
maintaineR: A web-based dashboard
for maintainers of CRAN packages

Maëlick Claes, Tom Mens, Philippe Grosjean
Software Engineering Lab, COMPLEXYS Research Institute, University of Mons

Email: firstname.lastname@umons.ac.be

Abstract—The R development community maintains thou-
sands of packages through its CRAN archive network. The growth
and evolution of this archive makes it more and more difficult to
maintain packages and their interdependencies, and the existing
tools that aim to help developers in this process no longer
suffice. We propose maintaineR, a web-based dashboard that
allows CRAN package developers to understand and deal with
the implications and problems raised by package updates. The
dashboard complements existing tools, such as the R CMD check
tool, by providing additional support such as the visualisation
of package dependencies and reverse dependencies, package
conflicts, cross-package function clones, and so on.

I. INTRODUCTION

Many generic web-based dashboards exist to help devel-
oper communities with specific maintenance activities. For
dedicated software developer communities involved a spe-
cific software ecosystem (including specific programming lan-
guages, development processes tools, guidelines, rules and
hardware infrastructure), targeted web-based dashboards are
however not always available, or need to be improved to
accommodate the specific needs of developers.

The maintaineR dashboard focuses on the R project com-
munity.1 R offers a free and open source language and
environment for statistical computing and visualisation. Its
community is composed of thousands of developers, involved
in maintaining thousands of packages. The CRAN package
repository2, available since 1997, is the primary source of
R packages. While other R package repositories are available
(e.g., Bioconductor and R-forge), they are considerably smaller
in size.

The number of available CRAN packages is growing very
rapidly and has reached a size of over 5000 packages, which is
considered by some as “too many” [1]. In addition, limitations
of R’s dependency versioning system have been reported and
possible directions for improvement (such as staged package
distributions and versioned package management) have been
proposed [2]. Another problem is a lack of coordination
between maintainers of dependent packages. Packages may
cease to function correctly because of unexpected changes
made to the packages they rely upon.

Therefore, there is a need for more specific tools dedicated
to R package developers, that allow them to gain insight
in, and deal with, the implications and problems raised by
package updates. Being able to address such problems a priori
during package development and maintenance, i.e., long before

1http://www.r-project.org
2http://cran.r-project.org

submitting it to CRAN, will reduce the effort of maintaining
contributed CRAN packages.

We have developed maintaineR, a web-based dashboard
to alleviate the above problems. It is available for download
at github.com/maelick/maintaineR, together with clear instal-
lation instructions and a screencast of the tool in action. main-
taineR is more specific and fine-grained than what is currently
available to CRAN maintainers. It helps them to identify and
avoid problems that could break their own package or those
of others before sending it to CRAN. The tool is based on a
fine-grained function-level analysis of dependencies, conflicts
and clones (copy-paste reuse of code) between packages.

II. RELATED WORK AND EXISTING TOOLS

maintaineR aims to help in understanding and supporting
the maintenance of software ecosystems and their components.
We adhere to the definition by Messerschmitt [3] who defines a
software ecosystem as “a collection of software products that
have some given degree of symbiotic relationships.” Stated
differently, a software ecosystem constitutes an evolving col-
lection of software projects/components/packages that share a
common goal, as well as human and technical resources.

Several tools have been proposed to analyse, understand
and visualise software ecosystems and their evolution. For
example, Neu et al. [4] developed Complicity, a web-based
application aiming to support software ecosystem analysis
through interactive visualisations. Perez et al. [5] presented
SECONDA, a software ecosystem analysis dashboard. The goal
of maintaineR is similar in spirit, namely to provide a web-
based dashboard for analysing and understanding the CRAN
ecosystem and the packages it contains.

Another type of software ecosystems are the so-called
software distributions, which are collections of software com-
ponents that are bundled together in such a way that they
can be installed and used “as is” by an end-user for its
intended purpose. From a maintenance point of view, this
raises additional problems, since the maintainers of the soft-
ware components need to avoid broken dependencies or other
conflicts whenever they upgrade a component. Di Cosmo et
al. have formally studied this problem of coinstallability and
provided tool support for addressing it [6], [7]. CRAN may
benefit from similar support. In particular, more fine-grained
analysis of CRAN package dependencies and how these affect
maintenance and update of packages is needed. Although some
empirical studies of CRAN have been carried out [8], [9],
we are not aware of any web-based applications aiming to
provide sophisticated support for understanding and improving
the maintenance of CRAN contributed packages.

http://www.r-project.org
http://cran.r-project.org
github.com/maelick/maintaineR


Of course, many generic web-based tools are available
that provide insight in the evolution of software products
by analysing historical data extracted from version control
repositories using a combination of metrics, visualisation and
statistics. Well-known examples of these are SonarQubeTM that
provides an extensible open source platform for managing code
quality3, and GitHub that includes a variety of views on the
version control activity of ongoing projects, including network
visualisations and historical visualisations. The main difference
is that maintaineR offers dedicated support for CRAN, taking
into account the specificities of the R language and the
processes and tools used by CRAN package maintainers.

III. ABOUT CRAN CHECK

CRAN follows a strict policy4 that packages need to adhere
to before being accepted on the repository5. CRAN package
developers can use the R CMD check command at any time
to detect possible problems in their contributed packages. This
tool is also used to ensure conformance of accepted packages
to the CRAN quality policy, and a daily check on the full set
of packages is applied to detect which packages no longer
pass the test. After certain package updates, other dependent
packages may cease to work correctly if the functions they
were relying on have changed. Packages can also fail the check
if a new R release introduces, changes or removes features.

While packages are never removed from CRAN, they can
eventually be archived. Maintainers have to ensure that their
packages still pass the check. If this is not the case, maintainers
have to fix the problems before the next non-minor release of
R or to stick to a strict deadline short after this release. If
they don’t, their buggy packages will be archived. A major
issue with CRAN is that it is only guaranteed to work properly
with the last version of R and vice versa. Moreover, different
versions of the same package cannot be installed together.

While the R CMD check is useful for CRAN maintainers to
detect problems with their package, it does not give sufficient
information about the origin of the failure. Therefore, R main-
tainers could benefit from a more specific tool using knowledge
about all previous packages versions in order to identify causes
of current errors and avoid future possible errors. This is what
maintaineR aims to provide.

IV. TOOL PRESENTATION

This section presents maintaineR, the web-based dashboard
for supporting CRAN package maintainers. In particular, the
tool helps with analysing and visualising the implications and
problems raised by package updates. The tool is still in a
prototype phase, so its functionalities are likely to evolve in
the future, based on feedback that we will receive from the
community during the annual R User Conference.

Subsection IV-A presents maintaineR’s main architecture,
the technologies that have been used for creating it, and the
main functionalities. Subsection IV-B presents the historical
analysis and visualisation provided. Subsection IV-C discusses
the implemented support for analysing package dependencies.

3http://www.sonarqube.org
4http://cran.r-project.org/web/packages/policies.html
5http://cran.r-project.org/web/checks/

maintaineRextractoR

CloneR

RCurl + XML

hash

igraph

DB WebApp

Vagrant + VirtualBox TimeMasheen Shiny

rChartstimeline

Fig. 1. Dependency graph of the components of the back-end and front-end
of our tool. Rectangles represent R packages.

SubsectionIV-D explains how package conflicts are detected.
Finally, subsection IV-E explains the support for detecting
cross-package function clones.

A. Overall architecture

Since maintaineR targets R maintainers, its implementation
relies mainly on R technologies and CRAN packages. The
front-end is a web-based dashboard built using Shiny6, a web
application framework for R. For graph manipulations we used
the package igraph. For graph visualization we used packages
rCharts and d3Network, which both rely on the d3.js Javascript
library. Packages RCurl and XML were used to fetch package
metadata.

Fig. 1 presents the overall architecture of the tool, which is
divided in two parts. The back-end (left part of figure) fetches,
processes and writes data to an SQL database. The front-end
consists of the Shiny web application and a command-line
interface.

The back-end contains different components. Package
metadata and content have been extracted with extractoR, a
bundle of R packages we have developed previously for the
purpose of empirically analysing CRAN [9]. We implemented
a new package CloneR to find duplicate functions inside R
code and we added an extension to extractoR to run CloneR
on all the previously extracted CRAN packages.

To get information on conflicting functions between pack-
ages we used Vagrant and Oracle’s VirtualBox to recreate
virtual machines corresponding to a development environment
closely approximating the situation at the time each pack-
age was released. TimeMasheen is the package responsible
for initializing the virtual machines, feeding them with the
packages that were available at the time of the release of the
corresponding R version, loading them in an R process and
finally writing the dynamic content of the loaded package in
the database.

The web front-end is used to render and control data
queried from the database. Executing the Shiny web appli-
cation opens in a web browser the page http://127.0.0.1:3000,
where 3000 is replaced by the port number on which Shiny
runs. A list of all available CRAN packages appears, and
selecting one of these will get the user to the package view.
This view is divided in six tabs (as can be seen in Fig. 5):

• Summary shows a table containing the context of the
package’s DESCRIPTION file.

6http://shiny.rstudio.com

http://www.sonarqube.org
http://cran.r-project.org/web/packages/policies.html
http://cran.r-project.org/web/checks/
http://127.0.0.1:3000
http://shiny.rstudio.com


Fig. 3. Dependency view of the reverse dependencies for package
sctrucchange, visualised as a Sankey diagram.

• History shows the release history of the package, its
dependencies and/or its reverse dependencies.

• Dependency list shows the list of all dependencies
and reverse dependencies.

• Dependency graph visualises the dependencies or the
reverse dependencies of a package either as a graph
or a Sankey diagram.

• Namespace shows all public objects declared in the
package namespace and the potential conflicts with
objects using the same name in other packages.

• Clones displays all functions that are present in all
other CRAN packages.

B. Historical view

An example of the historical view is given in Fig. 2. By
default, it shows on a timeline the release dates of the package.
As shown in Fig. 2 it is possible to restrain the timeline
to a shorter period and to add dependencies to and reverse
dependencies from other packages. The ability to visualise
globally the history of release dependencies is useful for a
developer in order to spot recent changes when the package
encounters an error during a CRAN web check.

C. Package dependency analysis

It is well-known that the presence of dependencies may
cause problems during the evolution of component-based sys-
tems [6], [7]. We have empirically studied this problem for
CRAN [9] and observed that package quality and maintain-
ability varies with the operating system considered. We also
observed that a non-negligible amount of errors are caused by
dependency updates and need to be fixed by the maintainers.
Maintenance effort hence needs to take into account changes
made to package dependencies.

The CRAN policy recommends not to break reverse depen-
dencies (i.e., packages that depend directly on it). However,
this is only a recommendation and not a rule. Furthermore,
while the CRAN website lists for each package all reverse
dependencies, there is no tool to check that changes made to
a package won’t impact these other packages.

It is therefore important to offer package maintainers an
easy way to visualise the direct and indirect dependencies and
reserve dependencies of their packages. Fig. 3 shows such
a visualisation generated by our tool for one of the CRAN
packages.

Fig. 4. Namespace view for the CRAN package abc.

Reverse dependencies show the packages that depend on
a given package and may help the package maintainer to
minimise the ripple effect of any changes he desires to make.
Ideally, a package update should not require updates or changes
to packages that depend on it. Showing to the maintainer the
dependencies and reverse dependencies of a given package,
may help him find the causes of any errors introduced by
package dependencies, as well as warn him about potential
errors or conflicts introduced by this package in its reverse
dependencies.

D. Detection of package function conflicts

R resolves function and variable names using environment
objects, which are hash tables associating names to objects
exported by the package namespace. When a variable or a
function is referenced, the interpreter cycles through a list of
environments. When two packages define the same function
name, the last imported function will mask the first imported
one. Although it is still possible to call the first function by
specifying the package name with a special notation, this can
lead to conflicts. For example, suppose that package A depends
on packages B and C and uses a function f defined in B. If a
new version of package C introduces a new function with the
same name f, there is a chance that this creates a conflict.

Fig. 4 shows the Namespace view for a given CRAN
package, displaying which function and variable names are ex-
ported by the package namespace, and which potential conflict
this introduced with (particular versions of) other packages. To
achieve this, we used Vagrant and VirtualBox to create a virtual
machine running on Debian for each version of R. On all these
virtual machines we installed all available CRAN packages at
the time of the release of the machine’s R version. We loaded
all these packages one by one and we exported the list of
objects available in the package environment.

E. Detection of function clones

As depending on another package can be costly from a
maintenance perspective, it is common for CRAN package
maintainers to copy-paste portions of code from other packages
rather than depending upon them. Developers also frequently
write local functions inside the body of other functions (like
a closure). Often these functions do not reference any local
variable and could therefore easily have been defined in the
global scope of the package. Not doing so prevents dependent
packages to reuse these functions.



Fig. 2. Screenshot of the History view for releases of package abc, its dependencies and reverse dependencies.

Fig. 5. Clones view for the CRAN package memisc, filtered to show only clones of at least 3 lines and an AST of size at least 10.

The Clones view of our tool, illustrated in Fig. 5 deter-
mines which global or local functions defined in the package
are perfect duplicates (so-called “Type 1” clones) of a function
defined in another package. Clones are detected by parsing
the R code of all packages, performing a depth-first traversal
of the abstract syntax tree, computing a hash for each node,
and adding all function definitions in a hash table using the
computed hash key. All keys associated with more than one
package correspond to cloned functions.

V. CONCLUSION AND FUTURE WORK

We presented maintaineR, a web-based dashboard for
analysing maintainability of CRAN packages, by offering
analyses and visualisation of the package release history,
package dependencies, potentially conflicting function names
across packages, and identical function clones. We will actively
promote take-up of our dashboard by the CRAN developer
community, and we intend to improve the tool based on
feedback received from CRAN package maintainers. We intend
to use the tool ourselves for carrying out empirical analyses
of the CRAN ecosystem.

Our tool can be extended in many ways. We will improve
the current functionalities with new visualisations and more
sophisticated analyses (for example, support for Type II and
III clone detection). Next to the current package-oriented view,
we aim to provide a maintainer-oriented view, as well as a
global ecosystemic view of CRAN’s socio-technical ecosystem.
Through our virtual-machine-based approach, we also aim to
provide support for reproducibility of research studies that
relied on older CRAN package versions.

Acknowledgments: The maintaineR tool was devel-
oped in the context of ARC research project AUWB-12/17-
UMONS- 3.

REFERENCES

[1] K. Hornik, “Are there too many R packages?” Austrian Journal of
Statistics, vol. 41, no. 1, pp. 59–66, 2012.

[2] J. Ooms, “Possible directions for improving dependency versioning in
R,” R Journal, vol. 5, no. 1, pp. 197–206, Jun. 2013.

[3] D. Messerschmitt and C. Szyperski, Software ecosystem: Understanding
and indispensable technology and industry. MIT Press, 2003.

[4] S. Neu, M. Lanza, L. Hattori, and M. D’Ambros, “Telling stories about
GNOME with Complicity,” in Working Conf. Software Visualisation
(VISSOFT). IEEE, 2011, pp. 1–8.

[5] J. Perez, R. Deshayes, M. Goeminne, and T. Mens, “SECONDA:
Software ecosystem analysis dashboard,” in European Conf. Software
Maintenance and Reengineering, T. Mens, A. Cleve, and R. Ferenc, Eds.,
2012, pp. 527–530.

[6] J. Vouillon and R. Di Cosmo, “Broken sets in software repository
evolution,” in Int’l Conf. Software Engineering, 2013, pp. 412–421.

[7] P. Abate, R. D. Cosmo, R. Treinen, and S. Zacchiroli, “Dependency
solving: A separate concern in component evolution management,”
Journal of Systems and Software, vol. 85, no. 10, pp. 2228–2240, 2012.

[8] D. M. Germán, B. Adams, and A. E. Hassan, “The evolution of the
R software ecosystem,” in European Conf. Software Maintenance and
Reengineering, 2013, pp. 243–252.

[9] M. Claes, T. Mens, and P. Grosjean, “On the maintainability of CRAN
packages,” in IEEE Conference on Software Maintenance, Reengineer-
ing, and Reverse Engineering (CSMR-WCRE), 2014, pp. 308–312.


	Introduction
	Related Work and Existing Tools
	About CRAN check
	Tool Presentation
	Overall architecture 
	Historical view
	Package dependency analysis
	Detection of package function conflicts
	Detection of function clones

	Conclusion and Future Work
	References

