and dependencies have been shown as an
important cause of errors in R packages both on CRAN and

GitHub [6]. Blincoe et al. [7] looked at Ruby as part of a
larger GitHub study on the emergence of software ecosystems.
Bavota et al. [8] studied the evolution of dependencies in the
Apache ecosystem and highlighted that dependencies have an
exponential growth and must be taken care of by developers.
When a change occurs in a package, this change may break its
dependent packages, the dependent packages of their depen-
dent packages, and so on. They found that developers were
reluctant to upgrade the version of the software they depend
upon. Robbes et al. [9] studied the ripple effect of API method
deprecation in the Smalltalk ecosystem and revealed that API
changes can have a large impact on the system and remain
undetected for a long time after the initial change.

The problems of co-installability in package-based distri-
butions such as Debian [10] has been extensively studied,
and efficient tools have been proposed to identify and solve
these problems [11]. Historical information allows to make
these tools even more precise [12]. Beyond co-installability
issues, Di Cosmo et al. [13] claims that problems related
to package upgrades are equally important, and that more
automated solutions to address these problems are required.
This paper empirically validates these claims, by studying
problems related to package updates in presence of dependent
packages and by analysing how large popular packaging
ecosystems currently (fail to) cope with these problems.

III. METHODOLOGY

A. Selected Packaging Ecosystems

In order to empirically study how the dependency graph
of a packaging ecosystem evolves over time, it is important
to choose packaging ecosystems that have a sufficiently long
lifetime. We imposed a minimal lifetime of five years for
candidate packaging ecosystems.

We decided to focus on programming language packaging
ecosystems, i.e., ecosystems revolving around package distri-
butions for specific programming languages. The reason for
doing so is that such packaging ecosystems tend to have a
very active community of contributors, making the ecosystems
very large, and causing difficulties in the evolution of these
packaging ecosystems.

TABLE I
CHARACTERISTICS OF NPM, CRAN AND RUBYGEMS.

Characteristic npm CRAN RubyGems
URL npmjs.com cran.r-project.org rubygems.org
Language JavaScript R Ruby
snapshot date 2016-06-28 2016-04-26 2016-09-07
packages 317,159 9,568 122,791
package releases 1,927,750 57,530 685,591
dependencies 7,644,295 128,113 1,674,823
oldest package 2010-11-09 1997-10-08 2009-07-25
new pkgs. in 2015 113,613 1,660 18,639
updates in 2015 711,317 8,140 121,394

For the current study, we selected three popular program-
ming languages, namely JavaScript, R and Ruby. These three
dynamic programming languages belong to the top 20 of most

popular programming languages (according to the PYPL1 and
Tiobe2 programming language popularity indexes). For each
of these languages, we decided to study their official software
package distribution as packaging ecosystem. For JavaScript,
this is the npm package manager. For R, CRAN is the official
distribution of R packages. For Ruby, RubyGems is the
most used package provider. Each of them is very big, as
summarised in Table I.

B. Data Extraction
We used different approaches for extracting the historical

package metadata for each packaging ecosystem, due to the
different tools used by these ecosystems. All the data and
scripts are available through a replication package at
https://github.com/ecos-umons/saner2017-ecos.

The npm package manager resolves packages by name
and version through a registry website implementing the
CommonJS Package Registry specification. Using this official
public registry we retrieved the list of all packages available
in June 2016. For each of these 317,159 packages, we col-
lected all the available metadata of all associated releases,
corresponding to nearly 2 million releases.

We extracted all the metadata of CRAN packages using
extractoR, a publicly available3 R package that we developed
specifically for this purpose. It downloads the CRAN package
sources, extracts their contents and stores the file metadata. We
collected the metadata of 9,568 packages with their associated
versions and dependencies, accounting for 57,530 releases.

For RubyGems, we directly parsed the list of 122,791
available packages in September 2016 from the RubyGems
website. For each of these packages, we queried the JSON
API of RubyGems to list all available releases and their
associated metadata. This allowed us to obtain 719,853 pack-
age releases. For 7,256 packages we observed that many
releases had a release date set to a single same day (either 25
July 2009 or 10 August 2011). As their chronological order
did not correspond to the order induced by their versioning
scheme, we assume that this phenomenon resulted from an
automatic migration from other packaging ecosystems. We
therefore ignored, for all concerned packages, all package
releases corresponding to these two days, except for the latest
available package release based on the versioning scheme.
This represented 34,262 dropped package releases, leaving us
685,591 package releases available for our analysis.

For each package release, we extracted from its metadata the
release date, the release name (i.e., version number) and the list
of packages on which it depends (from field dependencies
for npm, Depends and Imports for CRAN and runtime
for RubyGems). Based on all the data, we computed the
monthly package dependency graph of each ecosystem from
2007 to 2016.

Figure 1 shows the evolution of the number of available
packages and, in dashed lines, the evolution of the number

1http://pypl.github.io/PYPL.html (December 2016)
2http://www.tiobe.com/tiobe-index/ (December 2016)
3https://github.com/ecos-umons/extractoR

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
100

101

102

103

104

105

106

107

npm
cran
rubygems

Fig. 1. Evolution of the number of packages (straight lines) and package
dependencies (dashed lines) for each ecosystem.

of dependencies. It reveals that more and more packages and
dependencies are added to each ecosystem, but with a different
rate of growth. To verify this, we performed a linear regression
using an ordinary least square method, and a linear regression
on the logarithmic values (i.e., an exponential regression) on
the number of packages and on the number of dependencies in
each ecosystem. The obtained R2-values, shown in Table II,
suggest an exponential increase in the number of packages
and in the number of dependencies for npm and CRAN, and a
linear increase in both the number of packages and the number
of dependencies for RubyGems.

TABLE II
R2-VALUES FOR REGRESSIONS ON THE NUMBER OF PACKAGES AND ON

THE NUMBER OF DEPENDENCIES.

packages npm CRAN RubyGems
linear 0.84 0.87 0.99
exponential 0.89 0.97 0.82

dependencies npm CRAN RubyGems
linear 0.77 0.79 0.96
exponential 0.89 0.97 0.83

C. Research Questions

Given the package growth, compounded by an even larger
number of dependency relationships between these packages,
we were curious about the impact of package updates and
package removals on the other packages and on the ecosystem.
To explore this impact, we will study the following research
questions in the remainder of this paper:

Section IV: To which extent do packages depend on other
packages? With this question we aim to study if the proportion
of packages with dependencies increases over time, to which
extent there are direct and transitive dependencies, and how
the dependency structure differs across the three ecosystems.

Section V: How resilient is an ecosystem to failures in
dependent packages? With this question we explore how the
presence of transitive dependencies may lead to the propaga-
tion of package failures throughout the ecosystem.

Section VI: How frequent are package updates? Given
that changes in packages may be problematic for dependent
packages, we study how frequently package updates occur.

Section VII: To which extent do package maintainers make
use of dependency constraints? To reduce the risk of the pack-
age dependency update problems, some package maintainers
rely on specifying minimal and/or maximal constraints on
the allowed versions of a dependency. We explore the extent
and effect of this practice, especially in combination with
a semantic versioning policy that is recommended by some
ecosystems.

Section VIII: Why should package maintainers be careful
with dependency constraints? In this question we argue that
relying on dependency constraints may lead to other problems,
like an increased risk of package co-installability problems,
as well as an important delay before packages benefit from
important updates in packages they depend upon.

IV. TO WHICH EXTENT DO PACKAGES DEPEND ON OTHER
PACKAGES?

Our first research question pertains to the omnipresence of
package dependencies in the considered ecosystems. One of
the main reasons why dependencies between packages emerge
in an ecosystem is because of software reuse, a basic principle
of software engineering [14]. Software packages often rely on
(i.e., reuse) the functionality offered by other packages (e.g.,
libraries), rather than reimplementing the same functionality.
Packaging ecosystems make it easier for developers to rely
on functionality provided by other packages, by offering
automated tools to install and manage multiple packages.

While dependencies tend to reduce development effort for
individual packages, they increase the complexity of the pack-
aging ecosystem as a whole through the need to manage these
dependencies in presence of multiple package releases. This
complexity can be the cause of many maintainability issues
and failures [1], [8], and understanding this complexity is one
of the goals of this paper.

2011 2012 2013 2014 2015 2016
0.0

0.2

0.4

0.6

0.8

1.0
npm
cran
rubygems

Fig. 2. Evolution of the proportion of packages with dependencies (straight
lines) and of isolated packages (dashed lines).

Figure 2 shows the evolution over time of the proportion of
packages that have at least one dependency, as well as of the
proportion of isolated packages, i.e., packages that have no de-
pendency nor reverse dependency. We observe that a majority
of packages declare dependencies, and that the proportion of
such packages increases over time. We also observe that since
around 2013 the proportion of isolated packages remains stable
for npm and RubyGems, but continues to decrease (slowly)

over time for CRAN. In April 2016, 60% of all packages on
npm and RubyGems have dependencies, while this is around
70% for CRAN packages. On the other hand, around 33% of
all npm and RubyGems packages are isolated, while this is
only 22% for CRAN.

direct transitive
100

101

102

103

104

pa

ck
ag

es

npm
cran
rubygems

Fig. 3. Distribution of the number of direct dependencies and transitive
dependencies by package, in April 2016.

When considering only those packages with at least one
dependency, the boxplots in Figure 3 show the distribution of
the number of direct and transitive dependencies by package
in the three ecosystems, in April 2016. We observe that,
while a majority of the packages with dependencies have very
few direct dependencies, they have a much higher number of
transitive dependencies. For CRAN and RubyGems, half of
the packages with dependencies have respectively at most 5
and 8 transitive dependencies. For npm, this value is much
higher, with half of the packages with dependencies having at
least 22 transitive dependencies, and a quarter having at least
95 transitive dependencies.

Among all packages having at least one dependency, we
statistically compared for each ecosystem the number of direct
and transitive dependencies using a one-sided non-parametric
Mann-Whitney’s U test. The null hypothesis states that the
distribution of both populations is equal. The alternative
hypothesis states that the distribution of one population is
greater than the distribution of the other population. The null
hypothesis was significantly rejected, with p-values reported
in Table III. For the distribution of the populations of direct
dependencies, we found that RubyGems < CRAN < npm.
For the distribution of transitive dependencies, we found that
CRAN < RubyGems < npm.

Because of the huge difference in the number of pack-
ages in the considered ecosystems (163,658 in npm versus
6,500 in CRAN and 72,094 in RubyGems), we report in
Table III the effect size of Mann-Whitney’s U tests using
Cliff’s δ [15]. We used the abbreviations N, S, and M to
stand for, respectively, a negligible, small and medium effect
size, as usually interpreted. The reported effect sizes coincide
with the differences we visually observed in Figure 3. Those
differences do not only concern the absolute number of direct
or transitive dependencies, but also the relative number of
transitive dependencies relatively to the number of direct ones.
We computed that, on average, a package has 22.1 times more
transitive dependencies than direct ones in npm, which is very

TABLE III
STATISTICAL COMPARISON OF THE DISTRIBUTIONS OF THE NUMBER

(≥ 1) OF (A) DIRECT AND (B) TRANSITIVE DEPENDENCIES.

alt. hypothesis p-value Cliff’s δ
(a) CRAN < npm < 10−5 0.03 (N)

(a) RubyGems < npm < 10−6 0.23 (S)
(a) RubyGems < CRAN < 10−6 0.21 (S)
(b) CRAN < npm < 10−6 0.36 (M)
(b) RubyGems < npm < 10−6 0.31 (S)
(b) CRAN < RubyGems < 10−6 0.09 (N)

high, and also much higher than in CRAN or RubyGems
(respectively 3.64 and 6.35).

So why do npm packages tend to rely more on other
packages than in CRAN and RubyGems? The complete-
ness of the standard library of Ruby and R may explain
this phenomenon. Ruby’s standard library typically contains
a wide variety of packages that may be used to address
many common tasks and problems. Similarly, while R might
lack more generic programming tools that are provided by
packages such as XML, jsonlite, stringr, Rcpp or RCurl, it
still contains a quite extensive library to manipulate data and
conduct statistical analyses. In contrast, the standard library for
JavaScript is kept intentionally small according to JavaScript
creator Brendan Eich [16]: “The real standard library people
want is more like what you find in Python or Ruby, and it’s
more batteries included, feature complete, and that is not in
JavaScript. That’s in the npm world or the larger world.”
This may explain why JavaScript developers tend to rely
more often on third-party packages.
Summary:
• A majority of packages in npm, CRAN and RubyGems

rely on other packages.
• There are proportionally more packages with dependen-

cies in CRAN than in npm or RubyGems, and this
proportion increases over time.

• While packages tend to have few direct dependencies,
they have a much higher number of transitive ones.

• npm and CRAN packages have more direct dependencies
than RubyGems packages.

• npm packages have many more transitive dependencies
than CRAN or RubyGems packages.

V. HOW RESILIENT IS AN ECOSYSTEM TO FAILURES IN
DEPENDENT PACKAGES?

Because the three ecosystems heavily use dependencies,
they face the risk of having important points of failure. These
failures can be caused by different reasons: a package may get
removed entirely from the ecosystem, a package may become
archived because it no longer passes the quality checks or
because its developer is no longer available, a package may
be updated in backward incompatible ways, and so on.

Because of the presence of many transitive dependencies, a
package failure may potentially affect many other packages.
An example of this was experienced in npm in March 2016.

The sudden and unexpected removal of a package called left-
pad had a large impact on the ecosystem, breaking thousands
of dependent packages, including those that were not even
aware they were (indirectly) using it: “This impacted many
thousands of projects. [...] We began observing hundreds of
failures per minute, as dependent projects – and their depen-
dents, and their dependents... – all failed when requesting the
now-unpublished package.” [17]

Maintainers from CRAN also share this concern: “I had one
case where my package heavily depended on another package
and after a while that package was removed from CRAN and
stopped being maintained. So I had to remove one of the main
features of my package. Now I try to minimize dependencies
on packages that are not maintained by “established” main-
tainers or by me [...]” [18]

In order to assess the resilience of a packaging ecosystem E
to the failure of a package p, we define the following package
impact metrics for a given ecosystem snapshot:
impact I(p,E) = the total number of packages in E that
depend directly or transitively on p, i.e., all packages that could
potentially be impacted by a failure of p.
relative impact RI(p,E) = I(p,E)

|E| , i.e., the proportion of all
packages in E that depend directly or transitively on p.

2011 2012 2013 2014 2015 2016
0.0

0.1

0.2

0.3

0.4

0.5

ra
tio

 o
f p

ac
ka

ge
s

npm
cran
rubygems

Fig. 4. Evolution of the relative impact of each ecosystem’s most required
package.

Figure 4 shows the evolution over time of maxp∈ERI(p,E)
for E ∈ {npm,CRAN,RubyGems}. It represents the relative
impact of each ecosystem’s most required package. Notice
that the most required package of an ecosystem may change
over time. Such changes are illustrated by the markers on the
figure, and involve underscore, mime, async and inherits
for npm, lattice for CRAN, and multijson, activesupport
and json for RubyGems. Such packages that are (transitively)
required by many other packages can have a huge impact
on the ecosystem, as a failure in those packages can affect
an important number of other packages. We observe that this
proportion tends to increase over time, and exceeds 30% of
all packages for each ecosystem in 2016. For instance, on
April 2016, inherits was npm’s most required package, with
84,324 dependent packages. CRAN’s most required package
lattice had 2,886 dependent packages, and RubyGems’s most
required package json had 39,570 dependent packages.

Figure 5 shows the evolution of the number of packages
having a relative impact greater than or equal to 2%, i.e.,

2011 2012 2013 2014 2015 2016
0

100

200

300

400

500

of

 p
ac

ka
ge

s

npm
cran
rubygems

Fig. 5. Evolution of the number of packages having a relative impact greater
than 2%.

the evolution of the number of packages p in ecosystem
E ∈ {npm,CRAN,RubyGems} for which RI(p,E) ≥ 0.02.
The choice of 2% seems to be a reasonable value because
RI(npm, left-pad) = 2.05% before its unexpected removal
from the npm ecosystem, causing major problems. We also
computed the results for higher relative impacts (5% and 10%)
and the observed differences between the three ecosystems
were similar to the ones obtained for the 2% threshold.

For CRAN and RubyGems, we observe a slight increase
of the number of packages having a relative impact greater
than or equal to 2% over time. For npm, the increase is
considerably more important. While in 2012, it accounted for
44 packages, there were 481 such packages in April 2016,
corresponding to one package out of 600 that has a high failure
impact. While we did expect npm to have more packages with
a high failure impact, we were surprised to see such a big
difference with CRAN and RubyGems.

Such packages represent a potential Achilles’ heel for
the ecosystem: removing only one of them can impact a
large proportion of the other packages in the ecosystem, as
was the case with left-pad in npm. Although this incident
lead npm managers to prevent authors from removing their
packages from the ecosystem, in October 2016 RubyGems
still allowed authors to easily remove their packages, without
any consideration on the dependent packages. CRAN does
not allow to remove packages, but they may become archived,
implying that they cannot be automatically installed, and thus
preventing the installation of dependent packages as well.

To prevent or reduce the risk of such cascading failures, it is
important for package maintainers to be aware of the packages
they depend upon. While maintainers are usually aware of the
direct dependencies of their packages because they explicitly
declare them, we believe that few maintainers have a clear idea
on which packages they depend indirectly, especially since, as
seen in Figure 3, these may be very numerous. For example,
a package such as the popular react in npm has only 2
direct dependencies, but transitively depends on 44 additional
packages. As a consequence, each of the 3,121 packages that
directly depends on this popular package implicitly requires
at least 46 additional packages.

Summary:
• Packages with many transitive dependencies have a neg-

ative impact on the ecosystem’s resilience.
• Some packages potentially impact > 30% of all packages

in each ecosystem, and this proportion is increasing over
time.

• Each ecosystem has an increasing number of packages
whose failure can impact an important number of (tran-
sitively) dependent packages. Such packages are particu-
larly abundant in npm.

VI. HOW FREQUENT ARE PACKAGE UPDATES?

Package dependencies not only increase the overall com-
plexity of an ecosystem, but also may be problematic in case
of package updates, since new package releases (i.e., package
updates) may have undesired consequences on dependent
packages. For CRAN in particular, we observed that 41%
of the package errors were caused by backward incompatible
changes [6]. We showed that, on average, developers introduce
one backward incompatible change every 20 releases.

While the policy of some packaging ecosystems may require
a package to be in a stable state at the moment of its
introduction, this does not mean that the package will never
get updated. Publishing a new release of a package, regardless
of whether it contains new features, bug fixes or API changes,
is a common and natural process for a maintainer: “Change
in an API is inevitable as your knowledge and experience of
a system improves. Managing the impact of this change can
be quite a challenge when it threatens to break existing client
integrations.” [19]

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
100

101

102

103

104

105

npm
cran
rubygems

Fig. 6. Number of new package releases by month.

Figure 6 shows the monthly number of new releases for
the three packaging ecosystems. As expected, all three are
very active in terms of package updates. We computed that
60% of npm packages, 48% of CRAN packages and 27% of
RubyGems packages were at least updated once in 2015.

To understand the effect of the presence of package de-
pendencies on the frequency of package updates, we used the
statistical technique of survival analysis [20]. Survival analysis
models [21] estimate the survival rate of a population over
time, considering the fact that some elements of the population
may leave the study, and that for some other elements the event
of interest does not occur during the observation period. In our

0 2 4 6 8 10 12 14 16 18
delay (in months)

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty

npm
cran
rubygems

Fig. 7. Survival curves estimating the probability of not updating a package.
Dotted lines show the probability for packages with reverse dependencies.

case, the observed event of interest is the delay between two
consecutive package updates.

The survival curve in Figure 7 uses a Kaplan-Meier esti-
mator to estimate the probability of not updating a package
for a certain amount of time. We observe that, regardless
of the ecosystem, a majority of the updates occur in a very
short delay since the previous update. In addition to this, the
probability for a package to be updated within 18 months after
the last release exceeds 80%.4 If we restrict the analysis to
packages with at least one reverse dependency, i.e., packages
required by at least one other package, we obtain the dotted
survival curves in Figure 7. As they seem quite close to the
unrestricted survival curves, we performed a log-rank test to
compare the survival curves. It turns out that packages with
reverse dependencies are updated significantly more often than
packages without (α = 0.99).

While these results are valid regardless of the considered
packaging ecosystem, we do observe an important difference
between npm and RubyGems on one side and CRAN on the
other side: new package releases are much more spread over
time on CRAN than on npm or RubyGems. This difference
can probably be explained by CRAN’s policy, which is more
demanding with respect to package update, package quality
and package obsolescence [6]. In particular, maintainers are
asked to somewhat limit frequent package updates: “Submit-
ting updates should be done responsibly and with respect for
the volunteers’ time. Once a package is established (which
may take several rounds), ‘no more than every 1–2 months’
seems appropriate.” [22]

Maintainers can be helped in the management of depen-
dency updates by tools that monitor dependencies and notify
the maintainers when a new release of a package dependency is
available, or when an important update needs to be deployed.
For instance, web-based dashboards like gemnasium.com,
requires.io or dependencyci.com provide these features as
a continuous integration process, and are even free for open
source projects. However, at the time of writing this paper,
these tools monitored direct dependencies only and, therefore,
did not detect update problems beyond the first level of the

4Since the probability of not updating a package after 18 months is less
then 0.2 in Figure 7.

dependency hierarchy. This is quite surprising given how
relatively easy it should be to extend these tools to monitor
transitive dependencies.

Summary:
• Most packages tend to be updated shortly after a previous

update.
• Within 18 months, over 80% of all packages have re-

ceived an update.
• Packages required by other packages are updated more

frequently than packages that are not.
• CRAN packages are updated less often than npm and

RubyGems packages.

VII. TO WHICH EXTENT DO PACKAGE MAINTAINERS MAKE
USE OF DEPENDENCY CONSTRAINTS?

In order to avoid packages becoming broken due to a depen-
dency update, most ecosystems allow package maintainers to
specify dependency constraints on the versions of the packages
they depend upon. Such constraints typically allow maintainers
to explicitly select the desirable or allowed releases of a
dependency, and to explicitly exclude the undesirable ones,
e.g., those that can contain backward incompatible changes.

Dependency constraints are typically used to specify a
minimal version (e.g., >= 1.2.3) or a maximal version
(e.g., < 1.3.0) of a dependency. Often, combination of such
constraints can be expressed using a specific notation (e.g.,
∼ 1.2.3 on npm is equivalent to >= 1.2.3 and < 1.3.0). It is
also possible to impose strict dependency constraints, which
specify that the dependent package should match exactly one
version. Such strict constraints should be used with caution as
they can be a source of problems. For instance, shortly after the
removal of left-pad from npm, a functionally identical version
of left-pad was published as version 1.0.0, but “we continued
to observe many errors. This happened because a number of
dependency chains [...] explicitly requested 0.0.3.” [17]

2011 2012 2013 2014 2015 2016
0.0

0.2

0.4

0.6

0.8

1.0

npm
cran
rubygems

Fig. 8. Proportion of packages (straight lines) and proportion of dependencies
(dotted lines) that make use of a dependency constraint.

Figure 8 shows the number of packages and dependencies
that make use of a dependency constraint, proportionnaly to
the number of packages with dependencies, and to the total
number of dependencies. We observe that dependency con-
straints are very common for npm and RubyGems packages.
In early 2016, more than 95% (resp. 63%) of all dependencies

in npm (resp. RubyGems) imposed a dependency constraint.
This represents more than 95% (resp. 71%) of all packages
that have a dependency in npm (resp. RubyGems).

In contrast, less than 30% of the packages with dependen-
cies in CRAN impose a constraint on a dependency. The case
of CRAN is quite specific: by default, only the latest available
release of a package can be automatically installed from
CRAN. This “rolling release” policy implies that a package
must always be up-to-date with its dependencies. Any depen-
dency constraint that is not satisfied by the latest available
release of a dependency makes the package uninstallable. A
maintainer is thus forced to systematically adapt its package
whenever a backward incompatible update occurs in one of
its dependencies. It follows that R maintainers rarely specify
constraints on the required release of dependent packages,
except to specify a minimal required version. The solution
imposed by CRAN to deal with package dependency updates
is a continuous integration process based on the R CMD check
tool that is run on a daily basis. If a package’s tests fail because
of a dependency, its maintainer is asked to resolve the problem
before the next major R release.

CRAN’s policy tries to encourage package maintainers
to limit the impact of an update [22]: “Changes to CRAN
packages causing significant disruption to other packages must
be agreed with the CRAN maintainers well in advance of any
publicity. [...] If an update will change the package’s API
and hence affect packages depending on it, it is expected
that you will contact the maintainers of affected packages
and suggest changes, and give them time to prepare updates
before submitting your updated package.” Unfortunately, this
policy is not always sufficient [23]: “One recent example was
the forced roll-back of the ggplot2 update to version 0.9.0,
because the introduced changes caused several other packages
to break.”

Minimal and maximal dependency constraints are especially
useful in combination with the use of semantic versioning5.
Semantic versioning proposes a simple set of rules and re-
quirements that dictate how version numbers are assigned
and incremented based on the three-number version format
Major.Minor.Patch. Package updates that correspond to bug
fixes that do not affect the API should only increment the
Patch version number, backward compatible updates should
increment the Minor version number, and backward incompat-
ible updates have to increment the Major version number.

Ideally, the combination of dependency constraints with se-
mantic versioning should make it easier for package maintain-
ers to manage dependency updates. Unfortunately, although
semantic versioning is strongly recommended for npm or
RubyGems, it cannot be enforced. Even if maintainers are
required to adopt the Major.Minor.Patch notation, they can
always decide, voluntarily or not, to break the associated
versioning semantics. As an example, a convention that seems
to have emerged in RubyGems is to allow the introduction
of backward incompatible changes in minor version bumps

5http://semver.org/

for pre-release packages. For instance, in 2010, release 0.5.0
of i18n notably broke the popular ActiveRecord gem, on
which relied 874 packages (5.2% of RubyGems packages at
this time). Similar problems were observed by Raemaekers et
al. [24] for the Maven ecosystem, in which many Java projects
do not respect the recommended semantic versioning scheme.

0.0
0.2
0.4
0.6
0.8
1.0

Strict constraints

npm cran rubygems

0.0
0.2
0.4
0.6
0.8
1.0

Maximal constraints

2011 2012 2013 2014 2015 2016
0.0
0.2
0.4
0.6
0.8
1.0

Minimal constraints

Fig. 9. Proportion of packages with dependencies (straight lines) and depen-
dencies (dotted lines) that specify a strict, minimal or maximal dependency
constraint.

Figure 9 illustrates the evolution of the use of strict, minimal
and maximal dependency constraints in the three considered
packaging ecosystems.6 We observe that packages on CRAN
do not tend to rely on strict or maximal constraints. This is
a direct consequence of the aforementioned “rolling release”
policy of CRAN.

For npm and RubyGems, both the proportion of packages
and the proportion of dependencies that declare a minimal
dependency constraint are relatively stable through time, but
the proportions of packages or dependencies that declare
maximal constraints increase over time. The latter suggests
that more and more packages rely on maximal constraints to
prevent, limit or control dependency updates. We also observe
a high proportion of strict dependency constraints for npm and
RubyGems. In the latest considered snapshot, this accounts
for around 15% of all the dependencies in npm and 5% in
RubyGems. We did not expect such a high proportion of
strict constraints, given the problems that are associated with
their use.

Summary:
• In combination with semantic versioning, dependency

constraints can prevent packages to break due to depen-
dency updates.

• A high proportion of packages on RubyGems and npm
use dependency constraints, and the proportion of max-
imal constraints is increasing over time. An important
number of their packages uses strict dependency con-
straints, but this proportion remains stable over time.

6Notice that as a dependency constraint can be both minimal and maximal,
the sum of the ratios can exceed 1.

• Because of CRAN’s versioning policy, few of its pack-
ages rely on dependency constraints. If they do, they tend
to use minimal constraints.

VIII. WHY SHOULD PACKAGE MAINTAINERS BE CAREFUL
WITH DEPENDENCY CONSTRAINTS?

While strict and maximal dependency constraints can be
helpful to prevent packages to break after the introduction
of a backward incompatible change in a dependency, such
constraints can lead to co-installability issues [11]. This is
especially true for strict dependency constraints that, by defi-
nition, target a single unique package version.

Tools such as gem or bundler for Ruby install packages at a
system-wide level, and implicitly define a conflict between any
two distinct releases of a same package. This means that one
cannot install two releases of a same package, or two packages
that depend (directly or transitively) on two distinct releases of
a same package. There are tools to create isolated (or virtual)
environments, e.g., RVM or isolate. Such tools allow to install
different releases of the same package in separate, isolated
locations, and prevent co-installability issues between different
projects. However, they do not solve the co-installability issues
that arise when two or more packages require different releases
of the same package to be installed in a same environment.

npm’s package manager offers a different technical ap-
proach to manage the co-installation of different releases of
a dependency: when a package is installed, each dependency
is installed in a subdirectory of its dependent package or, in
other words, these dependencies are vendored at installation
time. This allows different releases of a same package to
be installed without co-installability issues7, and may explain
why we observed a higher proportion of strict dependency
constraints for npm in Figure 9.

Thanks to its “rolling release” policy, co-installability issues
do not arise for CRAN packages. Indeed, CRAN only allows
the automatic installation of the latest available release of a
package, and thus no two distinct releases of a same package
can be installed. As a package must always compatible with
the latest available release of each of its dependencies, any
package update benefits to all dependent packages.

While techniques to address co-installability issues have
already been developed and implemented for Debian and
RPM [11], we are not aware of their use in any of the
considered packaging ecosystems.

Co-installability is not the only issue to consider when
specifying constraints on a dependency. Given that packages
are quite frequently updated (cf. Figure 7), a package requiring
a specific release of a dependency prevents it to automatically
benefit from updates. This can be problematic, especially if
the updates contain security or bug fixes. When using strict or
maximal dependency constraints, maintainers therefore need
to check regularly whether new important versions of their

7Problems may still occur at runtime, however, if distinct versions of a
same package need to share objects.

dependencies are released, and weaken the dependency con-
straint in order to be able to benefit from this update. Tools
that monitor package dependencies for updates can be very
helpful in such a situation.

To quantify this phenomenon, we again used the technique
of survival analysis to estimate the probability for a depen-
dency constraint to remain unmodified for a certain amount
of time. We carried out such an analysis both for strict and
non strict (i.e., minimal or maximal) dependency constraints.
The results are shown in Figure 10. Given the low proportion
of strict dependency constraints in CRAN, we excluded this
ecosystem from the analysis.

0 2 4 6 8 10 12 14 16 18
delay (in months)

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty

npm
rubygems

Fig. 10. Survival curve of probability that a dependency constraint remains
unmodified. Strict dependency constraints are represented by straight lines;
non-strict dependency constraints are represented by dotted lines.

Although the analysis does not measure why dependency
constraints have been modified, it suggests that strict depen-
dency constraints need to be modified much more frequently
than non-strict ones. For instance, the probability for a strict
dependency constraint in npm (resp. RubyGems) to be
modified in its first six months is 0.36 (resp. 0.65), while this
probability is only 0.24 (resp. 0.22) for non-strict constraints.

This confirms our intuition that strict constraints need be
adjusted to benefit from more recent dependency releases,
while this is not systematically the case for the other types
of constraints. For instance, minimal dependency constraints
are not affected by such an issue since they will be satisfied
by any upcoming package update. The case of maximal
dependency constraints is trickier. Depending on the constraint
and the versioning policy of the targeted package, such a
constraint can be satisfied either by many new dependency
releases or by none of them. In the first case, the dependent
package immediately benefits from these new releases, while
the second case is comparable to the use of a strict dependency
constraint.

Following the same reasoning, although strict constraints
are adjusted more frequently than minimal or maximal con-
straints, we hypothesise that it also takes longer for strict
constraints to be adjusted to benefit from a new version
of a dependency. We verified this hypothesis by computing
the adjustment delay for each strict dependency constraint
as the time between the release of a new version of the
dependency, and the time when the dependency constraint
was effectively adjusted. The analysis involves only strict

dependency constraints that (a) target an existing release of
a package, and that (b) were adjusted consequently to (c) a
new release of this package. This respectively corresponds to
69,823 (32%) of all strict dependency constraints in npm, and
21,124 (58%) in RubyGems.

[0, 1) [1, 30) [30, 90) [90, 180) [180, 360) [360, inf)
adjustment delay

0.0

0.2

0.4

0.6

0.8

1.0
npm
rubygems

Fig. 11. Proportion of adjusted strict dependency constraints for each class
of adjustment delay.

We classified the adjustment delay in different intervals:
within the first day (i.e., it took no more than 24 hours to
potentially benefit from the new release of the dependency),
between one day and a month, between one and three months,
between three and six months, between six months and a year,
and more than a year.

Figure 11 shows the number of adjusted strict dependency
constraints for each considered delay interval, proportionally
to the total number of strict dependency constraints. We
observe that around 41% of all considered strict constraints
in npm, and 77% in RubyGems, are adjusted within the
first day. Around 20% of the considered strict constraints in
npm, and 12% in RubyGems, remain unmodified for at least
90 days. More importantly, around 5% of them in npm, and
4% in RubyGems, are not adjusted within a year. These are
rather long adjustment delays during which the package will
not benefit from the changes of a dependency.
Summary:
• Dependency constraints can lead to co-installability is-

sues, and can prevent packages to benefit from potentially
important dependency updates.

• Co-installability issues are addressed differently by the
three ecosystems: npm relies on a technical solution,
while CRAN addresses it in its policy. No official solution
is provided for RubyGems.

• At least one out of ten dependencies with strict con-
straints take more than three months to be adjusted if the
dependent package gets updated, and often much longer.

• While packages on npm or RubyGems are impacted
by such a delay in quite similar proportions, packages
on CRAN immediately benefit from dependency updates
because of its “rolling release” policy.

IX. THREATS TO VALIDITY

With the exception of CRAN where we extracted the
data directly from package metadata, our analyses rely on

data that were somehow automatically gathered by npm and
RubyGems. This data sometimes differs from the one that is
contained in the package metadata, notably on RubyGems
where we identified issues with the release date of some
package releases.

The dependency graphs we constructed for Section VII rely
on the collected metadata, meaning that implicit (dynamic or
static) dependencies were not taken into account. While we
explicitly considered versions and dependency constraints in
Section VII, we relied on the chronological order of package
releases instead to build the graphs of Sections IV and V. This
chronological order should match the logical order induced
by the versioning scheme, except for packages for which
multiple branches are maintained in parallel. This is the case,
for example, for some highly required packages in npm and
RubyGems, explaining the irregularities observed in Figure 4.
Given the proportion of affected package releases (3.2% on
npm, 3.3% on RubyGems) and given that our observations
are based on global trends, it is unlikely that this phenomenon
affects our findings.

While Section VIII identified potentially important issues
with the use of dependency constraints and the delay before
a package can benefit from a dependency update, we did not
consider why packages are updated, and made no distinction
between updates containing security or bug fixes and those
containing only API changes. This distinction is important,
because typically security updates do not follow a specific
development cycle, and are less prone to break dependent
packages.

X. CONCLUSION AND FUTURE WORK

This article presented an empirical inter-ecosystem compar-
ison of package dependency issues. Our quantitative analysis
considered the historical evolution of three packaging ecosys-
tems npm, CRAN and RubyGems for the JavaScript, R
and Ruby programming languages, respectively. We studied
to which extent software packages rely on other packages, as
well as to which extent packages updates are problematic in
presence of (transitive) package dependencies. We quantified
whether existing solutions such as semantic versioning and
dependency constraints solve this problem.

Regardless of the considered ecosystem, package maintain-
ers somehow face problems related to dependency updates in
their packages. The problems and their solutions vary from
one ecosystem to another, and depend both on the policies
and the technical aspects of each ecosystem. Packages depen-
dency updates have non-negligible maintenance costs because
their effect can propagate transitively. While each ecosystem
provides specific and different solutions to reduce problematic
package updates, none of these are perfect. Update problems
can still occur, implying the need for better tools and policies
to reduce, prevent and correct them before they actually
become problematic. There is generally no perfect solution
to manage dependency updates. If the use of dependency
constraints prevents, to some extent, backward incompatible
updates issues, the frequent use of strict constraints increases

the risk to miss important updates, and the risk of facing co-
installability issues.

Solutions exist to (partially) address these problems, but
do not tend to take into account the presence of transitive
dependencies. The use of semantic versioning, in combination
with upper bound constraints, allows to some extent to benefit
from some updates without being affected by backward incom-
patible ones. The use of isolated environments can reduce the
risks of co-installability issues. A more radical solution to deal
with those two problems, as proposed by CRAN, is to require
packages to always be up-to-date with the latest available
release of its dependencies. While this completely avoids co-
installability issues, and makes sure that a package benefits
from dependency updates, it also means that a maintainer
is forced to systematically adapt its package whenever a
backward incompatible update occurs in one of its dependency
packages. This policy fully exposes packages to a perpetual
maintenance process, and puts an important burden on the
maintainers.

In future work, following the spirit of mixed method re-
search [25], we aim to complement our current quantita-
tive analysis and comparison of packaging ecosystems with
a qualitative analysis. This will be achieved by carrying
out surveys with ecosystem developers, similar to the one
conducted by Bogart et al. [1] but specifically focused on
software dependencies issues. Among others, this will increase
our understanding of why package are updated (e.g., bug
or security fixes, API changes, etc.), and how developers of
dependent packages are affected and react to updates.

We aim to extend our empirical analysis to other packaging
ecosystems, by including ecosystems for other programming
languages, as well as by considering package distributions for
other domains (e.g., Linux distributions, plugin-based devel-
opment environments like Eclipse and NetBeans, ...). This will
allow us to assess whether the considered domain influences
the ecosystem’s structure and its evolution over time. We
also aim to study mixed source ecosystems (containing a
combination of both open and closed software, potentially
using a wide variety of software licences) in order to explore
how this affects the problems, challenges and solutions related
to dependency issues.

Finally, we aim to carry out socio-technical comparisons
of the considered ecosystems, in order to understand how the
collaboration structure of the community of ecosystem con-
tributors affects the technical package dependency structure
and conversely [26].

ACKNOWLEDGMENTS

This research was carried out in the context of ARC research
project AUWB-12/17-UMONS-3 “Ecological Studies of Open
Source Software Ecosystems”. We express our gratitude to
Philippe Grosjean and the anonymous reviewers for the very
useful feedback on an earlier version of this article.

REFERENCES

[1] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “How to break an API:
Cost negotiation and community values in three software ecosystems,”
in Int’l Symp. Foundations of Software Engineering, 2016.

[2] A. Decan, T. Mens, and M. Claes, “On the topology of package
dependency networks — a comparison of three programming language
ecosystems,” in European Conference on Software Architecture Work-
shops. ACM , Nov. 2016.

[3] E. Wittern, P. Suter, and S. Rajagopalan, “A look at the dynamics
of the JavaScript package ecosystem,” in Int’l Conf. Mining Software
Repositories. ACM, 2016, pp. 351–361.

[4] A. Decan, T. Mens, M. Claes, and P. Grosjean, “On the development and
distribution of R packages: An empirical analysis of the R ecosystem,”
in European Conference on Software Architecture Workshops, 2015, pp.
41:1–41:6.

[5] K. Hornik, “Are there too many R packages?” Austrian Journal of
Statistics, vol. 41, no. 1, pp. 59–66, 2012.

[6] A. Decan, T. Mens, M. Claes, and P. Grosjean, “When GitHub meets
CRAN: An analysis of inter-repository package dependency problems,”
in Int’l Conf. Software Analysis, Evolution, and Reengineering. IEEE,
Mar. 2016, pp. 493–504.

[7] K. Blincoe, F. Harrison, and D. Damian, “Ecosystems in GitHub and a
method for ecosystem identification using reference coupling,” in Int’l
Conf. Mining Software Repositories. IEEE, 2015, pp. 202–211.

[8] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella, “How
the Apache community upgrades dependencies: an evolutionary study,”
Empirical Software Engineering, vol. 20, no. 5, pp. 1275–1317, 2015.

[9] R. Robbes, M. Lungu, and D. Röthlisberger, “How do developers react
to API deprecation? the case of a Smalltalk ecosystem,” in Int’l Symp.
Foundations of Software Engineering. ACM , 2012.

[10] P. Abate, R. Di Cosmo, L. Gesbert, F. L. Fessant, R. Treinen, and
S. Zacchiroli, “Mining component repositories for installability issues,”
in Int’l Conf. Mining Software Repositories, 2015, pp. 24–33.

[11] R. Di Cosmo and J. Vouillon, “On software component co-installability,”
in Joint European Conf. Software Engineering / Foundations of Software
Engineering. ACM, 2011, pp. 256–266.

[12] M. Claes, T. Mens, R. D. Cosmo, and J. Vouillon, “A historical analysis
of Debian package incompatibilities,” in Int’l Conf. Mining Software
Repositories, 2015, pp. 212–223.

[13] R. Di Cosmo, S. Zacchiroli, and P. Trezentos, “Package upgrades in
foss distributions: Details and challenges,” in 1st Int’l Workshop on Hot
Topics in Software Upgrades. New York, NY, USA: ACM, 2008.

[14] J. Sametinger, Software Engineering with Reusable Components.
Springer, 1997.

[15] N. Cliff, Ordinal methods for behavioral data analysis. Psychology
Press, Sep. 1996. [Online]. Available: http://www.worldcat.org/isbn/
0805813330

[16] Z. Hemel, “Javascript: A language in search of a standard library
and module system,” http://zef.me/blog/2856/javascript-a-language-in-
search-of-a-standard-library-and-module-system, February 2010.

[17] I. Z. Schlueter, “The npm blog: kik, left-pad, and npm,” http://
blog.npmjs.org/post/141577284765/kik-left-pad-and-npm, March 2016.

[18] T. Mens, “Anonymized e-mail interviews with R package maintainers
active on CRAN and GitHub,” University of Mons, Tech. Rep., 2015.
[Online]. Available: http://arxiv.org/abs/1606.05431

[19] B. Morris, “Rest apis don’t need a versioning strategy, they need
a change strategy,” http://www.ben-morris.com/rest-apis-dont-need-a-
versioning-strategy-they-need-a-change-strategy/, October 2016.

[20] D. G. Kleinbaum and M. Klein, Survival Analysis: A Self-Learning Text,
3rd ed. Springer, 2012.

[21] I. Samoladas, L. Angelis, and I. Stamelos, “Survival analysis on the
duration of open source projects,” Information & Software Technology,
vol. 52, no. 9, pp. 902–922, 2010.

[22] CRAN Repository Maintainers, “CRAN repository policy,” https://
cran.r-project.org/web/packages/policies.html, September 2016.

[23] J. Ooms, “Possible directions for improving dependency versioning in
R,” R Journal, vol. 5, no. 1, pp. 197–206, Jun. 2013.

[24] S. Raemaekers, A. van Deursen, and J. Visser, “Semantic versioning
versus breaking changes: A study of the Maven repository,” in Working
Conf. Source Code Analysis and Manipulation, Sept 2014, pp. 215–224.

[25] R. B. Johnson and A. J. Onwuegbuzie, “Mixed methods research: A
research paradigm whose time has come,” Educational Researcher,
vol. 33, no. 7, pp. 14–26, Oct. 2004.

[26] T. Mens, “An ecosystemic and socio-technical view on software main-
tenance and evolution,” in Int’l Conf. Software Maintenance and Evo-

lution. IEEE, 2016.

