You are what you include:

Large-scale evaluation of remote JavaScript inclusions

Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, <u>Steven Van Acker</u>, Wouter Joosen, Christopher Kruegel, Frank Piessens, Giovanni Vigna

Introduction: my USB stick

Introduction: browsers don't care

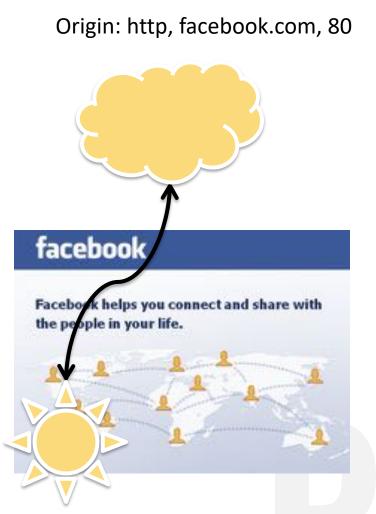
You are what you include:

Large-scale evaluation of remote JavaScript inclusions

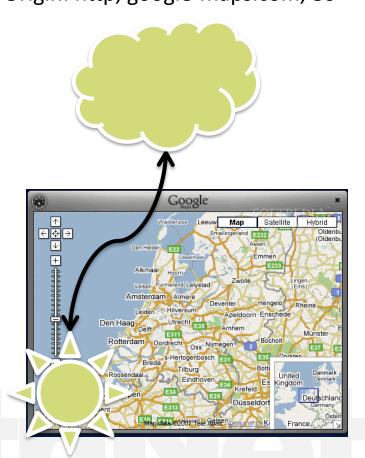
Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, <u>Steven Van Acker</u>, Wouter Joosen, Christopher Kruegel, Frank Piessens, Giovanni Vigna

Outline

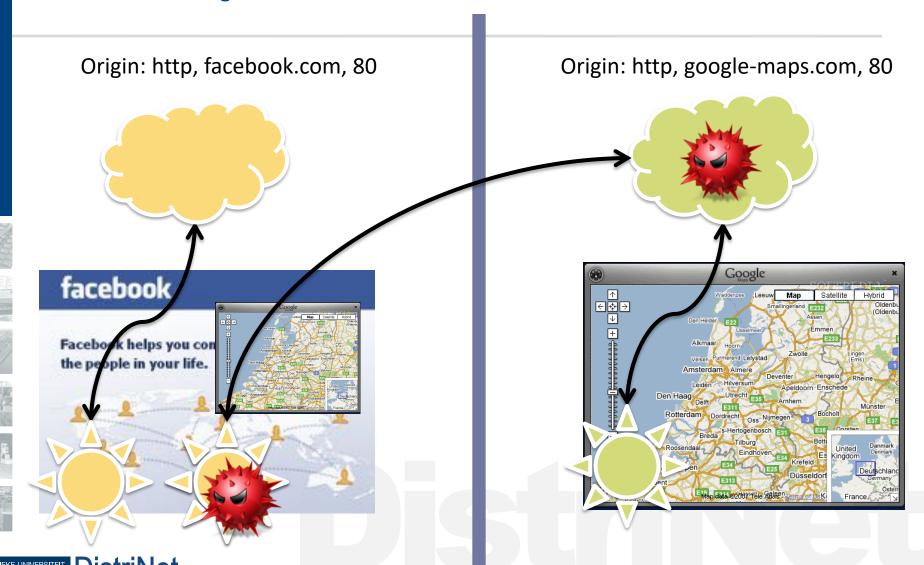
- JavaScript in a browser
 - -... and motivation for an experiment
- Our experiment
- Our results
 - → Some unsurprising results
 - → Some weirdness
- Countermeasures



JavaScript in the browser


Distriket

JavaScript in a browser: origins



Origin: http, google-maps.com, 80

JavaScript in a browser: inclusions

Motivation...

Our experiment

Distriket

Our experiment: questions

Given that remote JS inclusions happen...

... Should sites be trusting remote providers?

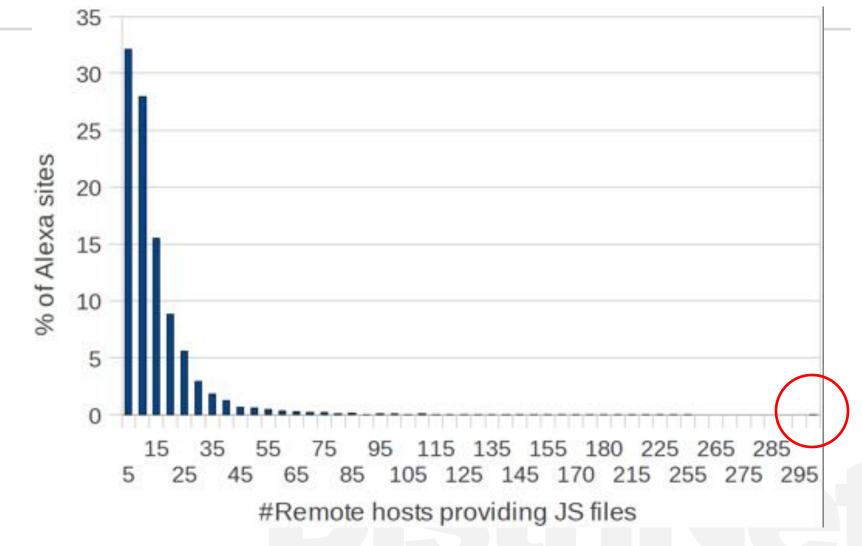
- Which third-party vendors do they currently trust?
- Are JS providers capable of securing their website? What is the quality of maintenance profile of each JS provider?
 - Could a provider be attacked as a way of reaching a harder-toget target?
- Are there attack vectors, in relation to remote inclusions, that we were not aware of?
- How can one protect his web application?
 - → Are coarse-grained sandboxes sufficient?

Our experiment: crawler

- Crawler requirements:
 - → Download webpages
 - → Log JavaScript inclusions
 - Execute JavaScript for dynamic inclusions
- HTMLUnit: JS-enabled headless browser in Java
- •Queried Bing for max 500 pages of Alexa top 10000

Our experiment: some numbers

- Crawled over 3,300,000 pages belonging to the Alexa top 10,000
- Discovered:
 - →8,439,799 remote inclusions
 - →88.45% of Alexa top 10k uses at least 1 remote JS library
 - →301,968 unique JS files
 - → 20,225 uniquely-addressed remote hosts

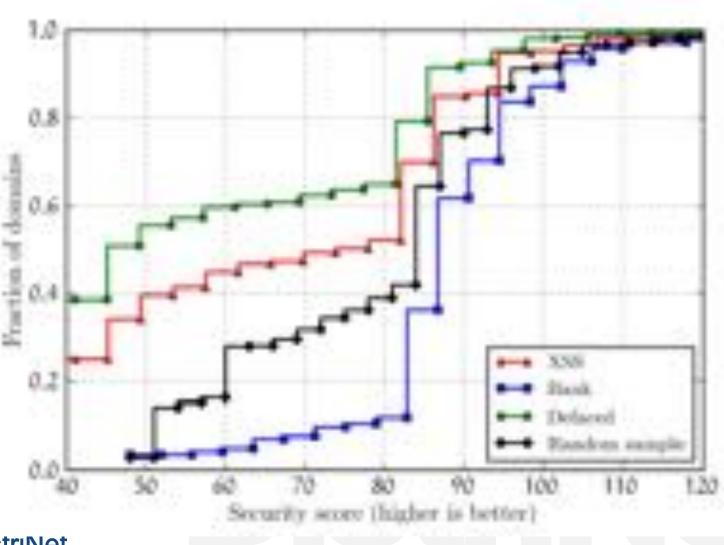


Results: unsurprisingly...

Results: how many remote hosts?

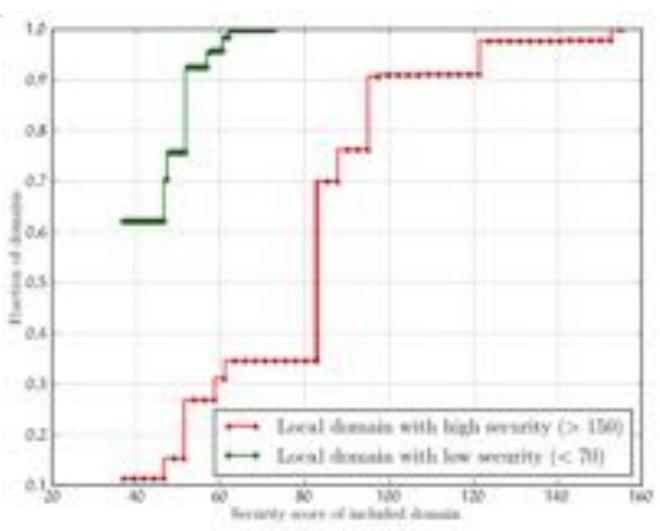
Results: Popular JavaScript includes

Offered service	JavaScript file	% Top Alexa
Web analytics	www.google-analytics.com/ga.js	68.37%
Dynamic Ads	pagead2.googlesyndication.com/pagead/show_ads.js	23.87%
Web analytics	www.google-analytics.com/urchin.js	17.32%
Social Networking	connect.facebook.net/en_us/all.js	16.82%
Social Networking	platform.twitter.com/widgets.js	13.87%
Social Networking & Web analytics	s7.addthis.com/js/250/addthis_widget.js	12.68%
Web analytics & Tracking	edge.quantserve.com/quant.js	11.98%
Market Research	b.scorecardresearch.com/beacon.js	10.45%
Google Helper Functions	www.google.com/jsapi	10.14%
Web analytics	ssl.google-analytics.com/ga.js	10.12%



Results: quality of maintenance?

- Assumption: Unmaintained websites are easier to attack
- QoM indicator comprised of these factors:
 - → Availability: DNS not expired, publicly-routable IP address
 - → Cookies (at least one):
 - HttpOnly?
 - Secure?
 - Path & Expiration?
 - Anti-XSS & Anti-Clickjacking headers?
 - → TLS/SSL implementation
 - Weak ciphers
 - Valid certificates
 - Strict Transport Protocol
 - Cache control when using TLS/SSL?
 - Outdated web servers?



Results: QoM in color!

Results: like attracts like

Results: weirdness!

Results: weirdness?

- In about 8.5 million records of remote inclusions, is there something that we didn't know?
- ■4 Things! ⓒ
 - Cross-user & Cross-network Scripting
 - → Stale domain-based inclusions
 - → Stale IP-based inclusions
 - Typo-squatting Cross-Site Scripting

Weirdness: Cross-user Scripting

- <script src=http://localhost/script.js>
 - →133 records were found
 - →131 specified a port (localhost:12345), always greater than 1024
 - → Attack:
 - Setup a web-server, listen to high ports, hack other users

Weirdness: Cross-network Scripting

- <script src=http://192.168.2.3/script.js>
 - →68 of them
 - →Same as before, but now you just need to be in the same local network
- Who is doing that?
 - →akamai.com
 - → virginmobileusa.com
 - →gc.ca (Government of Canada)

Weirdness: Stale IP-based remote inclusions

- What if the IP address of the host which you trust for JavaScript, changes?
 - → The including page's scripts must also change
 - →Do they?
- Manual analysis of the 299 pages
 - →39 addresses had:
 - a) Not changed
 - b) no longer provided JavaScript
 - a) In 89.74%, we got a "Connection Timeout"

Weirdness: Stale domain-based inclusions

- What happens when you trust a remote site and the domain of that site expires?
 - Anyone can register it, and start serving malicious JS
 - Equal in power to the, almost extinct, stored XSS
 - Try proving in court that someone hacked you with that
- ■56 domains found, used in 47 sites
 - → 6 were identified as special cases (TXSS)

Scared yet?

Weirdness: Typo-squatting XSS (TXSS)

- •Unfortunately... developers are humans
 - →<script src=http://googlesyndicatio.com/...>
- Typo-squatting
 - registering domains that are mistypes of popular domains
 - → Serve ads, phishing, drive-by downloads etc. to users that mistype the domain

Weirdness: TXSS examples found...

Mark Name and Advanced Day	Col. 1 (1) (1) (1)
Intended domain	Actual domain
googlesyndication.com	googlesyndicatio.com
purdue.edu	purude.edu
worldofwarcraft.com	worldofwaircraft.com
lesechos.fr	lessechos.fr
onegrp.com	onegrp.nl

	Googlesyndicatio.com (15 days)
Unique visitors	163,188
Including domains	1185
Including pages	21,830

Countermeasures

District

Countermeasures

- Problems with remote inclusions
 - → Never the visitor's fault
 - → A developer can mess up
 - Cross-user, cross-network and TXSS
 - →The remote host can mess up
 - Low security, expiration of domain names
- How to protect one's self?
 - Sandbox remote scripts
 - ii. Download them locally

Countermeasures: sandboxing

- Is it feasible?
- What are the current requirements of legitimate scripts?
- Study the top 100
 - Automatically study each script
 - JavaScript wrappers + stack trace
 - → Find out what sensitive resources they access
 - Cookies, Storage, Geolocation, Eval, document.write
 - → Is containment possible?

... sandboxing: Access to resources

JS Action	# of Top scripts
Reading Cookies	41
document.write()	36
Writing Cookies	30
eval()	28
XHR	14
Accessing LocalStorage	3
Accessing SessionStorage	-0
Geolocation	0

Coarse-grained sandboxing is useless here, legitimate scripts and attackers act the same way 😊

Countermeasures: local copies

- Study the frequency of script modifications
 - Discover overhead for administrator
- Top 1,000 most-included scripts (803)
 - Download every script three consecutive times and remove the ones that changed all three times
 - → Study the rest for a week
- 10.21% were modified
 - → 6.97% were modified once
 - → 1.86% were modified twice
 - → 1.83% were modified three or more

89.79% was never modified!

96.76% at most once

Conclusions

Conclusions

- Remote inclusions mean, almost unconditional, trust
 - → Think twice before including something from a remote host

Do **NOT**:

- → Include from 127.0.0.1 or private networks
- → Include from IP addresses
- → Include from stale domains
- → Include from typodomains
- → Include from questionable JS providers

Do:

- → Make local copies
- → Sandbox 3rd party JS if it is feasible
- → Have hope: sleep sound tonight

Thank you!

Questions?

