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Abstract We provide some two-moment. approximatioH formulas for the lllean waiting time and the delay 
probability in a GI/G,Is queue. These formulas are certain combinations of the exact mean waiting times 
for the M/M / s, M / D / sand D / M / s queues and the first. two moments of the inter arrival times and s." vice 
times. To see the quality of the approximations. they are numerically compared witll exact. solutions and 
other approximations for some particular cases. 

1. Introduction and Summary 

In this paper we provide some two-moment approximation formulas for the mean waiting 
time and the delay probability in a multi-server queue. We consider the standard Gl IG Is 
queueing system with s homogeneous servers in parallel, unlimited waiting room, the lirst­
come first-served discipline and i.i.d. (independent and identically distributed) service ti mes 
which are independent of a renewal arrival process. We approximate the mean waiting 
time in this GllGls queue by using those for analyzable systems such as MIMIs, MIDis 
and DIM Is queues. In addition, combining these approximations with the two-moment 
approximations for the conditional mean waiting time provided in [21], we approximate the 
delay probability in the GI/G/s queue. 

For the M!G! s queue, there are several elaborate approximations which depend on the 
service-time distribution [11, 17, 28]. These distribution-dependent approximations often 
have the advantage of producing the entire waiting time distribution and its higher moments, 
since one can utilize some known analytical results to refine approximations for the M / G / s 
queue; cf. [2, 32]. However, for the Gl/G/s queue, such results have not been available as 
yet in the absence of an exact analysis. Thus, possible approaches to the G I / G / s case are 
quite limited and are essentially heuristic by nat ure. 

Great progress is currently being made on computational methods for obtaining exact 
solutions of GI/G/s queues; see, e.g., [23, 24, 25, 26] and references therein. For some 
applications, these methods will eliminate the need for approximations. However, simple 
closed-form two-moment formulas will still be desired for other applications, e.g., when 
Gl/G/s models appear as submodels in large-scale queueing systems. It is helpful to have 
simple approximations as concise summaries. 

Let W denote the waiting time before beginning service and let EW be its expected 
value, assuming that the system is stable and in steady state. We write EW(MIM/s) to 
indicate EW for the M/M / s queue and so forth. Let u and v be generic interarrival t.ime 
and service time, respectively; let p = Ev/sEu E [0,1) be the traffic intensity; and let c~ (c;) 
be the squared coefficient of variation (variance divided by the square of the mean) of u (v). 
Then, among approximation formulas we provide in this paper, a pair of approximations we 
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174 T. Kimura 

recommend to use is as follows: For c~ :s; 1, 

2 2 2 ca + Cs - 1 1 - C. 0 1 - Ca 

( 
( 2 2) 2 k ( 2)) -1 

EW(GI/G/s) c::: k(ca + Cs) EW(M/M/s) + EW(M/D/s) + EW(D/M/s) , (1) 

and for c~ > 1, 

EW(GI/G/s) c::: 
1 

(c~ + c; - 1)EW(M/M/s) + (1- c;)EW(M/D/s) + ko (1- c~)EW(D/M/s), (2) 

where 
_ 2 2 {2(1-P)(1-C~)2} 

k = k(p, Ca' C.) = exp - 3 2 2 ' 
P Ca + Cs 

(3) 

{ 
2(1-P)} ko = k(p, 0, 1) = exp - 3p . (4) 

Our studies indicate that (1) and (2) will usually yield satisfactory approximations (in the 
order of 10% relative error), provided that (i) the valiability parameters c~ and c; (especially 
c~) are not too large, e.g., c; :s; 2 and c; :s; 4, and (ii) the traffic intensity p is not too small, 
e.g., p ~ 0.3 for s = 2 and p ~ 0.8 for s = 20. In particular, the approximation (1) has 
excellent performance when c~ :s; 1 and c; :s; 2.5; the relative percentage errors are in the 
order of 5% when p = 0.5 and in the order of 1 % when p = 0.9 for almost all cases satisfying 
the condition (ii) in our numerical experiments. In other words, we can roughly say that 
the relative percentage error is in the order of 1 % if the approximate value of EW is greater 
than 10Ev. The studies also indicate that the accuracy of our approximations does not so 
strongly depend on the number of servers if c~ is not too large. This property IS practically 
important because the computational methods for exact solutions become difficult to carry 
out for cases with large s. Theorems and numerical examples in this paper will help clarify 
these points. 

In (1) and (2), the mean waiting times for the building-block systems, i.e., the M/M/s, 
M / D / sand D / M / s queues, have the same mean service times and traffic intensities as those 
of the queue in question. The exact values of these mean waiting times can be obtained 
either by computing their analytical solutions or by using some queueing tables [10, 19, 
22]. We should note that data of the building-block systems required for computing our 
approximations can be considerably reduced by using some interpolation techniques in [22, 
pp. 12-14]. In Section 3, we further propose simple closed-form formulas in which only 
EW(M/M/s) is used as their building blocks. 

We see that the approximation (1) (and also (2)) is exact for the M/M/s, M/D/s, 
D/M/s and M/G/1 queues. Hence the approximation (1) is an interpolation approximation 
among these systems when c~ :s; 1 and c; :s; 1. It will be shown that (1) and (2) perform 
very well as extrapolation approximations when c~ > 1 or c; > l. 

The approximations (1) and (2) are two-moment approximations for EW(GI/G/s), i.e., 
they depend only on the filTst two moments of u and v. Closely related two-moment ap­
proximations have been developed by Page [18] and Kimura [13]' in which three exact mean 
waiting times for the M /!vI / s, M / D / sand D / M / s queues are also used as their building 
blocks; see (27) and (28). We will see in Section 2 that the approximations of Page and 
Kimura can be produced by using our approach as its special cases. Other simple two­
moment approximations fOl EW(GI/G/s) can be found in [20, 29]. This paper shows that 
(1) and (2) are much better than these approximations in both moderate and heavy traffic. 
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Approximations for the Cl I C I s Queue 175 

Two-moment approximations for EW( GI /G/ s) are of course useful for analyzing an 
individual G I /G/ s queue. Moreover, they also are useful for designing and/or evaluating 
an open non-Markovian network of queues: We analyze each of nodes in a network as 
a separate GI/G/s queue characterized by the first two moments of the interarrival-time 
and service-time distributions. This approach is a.dopted in software packages such as QN A 
(Queueing Network Analyzer) which has been developed to calculate approximate congestion 
measures for networks of queues [12, 29]. Typically the arrival process at each node is not 
actually renewal, but the two-moment characterization can be viewed as an approximation 
by a renewal process. The idea in QN A is not to ignore the dependence among successive 
interarrival times, but to try to capture the essential properties of this dependence in the 
variability parameters c;. Our approximation formulas can be used in QNA-like softwares 
to obtain several congestion measures for the whole network as well as each node if the 
departure process from a node can be well apprmimated by a renewal process; cf. [30]. 

This paper is organized as follows: In Section 2, we focus on a ratio of the mean waiting 
times for systems with different number of servers. We approximate this ratio by a linearly 
weighted sum of the corresponding ratios for the .ft.!I/M/s, M/ D/s and D/M/.s queues. Using 
several sets of weights consistent with exact properties for particular cases, we derive four 
Lwo-moment apprmimation formulas for EW( G T/G / s). Combining these approximations 
with the approximations by Cosmetatos [5] and Seelen and Tijms [21], we provide simpler 
approximations for EW(GI/G/s) in Section 3 and approximations for the delay probabi:lity 
in Section 4. In each section, we discuss the quality of the approximations by numerical 
comparisons for some particular cases. 

2. Approximating EW(GI/G/s) 

A frequently used approach to obtain approximations for EW is to approximate a nor­
malized mean waiting time instead of EW itself; see [1, 6, 13] for the M /G / s case and [4] 
for the GI/M/s case. 

In this paper, we focus on the quantity EW(GI/G/m)/EW(GI/G/n) (m =f. n) for 
the GI /G / s queue. This quantity denotes the ratio of the mean waiting times for two 
systems with different number of servers which have the same mean service times and traffic 
intensities as those of the approximating GI/O/s queue. We approximate this ratio by 
a linearly weighted sum of the corresponding ratios for the M/M / s M / D / sand D / M / s 
queues, l.e., 

EW(OI/O/m) EW(M/M/m) EW(M/D/m) EW(D/M/m) 
EW(OI/O/n) ~ Wn EW(M/M/n) + WIO EW(M/D/n) + WOI EW(D/M/n)' (5) 

where {wc~c~} = {VJll, WlO, wod denotes a set of weighting coefficients. In (5), the exact 
ratios for the building-block systems can be calculated in a numerically stable way for given 
sand p, or they can be found in some queueing tables. Thus we need to determine the 
weights to identify our approximation completely. 

For the weights {w;)}, we restrict their class to the function w;) == w;)(c~,c;) which 
depends only on the squared coefficients of variation of u and v, and not on m, nand 
p. From the consistency with the building-block systems, we immediately see that {tu;)} 
satisfies the condition 

Cl: wll(I, 1) = wlO(I, 0) = WOl(O, 1) = 1. 

As a natural condition for the interpolation approximation, we assume 

C2: WIO(C~, 1) = wOI(I, c;) = O. 

(6) 

(7) 
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176 T. Kimura 

This condition is essentially based on an idea that we approximate a general inter arrival-time 
or service-time distribution by combining the exponential and deterministic distributions 
[1, 13, 18, 27]. 

Since the approximate relation (S) can be identified by c; and c;, we simply denote the 
relation (S) by Rmn == Rmn(C~, c;) for convenience. Then we have 

Theorem 2.1 Assume that E[v 3
] < 00. Then, the approximate relation Rmn (c~, c;) is 

asymptotically correct as p ...... 1 if the condition 

C3: W11 + WlO + WO! = 1 (8) 

holds. 

Proof: By the heavy traffic limit theorem in [IS]' we have 

c2 + c2 

lim(l- p)EW(GI/G/s) = _a __ , Ev, 
1'-+1 2s 

(9) 

if E[ v3
] < 00. Multiplying both the denominators and numerators in the relation Rmn (c~, c;) 

by the term (1 - p) and letting p ...... 1 from below, we obtain the desired result. • 

From Theorem 2.1, we assume that the condition C3 holds to ensure the accuracy of 
(S) in heavy traffic. It is difficult to obtain further useful properties of {w;}} from (S) for 
arbitrary m and n. Hence, we hereafter restrict the values of m and n to two cases with (i) 
m = s, n = 1 and (ii) m = 1, n = s, and we call the relations R,1 and R 1s as Type I and 
Type II relations, respectively. 

Theorem 2.2 For the M/G/s queue, 
(i) the approximate relation R s1 (1, c;) is asymptotically correct as s ...... 00 if 

C ( 2) 2c; (2) 1 - c; 
4: Wll l,c, = --2' WlO l,c s = --2' 

1 + Cs 1 + Cs 
(10) 

(ii) the approximate relation R 1s (1, c;) is asymptotically correct as s ...... 00 if 

C ,. . (1 2) - 2 (1 2) - 1 2 d. Wll ,Cs -cs, WlO ,Cs - -cs' (11) 

Proof: For notational convenience, let wll(l, c;) = Wll and wlO(l, c;) = WlO for a moment. 
It is clear from the conditions C2 and C3 that 

(12) 

Following Boxma et al. [1], we introduce the quantity 

N _ 1 + c; EW(M/M/s) 
G, - 2 EW(M/G/s) ' 

(13) 

to investigate the asymptotic consistency of R,I(1, c;) and R1s (1, c;) as s ...... 00. From (S), 
(13) and NGl = 1, we have the approximation for NGs as 

NG, ~ { (Wll +wlO Ni);fl, for Rs1 (I,c;) 
Wll + wlONDs> for R1,(I,c;), 

(14) 
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where ND• is the quantity (13) for the M/D/s queue. As shown in Remark 1 of [1], the 
quantity N G. satisfies 

r N l+c; 
.~~ G. = --2-' (15) 

which states the fact that the M /G /00 queue is insensitive to the service-time distribution. 
Letting s --+ 00 in (14) and using (12) and (15), we obtain (10) and (11). • 

We now determine the weights {w;j} satisfying the conditions Cl-CS. Unfortunately, 
the weights satisfying all of these conditions are not uniquely determined; cf. [13]. Hence, we 
restrict the weighting coefficients to those which are simple and symmetric with respect to 
c; and c;, taking account of the symmetry in the heavy traffic result (9). As such weights, 
we propose the following: For Type I relation Rs1(c;, c;), 

2(c; + c; - 1) 
Case lA: Wll = 2 + 2 ' 

Ca C. 

2c;c; 
Case IB: Wll = ~+ 2' 

Ca C. 

Case HA: Wn = c; + c; - 1, WIO = 1 - c;, WOl = 1 - c;, 

(16) 

(17) 

(18) 

(19) 

Hereafter we simply call the approximate relation R.l (c;, c;) with the weights of Case lA 
the approximation lA and so forth. 

Remark 2.1 For the M/G/s and GI/M/s queues, the weights of Case lA (HA) coincide 
with the weights of IB (lIB). They also coincide with the weights appeared in a similar 
approximate relation of [4, 6]. 

Remark 2.2 As a heuristic extension of approximations for EW(M/G/s) and 
EW( GI / M / s) in [4, 6]' Cosmetatos [7] derived a similar approximate relation for 
EW( Em/ Ek / s) with the weighting coefficients of Case lB. 

From the two difrerent types of the approximate relation with the weights (16)-(19), we 
will derive some approximations for EW(GI/G/s): From the relation of Type I, we have 

EW(GI/G/s) c:= 

( 
EW(M/M/s) EW(M/ D/s) EW(D/M/S)) 

EW(GI/G/1) Wll EW(M/M/1) + WIO EW(M/D/1) + WOl EW(D/M/1) ,(20) 

and from the relation of Type 1I, we have 

EW(GI /G/ s) c:= 

(
EW(M/M/1) EW(M/D/1) EW(D/M/l))-l 

EW(GI/G/l) Wll EW(M/M/s) + WIO EW(M/D/s) + WOl EW(D/M/s) .(21) 

Therefore we have four different approximations for EW(GI/G/s), i.e., (20) with the weights 
(16) or (17) and (21) with the weights (18) or (19). Clearly, these approximations conta.in 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
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EW( GI /G/l) for a single server queue with the same mean service time and traffic intensity 
as in the approximating GI /G/ s queue. It is, however, difficult to obtain the exact value of 
EW(GI/G/l) except for some special cases, e.g., the M/G/l case. Hence, to simplify (20) 
and (21), we replace three mean waiting times for the single server queues in (20) and (21) 
by a common two-moment approximation; see Remark 2.3. For such an approximation, we 
use the approximation provided in [29], which is 

2 + 2 
EW(GI/G/l) ~ ~gEW(M/M/l), 

2 

where the coefficient 9 == g( p, c;, c;) is defined as 

if c; ~ 1 
if c~ > 1, 

(22) 

(23) 

for k(p, c~, c;) in (3). We see that the approximation (22) together with (23) is the Kramer 
and Langenbach-Belz [16] approximation for c; ~ 1. Taking into account that (22) gives the 
exact results for EW(M/M/l) and EW(M/D/l), we obtain, from (20), 

EW(GI/G/s) ~ 

2 2) (Wll (/ / ( / /) W01 ) (Ca + c. 9 TEW M M s) + wlOEW M D s + TaEW(D/M/s) , (24) 

and from (21) 

2 2 2Wll WlO kOW01 

( )

-1 

EW(GI/G/s) ~ (Ca + C.)g EW(M/M/s) + EW(M/D/s) + EW(D/M/s) . (25) 

Remark 2.3 Instead of (22), it is possible to use the exact value for EW(D/M/l) in (20) 
and (21). However, we can easily see that the resultant formulas are not exact for the D / M / s 
queue. This is why we use the approximation (22) for EW(D/M/l). 

Remark 2.4 If we replace the mean waiting times for the single Server queues in (20) and 
(21) by 

BW(GI/G/l) ~ c~; c; EW(M/M/l), (26) 

then the approximation (20) with the weights of Case IB coincides with Page's [18] approx­
imation 

EW(GI/G/s) ~ 

c:c;EW(M/M/s) + c:(1- c;)EW(M/ D/s) + (1 - c:)c;EW(D/M/s), (27) 

and the approximation (2]) with the weights of Case HA coincides with Kimura's [13] ap­
proximation 

EW(GI/ Is) '" (2 2) (2(C; + c; -1) 1- c; 1- c~ )-1 
G - Ca + c. EW(M/M/s) + EW(M/D/s) + EW(D/M/s) . (28) 

Hence, we see that our approach unifies the above two-moment approximations for 
EW(GI/G/s). 
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NUMERICAL COMPARISONS 

Table 1 gives a list of queueing systems on which we have made numerical experiments 
to test the performance of our approximations. In Table 1, H~ denotes an H2 distribution 
with balanced means, and E1•2 (E1•3) denotes a mixture of M and E2 (E3) which is defined 
in Groenevelt et al. [9]. A number of combinations of the parameters s, p, c~ and c; are 
specified in the table. The exact mean waiting times for the systems in the first three rows 
in Table 1 can be found in [9]' while those for all the other systems are given in Seelen et al. 
[22]. It should be noted that all of the exact results are not necessarily available for these 
systems. For example, the exact results for systems with s = 10 are available only when 
p 2 0.5. Some typical results of these experiments are given in Tables 2~5. 

Table 1: A List of Numerical Experiments. 

System (,2 
'a s p 

M/HUs 1 1.5625, 2.25, 9 

M/E1.2/S 1 0.5,0.64,0.75, 0.81 2(1)5,8,10(5)25 0.3,0.5,0.7,0.8,0.9,0.95 

M/E1.3/S 1 0.333, 0.4, 0.45, 0.5 

M/E2/s 1 0.5 

EdM/s 0.5 1 
ElO/M/s 0.1 1 

E2/ E2/s 0.5 0.5 

HVEds 2,3,4 0.5 2(1)10(5)25 0.3,0.5,0.7,0.8,0.9,0.95 

H~/M/s 2,3,4 1 

H~/ H~/s 2,3,4 1.5, 2.5, 4 

M/H~/s 1 1.5, 2.5, 4 

EdH~/s 0.5 1.5, 2.5, 4 

Table 2: A Comparison of Approximations of the Mean Queue Length for M / H~/ s Queues 
(c; = 4). 

p Method I s = 2 I s := 5 I s = 10 I s = 20 I 
0.5 Exact 0.74 0.24 0.05 -

New 0.71 0.23 0.05 0.00 
Simplified 0.72 0.23 0.06 0.01 
Page 0.80 0.29 0.07 0.01 

0.7 Exact 3.17 1.87 0.99 0.36 
New 3.11 1.82 0.96 0.35 
Simplified 3.15 1.83 0.96 0.36 
Page 3.31 2.10 1.19 0.47 

0.9 Exact 18.87 16.40 13.94 10.99 
New 18.78 16.26 13.82 10.90 
Simplified 18.84 16.26 13.71 10.74 
Page 19.10 16.96 14.77 12.04 
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Table 3: A Comparison of Approximations of the Mean Queue Length for PH / PH /2 Queues. 

I c~ I p I Method I c; = 0.5 I c; = 1.0 I c; = 1.5 I c; = 2.5 I c; = 4.~ 
0.5 0.3 Exact 0.01 0.02 0.03 0.05 0.08 

New 0.01 0.02 0.03 0.04 0.06 
Page 0.02 0.03 0.04 0.05 0.07 

0.5 Exact 0.12 0.19 0.25 0.38 0.57 
New 0.12 0.19 0.26 0.38 0.54 
Page 0.14 0.20 0.25 0.37 0.53 

0.7 Exact 0.58 0.89 1.19 1.79 2.67 
New 0.60 0.91 1.22 1.80 2.63 
Page 0.62 0.90 1.18 1.73 2.57 

0.9 Exact 3.69 5.56 7.43 11.15 16.71 
New 3.74 5.62 7.48 11.19 16.64 
Page 3.75 5.58 7.40 11.04 16.51 

2.0 0.3 Exact 0.08 0.10 0.11 0.14 0.17 
New 0.09 0.11 0.12 0.14 0.18 
Page 0.09 0.12 0.14 0.19 0.26 

0.5 Exact 0.43 0.53 0.61 0.76 0.98 
New 0.46 0.54 0.62 0.78 1.01 
Page 0.48 0.60 0.73 0.97 1.35 

0.7 Exact 1.72 2.09 2.42 3.07 4.00 
New 1.76 2.08 2.41 3.06 4.05 
Page 1.81 2.23 2.66 3.51 4.79 

0.9 Exact 9.69 11.65 13.56 17.35 22.98 
New 9.70 11.60 13.51 17.31 23.03 
Page 9.80 11.87 13.94 18.08 24.29 

4.0 0.3 Exact 0.12 0.15 0.17 0.20 0.25 
New 0.18 0.20 0.21 0.24 0.28 
Page 0.18 0.23 0.28 0.37 0.52 

0.5 Exact 0.72 0.86 0.96 1.15 1.40 
New 0.88 0.95 1.03 1.19 1.42 
Page 0.92 1.14 1.35 1.79 2.43 

0.7 Exact 3.10 3.53 3.89 4.59 5.57 
New 3.23 3.56 3.89 4.54 5.52 
Page 3.39 4.01 4.64 5.88 7.76 

0.9 Exact 17.62 19.63 21.57 25.41 31.10 
New 17.55 19.45 21.36 25.17 30.88 
Page 17.86 20.26 22.66 27.45 34.65 
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Table 4: A Comparison of Approximations of the Mean Queue Length for PH / PH /20 
Queues. 

c~ p I Method I c; = 0.5 I c; = 1.0 I c; = 1.5 I c; = 2.5 I c; = 4.0 I 
0.5 0.7 Exact 0.06 0.09 0.12 0.16 0.23 

New 0.04 0.06 0.08 0.12 0.16 
Page 0.09 0.12 0.15 0.20 0.28 

0.9 Exact 2.20 3.:12 4.33 6.29 9.19 
New 2.19 3.24 4.25 6.15 8.74 
Page 2.34 3.:19 4.43 6.52 9.65 

2.0 0.7 Exact 0.47 0.1)1 0.54 0.58 0.65 
New 0.37 0.41 0.45 0.54 0.66 
Page 0.34 0.42 0.49 0.64 0.86 

0.9 Exact 7.07 8.25 9.33 11.44 14.49 
New 6.78 7.96 9.14 11.50 15.04 
Page 6.65 8.10 9.55 12.46 16.81 

4.0 0.7 Exact 1.28 1.28 1.28 1.29 1.34 
New 0.75 0.?9 0.83 0.92 1.04 
Page 0.67 0.81 0.95 1.22 1.64 

0.9 Exact 14.13 15.24 16.32 18.45 21.60 
New 12.78 13.96 15.14 17.50 21.04 
Page 12.39 14.:18 16.38 20.37 26.36 

These experiments have clarified some qualitative properties of our approximations: The 
approximation lA is stably accurate even for'highly variable interarrival-time or service­
time distribution. The approxima~ion IIA is much better than the others when c~ :S 1, 
but when c~ > 1 it produces very bad approximations (e.g., negative). We observe that the 
approximations of Type II including (28) do not fit for cases with c~ > 1. The approximation 
IB (IIB) is less accurate than lA (HA) in moderate traffic, but performs about the same in 
heavy traffic. From these observations, we will use IIA (i.e., (1)) or lA (i.e., (2)) as it new 
approximation according as c; :S lore; > 1. 'We denote this approximation as "New" in 
Tables 2-5. 

Table 2 compares three approximations with the exact values of the mean queue length 
(excluding customers in service) for M/H~/s queues with c; = 4. Approximations of the 
mean queue length can be derived from those of EW by using Little's formula. In Table 2, 
"Simplified" denotes a simplified version of New which will be discussed in Section 3. We 
add the closely-related approximation of Page (27) in the table. However, we omit Kimura's 
approximation (28) from comparisons, since it coincides with New for MIG/s queues. Ta­
ble 2 shows that New is sufficiently accurate for most practical applications. The relative 
percentage errors of New are less than 5% for p = 0.5 and less than 1% for p = 0.9 for 
M IG Is queues with c; :S 4; see also Tables 1-4 in [13]. 

Tables 3 and 4 compare the approximations with the exact values of the mean queue 
length for PH / P 1l /2 and PHI PH /20 queues, respectively. The interarrival-time (service­
time) distribution is E2 when c; (c;) = 0.5 and ll~ when c~ (c;) > 1. We again omit (28) from 
comparisons because it is less accurate than the others when c~ > 1. Based on comparisons 
in Tables 3 and 4, we can conclude that the new approximation is stably more accurate 
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than Page's approximation e:,pecially for small s. For highly variable cases with c~ :::; 2 and 
c; :::; 4, the new approximation has the reasonable accuracy for most applications; see the 
rough practical guideline in Section 1 for the use of the new approximation. However, when 
c~ > 2 or c; > 4, the new approximation becomes relatively unreliable due to the fact that 
the set of possible exact values of EW, which is consistent with the first two moments of u 

and v, grows as c~ or c; grows. 

3. Simplified Formulas 
In this section we simplify our approximations for EW to let them be more tractable. If 

we have extensive queueing tables containing the exact mean waiting times for the M/M/s, 
M / D / sand D / M / s queues with given sand p, it is easy to obtain our approximations. How­
ever, we usually need to calculate each of these means for the given parameters. Among these 
mean waiting times, EW( M/M / s) can be easily calculated by a programmable desk calcu­
lator, while the others involve certain difficulties in their calculations: For EW (M / D / s), 
the calculation tends to be unstable when s is large and p is close to one; for EW( D / M / s), 
it has a little bit complicated form including a root of a transcendental equation. These 
numerical difficulties imply that it takes much time to calculate these means accurately. 

To avoid these difficulties, we will express the approximations (24) and (2;:» in terms 
of EW(M/M/s) and the first two moments of u and v. For this purpose, it is necessary 
to approximate EW(M/D/s) and EW(D/M/s) by using EW(M/M/s). Cosmetatos [5] 
provided the following approximations: 

1 
EW(M/D/s) ~ 2CPlO(S,p)EW(M/M/s) 

. EW(D/M/1) 
EW(D/M/s) ~ EW(MIM/1/01 (s, p)EW(M/M/s), 

where CPIO (s, p) and CPOl (s, p) are defined by 

CPlO(S, p) = 1 + ,(s, p) 

CPOl (s, p) = 1 - 4,( s, p) 

. { ..j 4 + 5s - 2 } ,(s,p) = mm (1- p)(s -1) ,0.25(1-10-6
) . 

16sp 

(29) 

(30) 

(31) 

(32) 

(33) 

Following Whitt [31], we have modified the approximations of Cosmetatos [5] by inserting 
the minimum with 0.25(1 - 10-6

) in (33). Without it, the approximation (30) becomes 
negative and hence meaningless for ,(s, p) > 0.25; cf. Kimura [14]. 

For EW( D / M / s), we can obtain a simpler approximation by inserting a certain approxi­
mation for EW(D/M/1) into (30). In particular, if we use the Kriimer and Langenbach-Belz 
approximation for EW(D/M/l); see (22) and (23), then we have 

EW(D/M/s) ~ ~kOCPOl(S,p)EW(M/M/S), (34) 

for ko in (4). From some numerical tests, we saw that the approximations (29) and (34) 
perform well unless p is close to zero. 

Applying these approximations for EW(M/D/s) and EW(D/M/s) in (24) and (25), we 
obtain simplified formulas: From (24), 

2 2 

EW(GJ /G/s) ~ ~~ C'_g (Wll + WlOCPlO(S, p) + WOICPOl(S, p)) EW(M / M/s) (35) 
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with the weights given in (16) or (17); and from (25), 

2 2 ( ) -1 Ca + c. 'UJ1Q W01 
EW(GI/G/s) == --g Wll + --;;:-(-) + 1Y ( ) EW(M/M/s) 

2 'f'10 S, P 01 S, P 
(36) 

with the weights given in (18) or (19). 

NUMERICAL COMPARISONS 

In Table 2, we have given the simplified approximations of the mean queue length for 
some M/ HN s queues. We use (35) or (36) according as c~ > 1 or c~ ::; 1 as "Simplified" 
in the table. Table 2 shows that Simplified performs as well as New. This indicates the 
excellence of the quality of the approximations for the M/ D / sand D / M / s queues (i.e., (29) 
and (34)). We see from the other experiments that the simplified approximation has almost 
the same accuracy as New and is good enough for practical applications. 

4. Delay Probability 

We now focus on delay probability, P(W :> 0), i.e., the probability that an arnvmg 
customer has to wait before beginning service. There are considerable works on M/G / s 
queues. For the !vI /G / s queues, it is well known that the delay probability for the M/M / s 
queue, i.e., the Erlang-C formula [3, p. 91], is usually an excellent approximation for other 
service-time distributions [1'1]. However, there have been relatively few works on approx­
imations of P(W > 0) for GI/G/s queues with non-Poisson arrivals. In this section we 
approximate P(W > 0) for the GI /G/ s queue by combining our approximations for EW 
with an approximation for the conditional meat. waiting time E(W I W > 0). 

Let D be the conditional waiting time given that the server is busy, i.e., D = (W I W > 0) 
and let ED be its expected value. Seelen and Ti.ims [21] proposed the following two-moment 
approximation for ED: For c~ ::; 1 and c; ::; 1, 

ED == {(I _ !~ _ p2) (c; + 1- c;) + (1 -+- p)(c~ - 1) + (3p - p3)(1 + c;)} Ev; (37) 
2 2 s s + 1 4s( 1 - p) 

for c~ > 1 or c; > 1, 

ED == {(1 + p) (c; + ~~) + p2(c~ + c;)} Ev. 
s s + 1 2s( 1 - p) 

(38) 

These approximations for ED have essentially been obtained by taking weighted combi­
nations of the heavy-traffic and light-traffic results for ED and by making sure that the 
approximations are exact for the M/G/l case. Extensive numerical experiments have ~hown 
that (37) and (38) are excellent approximations for ED. 

Inserting these approximations for E D into the obvious relation 

EW 
P(W> 0):=­

ED' 
(39) 

we can obtain four different approximations for P(W > 0) corresponding to our approxima­
tions for EW in Section 2. 

NUMERICAL COMPARISONS 

Table 5 compares our approximation and the M/M/ s approximation with the exact 
values of the delay probability for some H~/ H~/ s queues with c~ = 2 and c; = 4. "New" in 
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Table 5: A Comparison of Approximations of the Delay Probability for HV HS/ s Queues 
(c; = 2, c; = 4). 

p I Method I s = 2 I s = 5 I s = 10 I s = 20 I 
0.5 Exact 0.4156 0.1950 0.0682 -

New 0.4489 0.2124 0.0630 0.0064 
M/M/s 0.3333 0.1304 0.0361 0.0037 

0.7 Exact 0.6536 0.4770 0.3072 0.1533 
N,~w 0.6963 0.5130 0.3195 0.1383 
M/M/s 0.4644 0.3778 0.2217 0.0936 

0.9 Exact 0.8871 0.8146 0.7355 0.6312 
New 0.9106 0.8449 0.7556 0.6312 
M/M/s 0.8526 0.7625 0.6687 0.5508 

Table 5 denotes the approximation of P(W > 0) obtained by combining (37), (38) and New 
for EW. Table 5 indicates that the new approximation is satisfactory even for such highly 
variable cases as H~/ H~/ s queues. Table 5 also indicates that the M/M / s approximation 
for P(W > 0) is not good enough for these cases. From the other numerical experiments, 
we see that New is much better than "M / M / s" except for c; = 1. 
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