
Bionic

Code analysis, quality and
security overview

Christoph
July 26th 2017

2

stat /proc/self

• PhD on reflective OS architectures

• FOSS enthusiast (Linux fan since kernel 0.95)

• Tech support @ FraLUG (including making the coffee)

• IT Sec interests include:
– Social engineering

– Cognitive and behavioural psychology

– SDLC process optimizations and S/W quality

–Other assorted forms of witchcraft 

3

Overview

1. Scope

2. ISO 9126 metrics

3. Attack surface analysis

4. Other observations

4

Executive summary

• What is it?
–Android runtime environment (similar to libc in standard Linux

systems)

–Glue between kernel and remaining application stack (including
Java VMs)

• Why is it important?
– Basis for all applications – any security issues impact other userland

• What implication does this have?
–Attack surface analysis

–And mitigation

5

Android overview

6

Scope

• Assess Bionic code base:
–Against ISO 9126 maintainability aspects

– Identify high-level attack surface

–Additional findings based on further analysis

– Provide high-level mitigation advice

7

Assessment basis

• Tools:
– SonarQube

– RATS (Rough Auditing Tool for Security)

– Cppcheck

– Common sense and more than 30 years of software
development expertise

–Various other forms of dark magic 

• Codebase:
–As found on android.googlesource.com/platform/bionic.git

8

Summary

• Overall code quality:• Overall code quality:• Overall code quality:

● But:
● Some security risks due to

insecure coding practices
● Also many code smells
● Extensive use of legacy code

9

ISO 9126

• Internatonal standard for s/w quality evaluation

•Analysability
•Changeability
•Stability
•Testability

ISO 9126ISO 9126

ReliabilityReliability

EfficiencyEfficiencyMaintainabilityMaintainability

FunctionalityFunctionality UsabilityUsability

PortabilityPortability

10

Attributes of Maintainability

10

Maintain

Analyse Change Stabilise Test

Maintainability =
● Analysability: Easy to understand where and how to modify?
● Changeability: Easy to perform modification?
● Stability: Easy to keep coherent when modifying?
● Testability: Easy to validate after modification?

11

Simplified assessment model

Analysability X X

Changeability X X

Stability

Testability X

12

Volume

• Software Productivity:
– xLOC

– Function points (FPs)

–…

• Challenge:
– Expressiveness of different programming languages

–Approach: weigh xLOC with industry-standard
productivity factor

➢ Programming Languages Table

13

Volume (ctd.)

• Programming Languages Table:

Language Level Avg. # of LOC per FP

Perl 15 21

Smalltalk/V 15 21

Objective C 12 27

Haskell 8.5 38

C++ 6 53

Basic 3 107

C 2.5 128

Macro assembler 1.5 213

14

Volume (ctd.)

• Why this matters:
– Total cost

– Effort to rebuild overall code base

• Bionic volume metrics:
Unit #

Total LOCs 422,969

Files 3,981

Functions 5,597

Classes 9,336

Statements 63,664

15

Duplication

• Duplication of code reduces maintainability
– Substantial duplication implies high maintenance

costs

– Substantial duplication makes bug fixing harder

– Substantial duplication makes testing harder

16

Duplication (ctd.)

• Bionic duplication metrics:

Unit Duplication

Total 0.9%

Blocks 127

Files 49

17

Unit complexity

• Unit complexity is measured by McCabe’s Cyclomatic
Complexity
–Number of decision points (DPs) per unit

(method/function/file)

–McCabe, IEEE Transactions on Software Engineering, 1976

–Higher complexity makes units harder to test and change

• For C/C++/Objective C, increment DPs for:
function definitions, while, do while, for, throw statements, return (except if it is the
last statement of a function), switch, case, default, &&, ||, ?, catch, break, continue,
goto

18

Unit complexity (ctd.)

• Overview:

Cyclomatic complexity Risk estimation

1 - 10 Clear code, small risk

11 - 20 Complex, medium risk

21 - 50 Very complex, high risk

> 50 Not understandable,
testability issues, very high
risk

19

Unit complexity (ctd.)

• Bionic complexity metrics:

Unit Complexity

Function 3.4

Class 0.2

File 5.7

20

Conclusion

• Code analysis result: very good
– SQALE rating: A

– Est. technical debt: 17d

• But some security issues:

Unit Occurences

Vulnerabilities 1

Minor issues 74

Smells 1,634

(SQALE: Software Quality Assessment based on Lifecycle Expectations)

21

Attack surface analysis

• Good news:
–No major refactoring required

• Attack surface analysis:
–Only one major vulnerability

–Minor issues:
• Time of check / time of use issues

• Potential memory leaks

• Class initialization omissions

22

Attack surface analysis (ctd.)

• Attack surface analysis (ctd.):
– Smells: mostly string and buffer handling issues

– Primarily due to extensive reuse of legacy code

• Remedies:
– Extended code review

–Deploy static code analysis tools

– Fix coding issues

23

Attack surface analysis (ctd.)

• linker.cpp (#351): CWE-562, return of stack
variable address
static bool realpath_fd(int fd, std::string* realpath) {
 std::vector<char> buf(PATH_MAX), proc_self_fd(PATH_MAX);

 __libc_format_buffer(&proc_self_fd[0], proc_self_fd.size(),
"/proc/self/fd/%d", fd);

 if (readlink(&proc_self_fd[0], &buf[0], buf.size()) == -1) {
 PRINT("readlink(\"%s\") failed: %s [fd=%d]", &proc_self_fd[0],
strerror(errno), fd);
 return false;
 }

 *realpath = &buf[0];
 return true;
}

24

Attack surface analysis (ctd.)

• Typical smells:

─ libc/arch-mips/string/memcpy.c: no check on
len

─ libc/arch-arm/bionic/atexit_legacy.c: non-
constant format string

memcpy (void *a, const void *b, size_t len) __overloadable

static char const warning[] = "WARNING: generic atexit() called
from legacy shared library\n";

 __libc_format_log(ANDROID_LOG_WARN, "libc", warning);

 fprintf(stderr, warning);

25

Overall remedies

1. Reduce attack surface by eliminating
security risks (cf. previous slide)

2. Reduce complexity of selected modules

3. Reduce minor duplication by restructuring
selected code base portions

4. Identify large volume units and
restructure code base as applicable

26

Conclusion

• Sound code base despite legacy character

• Minimal attack surface requires no major
refactoring

• Minor issues can be addressed without much
effort

➢ Robust code base for remaining userland

27

Software sources

• Bionic source code:
android.googlesource.com/platform/bionic.git

• Sonarqube: www.sonarqube.org/downloads

• Cppcheck: cppcheck.sourceforge.net

• RATS: code.google.com/archive/p/rough-
auditing-tool-for-security/downloads

28

Discussion /
questions

29

Thank you!

© 2017 CC BY-SA

Christoph

monochromec@gmail.com

mailto:monochromec@gmail.com

