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Abstract The existing Multi-View Learning (MVL) is to discuss how to learn from
patterns with multiple information sources and has been proven its superior generalization
to the usual Single-View Learning (SVL). However, in most real-world cases there are just
single source patterns available such that the existing MVL cannot work. The purpose of
this paper is to develop a new multi-view regularization learning for single source patterns.
Concretely, for the given single source patterns, we first map them into M feature spaces by
M different empirical kernels, then associate each generated feature space with our previous
proposed Discriminative Regularization (DR), and finally synthesize M DRs into one sin-
gle learning process so as to get a new Multi-view Discriminative Regularization (MVDR),
where each DR can be taken as one view of the proposed MVDR. The proposed method
achieves: (1) the complementarity for multiple views generated from single source patterns;
(2) an analytic solution for classification; (3) a direct optimization formulation for multi-class
problems without one-against-all or one-against-one strategies.
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1 Introduction

Since the pattern is the dealt object of the classifier, it is important to consider the prior
knowledge of patterns in designing classifiers [13]. In practice, patterns can be obtained
from single or multiple information sources. If each information source is taken as one view,
accordingly there are two kinds of patterns, i.e. single-view patterns and multi-view patterns.
Each information source may induce one attribute set for patterns. Thus, single-view patterns
are composed of single attribute set and multi-view patterns are composed of multiple attri-
bute sets. Correspondingly, the learning on single-view and multi-view patterns can be sorted
into Single-View and Multi-View Learning (SVL and MVL), respectively. In the literature
[5,30], it has been demonstrated that co-training (one typical MVL approach) has a superior
generalization ability to its corresponding SVL for semi-supervised learning. Given patterns
that are composed of two naturally-split attribute sets (two views), co-training requires the
assumption that two views given the class are conditionally independent. Here, the indepen-
dence assumption is guaranteed by the patterns composed of two naturally-split attribute sets.

Regularization learning [7,8,10,17,39] is viewed as one effective method for improving
the generalization performance of classifiers. It has a rich history which can date back to the
theory of ill-posed problem [27,39,40]. By incorporating the right amount of prior infor-
mation into the formulation, regularization techniques are shown to be powerful in making
the solution stable [7,19]. Regularization theory is introduced to the machine learning com-
munity on the premise that the learning can be viewed as a multivariate functional fitting
problem, and also is successfully applied to the classifier learning [7,32].

The goal of this paper is: (1) to develop a new supervised MVL for single-view patterns;
(2) to incorporate the proposed MVL in regularization learning for a superior classification
performance, whose underlying motivations and contributions are as follows:

e The proposed MVL can deal with single-view patterns without the independence assump-
tion. In most real-world applications, it is not well satisfied for the independence assump-
tion of the attribute sets since there are only single-view patterns available. In that case, the
existing MVL can not effectively work [2,49,50]. However, it is this fact that motivates
us to develop a new MVL on single-view patterns.

e The proposed MVL adopts multiple kernels. It is well-known that the types and the param-
eters of the kernels must be selected in practice. For a given application, there may be
multiple kernels as the candidates which can possess different types and parameters. The
kernel selected from the candidates can yield a model with good performance. Such a
selection, equivalently to model selection, can usually be achieved by some methods of
optimizing kernels such as Cross Validation (CV) or Leave-One-Out (LOO) [6,26]. How-
ever, these methods are computationally expensive when dealing with a large number of
kernel types or parameters. Even the kernel selected by these optimization methods also
can not be guaranteed optimality in some cases. Further, since the selected kernel is single
and fixed, it can only characterize the geometrical structure of some aspects for the input
data and, thus, is not always a good fit for the applications which involve multiple, het-
erogeneous data sources, which is validated in the literature [37]. To this end, a method
based Multiple Kernel Learning named MKL was proposed [4,11,16,20,21,31,44]. They
showed the necessity to consider multiple kernels or the combination of kernels rather
than a single fixed kernel. Generally, MKL tries to form an ensemble of kernels so as to
yield a good fit for a certain application. It has been proven that MKL can offer some
needed flexibility and well manipulate the case that involves multiple, heterogeneous data
sources [1,3,37]. Since MKL considers multiple kernels, it can be effectively employed
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for the heterogeneous data sources under the common framework of kernel learning. To
a certain extent, MKL also relaxes the model selection about kernels. Thus, we adopt
multiple kernels in the multiple view learning framework here.

e The proposed MVL first adopts multiple empirical kernel mappings [35,45] for the given
single-view patterns. Then it synthesizes different mappings so as to achieve the comple-
mentarity among the generated views and get a superior classification performance to the
original SVL, where each associated empirical kernel mapping is taken as one view of the
original single-view patterns. Each view is expected to be able to exhibit some geometrical
structure of the original patterns from its own perspective such that all the views can com-
plement each other. In practice, the complementarity among multiple views is achieved
by the following so-called Inter-Function Similarity Loss term R;psy [44]:

2
M

M
Rips(x) =D | i) =D e fjx) | ()

=1 j=1

where x € R" is a given single-view pattern, f; is a classifier learnt from the jth kernel
mapping space of the original patterns, and a; > 0, Zﬁwzl aj = 1, a; denotes the impor-
tance of the corresponding view. It can be found that for a given pattern, R; sy expects
to make all the M classifiers f; achieve as much agreement on their outputs as possible.

e The proposed MVL adopts our previous work [47] of Discriminative Regularization (DR)
as f; in the term R;pgy, and thus is named as Multi-view Discriminative Regulariza-
tion (MVDR). MVDR inherits the advantages of DR and owns: (1) an analytic solution
for classification; (2) a direct optimization formulation for multi-class problems without
one-against-all or one-against-one strategies. Meanwhile, since the proposed MVDR con-
siders multiple views generated from the original pattern and achieves the complementarity
among these views, it has a superior classification performance to the original DR, which
is validated in the experiments of this paper.

e The proposed MVL is applied into supervised problems and experimentally shows that
a weaker correlation between the views of the proposed method leads to a performance
improvement. Most of the existing MVL works along semi-supervised problems [5,28,30].
But this paper changes it and applies the MVL technique into supervised problems. Mean-
while, the literature [43] has theoretically and experimentally given that if the base learn-
ers of co-training style algorithms have enough differences in semi-supervised cases, an
improved performance can be got. This paper extends the similar conclusion of the litera-
ture [43] to supervised cases and experimentally gives that a weaker correlation between
the views can lead to a superior performance.

This paper is organized as follows. Section 2 describes the related work in MVL. Sec-
tion 3 reviews our previous work DR. The architecture of the proposed MVDR is given in
Sect. 4. Section 5 reports the experimental results on some benchmark data sets and shows
the feasibility and effectiveness of the proposed MVDR. Finally, the conclusion is given.

2 Related Work

One typical example of the existing MVL is web-page classification [5], where each web page
can be represented by either the words on itself (view one) or the words contained in anchor
texts of inbound hyperlinks (view two). Blum and Mitchell [5] design a co-training algorithm
on the labeled and unlabeled web pattern sets composed of the two naturally-split views. For
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the co-training style algorithm, two classifiers are incrementally built with the corresponding
views on the labeled web set. On each cycle, each classifier labels the unlabeled webs and picks
those with the highest confidence into the labeled set. The co-training process repeats until the
terminated condition is satisfied. It is well-known that the co-training algorithm requires two
assumptions: (1) the compatibility assumption that the base classifiers in each view farthest
agree on labels of web patterns and (2) the independence assumption that the different views
given the class are conditionally independent. But in most cases, it is hard to satisfy the inde-
pendence assumption due to the nonexistence of naturally-split attribute sets (naturally-split
views) such as the single-view patterns. Thus Nigam and Ghani [30] experimentally explore
the co-training algorithm with or without the independence assumption. They demonstrate
that the co-training algorithm with a natural split of the attributes outperforms the one without,
and further propose a semi-supervised, multi-view algorithm co-EM that is a probabilistic
version of co-training and outperforms co-training. Moreover, Muslea et al. [28] incorporate
active learning in co-EM, and present an algorithm named co-EMT that outperforms both
co-training and co-EM and has a robustness in view-correlation cases to some extent.

Although both co-EMT and co-EM have the superior generalization to co-training, all
these algorithms can not effectively work on the patterns with the non-naturally split attri-
butes, especially the single-view patterns. In order to solve the problem, Zhang et al. [49]
design an algorithm called Correlation and Compatibility based Feature Partitioner (CCFP)
to automate multi-view detection, where the attributes of patterns can be partitioned into
two views that are low correlated, compatible and sufficient enough. But, as the authors
themselves said in [49], CCFP has two limitations: (1) the two views must have the same
number of attributes and certain correlation; (2) it is hard to get the optimal parameters of
CCFP. Farquhar et al. [15] present a process named SVM-2K that combines Kernel Canonical
Correlation Analysis (KCCA) [18] by Support Vector Machine (SVM) [42] on two views.
SVM-2K utilizes the multi-kernel trick on the single-view patterns, where for the same
pattern the two views are generated through two feature projections ¢4 and ¢p with their
corresponding kernels k4 and kp. However, due to SVM itself, SVM-2K also suffers from
similar problems such as the scalability to the number of the patterns and time-consuming
Quadratic Programming (QP). On the other hand, rather than dealing with the single-view
patterns themselves, the democratic co-learning [50] runs different algorithms on the sin-
gle-view patterns, whose motivations are that different learning algorithms yield different
inductive biases and that better performance can be made by the voted majority. However,
in the democratic co-learning, how to select those base learning algorithms is still a problem
due to lack of a measurable selection criterion.

Compared with CCFP, SVM-2K and the democratic co-learning, the proposed MVDR has
the following advantages: (1) it does not need to split the attributes of the original single-view
patterns but just maps the original single-view patterns into M feature spaces with M empir-
ical kernels, respectively; (2) it can achieve the complementarity among the so-generated
feature spaces through introducing the term R;rgy ; (3) it employs our previous work of DR
as the base learner in the individual feature spaces, and thus owns a nice analytic solution
and a direct optimization formulation for multi-class problems.

3 Discriminative Regularization
It has be demonstrated that the traditional regularization learning usually just considers

one side of classification problems. Regularization Network (RN) [19] only emphasizes
the smoothness of the classifier, and does not sufficiently incorporate the prior intra-class
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and inter-class information into its formulation which is vital for classification. Generalized
Radial Basis Function Network (GRBFN) [32], as an approximation to RN, actually just
incorporates the intra-class information generated from the clusters into the traditional reg-
ularization learning. But, GRBEN still partially neglects the inter-class information which
is crucial for classification. SVM uses the hinge-loss function and thus emphasizes the prior
inter-class discriminative knowledge more than GRBFN. Furthermore, Regularized Least
Squares (RLS) method [33] is established by minimizing a regularized function directly in a
Reproducing Kernel Hilbert Space (RKHS). RLS is proved to have a similar performance to
SVM [48]. However, both RLS and SVM do not take the intra-class information into account
yet and thus do not sufficiently use the prior data structural knowledge, which may influence
classification effectiveness to some degree. Discriminative Regularization (DR) [47] was
proposed to improve the traditional regularization for classification, but does not change the
original formulation. DR directly introduces the prior not only intra-class but also inter-class
information into the objective function as discriminative knowledge [47].

Suppose that we are given the binary-class problem {(x;, yl-)}lN: | S R" x {—1, 41}, where
y; is the class label of the training pattern x;. The linear discriminant function of DR is given
as follows

f) =wlx+b, )

where w € R" is the weight vector and b € R is a bias. w and b is optimized by the following
objective function

min —

wib 2 [ (wT"" + b)]2 + %wT [nS5 + (n— DSp | w, 3)

Mz

where

N T
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Ny is the number of the kth class patterns, xi(k) denotes the ith pattern of the kth class, X’
denotes the average pattern of the kth class, and 7 is the parameter that regulates the relative
significance of the intra-class compactness versus the inter-class separability, 0 < n < 1.
The second term of the formulation (3) is exactly called as Discriminative Regularization
Term that contains both the prior intra-class and inter-class information.

It should be stated that both Sy, and S, are much similar to the well-known “within-class
scatter matrix” and “between-class scatter matrix” in Linear Discriminant Analysis (LDA),
respectively [24]. Hence actually, the regularization term in DR is naturally coincident with
the formulation of Maximum Margin Criterion (MMC) [23]. Although DR is a classifier
learning method rather than traditional dimensionality reduction, i.e., the optimized w is
actually the weight vector in the classifier functional rather than the projection vector, DR
more likely provides us a brand-new viewpoint of combining regularization with supervised
dimensionality reduction methods effectively. The general goal of supervised dimension-
ality reduction methods, such as LDA and MMC, is to find an orientation in which the
projected samples are well separated [12], which is much similar to the intuitive motivation
in DR. Hence through introducing these methods into the regularization framework as a
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regularization term, DR virtually provides a general way to incorporate the prior infor-
mation into the formulation of designing a new classifier, which extends the tradi-
tional regularization to classification. The detailed description about DR can be found in
[47].

4 Multiple Views of Discriminative Regularization

In the proposed MVL, given the single-view training patterns {(x;, y,')}fv= 1
R"x{Cy, ..., C.}, we can map each pattern x; from the input space X into M feature spaces
{]—'ln’}l"i1 with M kernels, i.e., ; : X — ]—'l'”,l = 1,..., M. Each generated feature space
Flnl has n; dimension. The aim of the proposed MVL is to use all the M generated feature
spaces and achieve the complementarity among all the feature spaces.

In the literature [35,36], the mapping & also called the Implicit Kernel Mapping (IKM)
is implicitly represented by specifying a kernel function as the inner product between each
pair of samples in the feature space. For the sample set {x; }lN: 1» X denotes the N x n sample
matrix where each row is the vector x iT. K = [ker;j]nx N denotes the N x N kernel matrix
where kerjj = ®(x;)-®(x;) = ker(x;, x;). K is asymmetrical positive-semidefinite matrix.
Conversely, the mapping & in this paper, is given in an explicit form as describe in [35,45].
If the rank of K is r, the kernel matrix K can be decomposed as

KNxN = QerArerZXN, (4)

where A is a diagonal matrix consisting of the r positive eigenvalues of K, and Q consists
of the corresponding orthonormal eigenvectors. Then, the explicit mapping also called the
Empirical Kernel Mapping (EKM) in this paper, is given as

¢ X - F

x = A2 ke (x, x1), . .., ker (x, x)1T . ®)

Let B = K QA~'/2, and then the dot product matrix of {®¢(x;)}Y_, generated by EKM can
be calculated as

BBT = KQA™'2A120T Kk =K. (6)

Equation 6 of EKM is exactly equal to the kernel matrix (4) of IKM. Thus the mapped
samples, respectively, generated by EKM and IKM have the same geometrical structure. In
[35,45], it is shown that comparing EKM with IKM, the former is easier to access and easier
to study the adaptability of a kernel to the input space than the latter. That is why we select
EKM here.

This paper generates M different feature spaces with M EKMs, where each feature space
is taken as one view of the given training patterns. Each view only shows one-facet structural
information of the original patterns. Thus, the learning in one certain feature space might be
justlocal or partial. The proposed MVL is expected to employ all the generated feature spaces
and complement all the individual learnings in M feature spaces. Such a complementarity
in the proposed MVL can be achieved through utilizing the prior knowledge in the training
patterns, which is also validated in the literature [22]. It can be found that though x; can be
mapped into different feature patterns {®¢ (xi)}lnil @y (xi)}lﬁi1 still share a common class
label y;. Therefore, denote f; as the classifier learnt from the /th feature space F;, and then
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the outputs of all the classifiers { fl};‘i ; on x; should achieve as much agreement as possible,
which is here characterized by the Inter-Function Similarity Loss term

2
M

M
Rirse =D | fitxi) = D e fj(x)
j=1

=1
M

o >0, ZO[J‘ =1.
j=1

DR is used to construct the classifier f; in each view F;. Further, we will give the formulation
of the proposed MVL called MVDR in the next section.

4.1 Binary-Class Problem

This section gives the formulation of the proposed MVDR for binary-class problem. The orig-
N
inal single-view patterns {(x;, yi)}., € R" x {—1, 41} are mapped into {{d)f (x,')}lﬂi1 }

i=1 = :

=1

with M empirical kernels as shown in (5). The classifier f; of each view ®{ in the propolsed
MVDR has the linear formulation

fix) = w] O] (x) + by @)
as in DR. Then, the decision function of MVDR is formed as
M
F) = o [w] ®f0) + b, @®)

=1

where ; > 0, Zlﬁil o = 1.
As aresult, the optimization problem of MVDR is characterized as below

glil? J = Remp + Rpr + AR/FsL, ®
1,01

where Repp, Rpr are the empirical risk term and the discriminant term of M views, respec-
tively, and Rypgy is the inter-function similarity loss term. Repp, Rpr, and Rjrsp are,

respectively, defined as

M N

1 2
Remp =5 3 ‘ [yi - (wfﬂbf(xn +bz)] : (10)
=1 i=1
1| & M
T ol T ol
RDRZE nZwl Swwl—i—(n—l)Zwl Sbw1:|, (11)
=1 =1
| NoM u 2
RirsL = 3 Z [w,Tqu(xi) +b[] — Zaj [wJTCD;(xi) —|—bj] , (12)
i=1 =1 =1
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where

S0 301 () o () (01 () - )’
%(v( ) o5 () (9 () -1 (=)’

®7(), w; € R", by € R. Both Reyp and Rpg characterize the M DR learnings in their
corresponding feature spaces. R;rsy achieves the complementarity among the M DRs. For
conveniently processing w; and by, we reformulate R, Rpg, and Ry gz in matrix form:

i M"’ i MN

Remp = % (v- XTu)T (v =XTu) + ?YTY, (13)

1
Rpr = EuT [nSS + (n — 1)Sg ] u, (14)

M
T
Ripsi = Z( 7 X0 = u” AX) (u] X, — u” AX)

N = N\

(uTXXTu + Mu” AXXT Au — 2uTXXTAu), (15)
where

Y=y, ..ol
T
uzz[wf,bz] ,

T
T T
u:[ul,...,uM] ,

A is a diagonal matrix with its diagonal elements in the sequence being

all a’f"H, ..,a,l al"’-'_l,...,a}w a"MMH,
X, = |:d>f(x1) q)f(xN)i|
=14 1 ,

X = [Xl;...;XM].

Denote X = [z1, ..., zn], then

o LSS (00 (6 )
:Z‘EZ‘(Z" _Z<>)(Zi _Z(>)
T
Se = Z Z ( * _ z(”)) (E(lo _ 5(;7))

k=1 p#

Thus, to get the minimizer of the objective function J in the Eq. 9, we make the gradient of

J with respect to u = [ulT, R uL]T (ul = [wlT, bl]T) be zero and get
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dJ  ORemp , ORpR ORIFsL
. A
ou ou + ou + ou

=0. (16)
Then, the Eq. 17 can be induced through settling the Eq. 16 as following
[T+ DA+ S, + (1 — DSy + AMAAA — L (AA + AA)}u = XY, (17)

where A = XX”'. An analytic solution to the u can be obtained.

4.2 Multi-Class Problem

In the c-class problem (¢ > 2), we adopt the vector-labeled outputs that can make the compu-
tational complexity independent of the number of classes and require no more computation
than a single binary classifier [14]. Furthermore, Szedmak and Shawe-Taylor [38] presents
that this technique of the vector-labeled outputs does not diminish classification performance
but in some cases can improve it, relatively to one-against-one and one-against-all for multi-
class problems. Therefore, this paper codes the class labels with the one-of-c rule. If x;
belongs to the kth class, then its label y; = [0...1... 017 e R, where the kth element is 1
and the other elements are 0. Then the classifier (8) of the proposed MVDR for the c-class
problem can be formulated as

M
Fe) = > o [Wof@) +1y], (18)
=1

where W; € R"*¢ b; € R¢. Correspondingly, the objective function of the proposed MVDR
for the c-class problem is formulated as

min J = Remp + Rpr + ARiFsL, 19)
Wi.b;
where
1 v\ T
Remp = Ell’ |:(Y—U X) (Y—U X)i|, (20)
1. - -
Rpr = 3 [7S5 + (m—DS;]. 2y

1

0|

M
T
Rirst E tr [(U[TXI - UTAX) (U,TXI - UTAX) ]
I=1

(22)

1
5 (UTXXTU + MUT AXXT AU — 2UTXXTAU),
tr[-] is a matrix trace operation. In this case,

Y=[y,....yn] € RN, y; € R,
T T
U:[U{,...,U};] , Ulz[W,T,bz] :
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Table 1 Algorithm MVDR

Input: {x;, y,-}lN:l; the M candidate kernels {kerl (xi, Xj)}lﬂil

Output: the solution in the binary problem: wy, b; (the multi-class problem: Wy, b;), [ =1... M
.. . N

1. Explicitly map {)ci}iN:1 into {@‘i(xi), €T R <I>§’W(x,-)}i:1

by M kernels as shown in (5);

T T
2. Setu = [u]T, A “1{4} Jup = [wlT, b[] (the multi-class problem :
T T
u=[uf..uf] u=[wE] ),
then u (U) can be got through (17) (the multi-class problem: (24)).

both X and A follow the definition of the binary-class problem. Denote X = [z, ..., zx]
again, then

_ c 1 Ni T
So= 2 4 2 (27 =20) U (50 -2),
=1 "k =1
¢ T
=33 (zac) _ z(p)) vu’ (;k) _ Z(”)) .

k=1 p#k

Similarly, to get the minimizer of the objective function J in the multi-class problem (19),
we zero the gradient of J of (19) with respect to U = [UIT, e, UAT,I]T (U; = [WZT, b[]T)
and get

aJ oR oR JR
97 _ emp + DR +a IFSL
oU oU U oU

=0. (23)
Then, the Eq. 24 can be induced through settling the Eq. 23 as following

[+ DA+ 0S5 + (i — DSE] + AMAAA — AM(AA + A} U =XYT,  (24)
where

A =XXT,
c 1 Ny T
® _ =0 (O _ =k
S;:ZFZ(ZI‘ —z())(zi —z()) ,
=1 ko
¢ T
ss=>3> (E(io _ z(p)) (5(10 _ ;p)) .

k=1 p#k

Thus, we can obtain an analytic solution to the weight matrix for classifier of the proposed
MVDR in the multi-class problem.

Table 1 lists the procedure of the proposed MVDR in both binary and multi-class prob-
lems. From this table, it can be found that the proposed MVDR has two advantages: (1)
an analytic solution to the optimization problem; (2) a direct optimization formulation for
multi-class problems without one-against-all or one-against-one strategies.
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5 Experiments

The used single-view patterns in our experiments are the synthetic data and UCI data sets

[29], respectively. The used candidate kernels for all the implemented algorithms are: linear

llxi =113
202

selected from {0.01, 0.1, 1, 10, 100], o is set to the average value of all the /;-norm distances

kernel ker (x;, x;) = xiij; RBFkernel ker (x;, x;) = exp (— ) whereo = va, vis

lx; —xjll2, i, j = 1... N asusedin [41]; and polynomial kernel ker (x;, x;) = (x x; + 1)d
where d is selected from {2, 3, 4, 5}, respectively. Without any prior knowledge, the param-
eter 7,/ = 1... M of the proposed MVDR is set to ﬁ, i.e., each view owns the same
importance. The range of the parameter n for DR is {0.001, 0.01, 0.1, 0.5, 0.7, 0.99}. The
parameter A for MVDR is from 1073 to 10% with each step by multiplying 10. The classifi-
cation performances of all the algorithms here are reported by Monte Carlo cross validation
(MCCV) [46] that randomly splits the pattern set into two parts (the training and testing sets),
and then repeats the procedure 7 times. Here, T is set to 10.

5.1 Synthetic Data

Figure 1 demonstrates the complementarity of the proposed MVDR on the synthetic data
sets, where the data in two classes (‘o” vs. ‘+’) appear as two banana shaped distributions.
The data are uniformly distributed along the bananas and are superimposed with a normal
distribution with standard deviation in all directions. Figure la—c give the boundaries of
DR with linear, polynomial, and RBF kernels in the synthetic data, respectively. In contrast,
Fig. 1d gives the boundary of the proposed MVDR with the same linear, polynomial, and
RBF kernels as those used in Fig. 1a—c. Furthermore, the training and testing accuracies are
labeled in the right-bottom corners in their corresponding sub-figures.

From this figure, it can be found that: (1) the proposed MVDR has a more accurate deci-
sion boundary that well sketches the real contour of the ‘+’ patterns; (2) DR with the linear
kernel clearly gives an under-fitting decision boundary that only gives a general trend of
the data distribution; (3) DR with the polynomial or RBF kernels has a better classification
performance than DR with the linear kernel respectively, but still fails in classifying some
certain patterns that lie in the boundary area; (4) the proposed MVDR employs multiple
kernels and exhibits the best classification accuracy.

Further, Fig. 1a—c showed the decision boundaries for linear, polynomial and RBF ker-
nels while Fig. 1d showed the decision boundary combining the above three. Some ‘4’
samples are to the left of the decision boundary for all linear, polynomial and RBF kernels
in Fig. la—c. That is to say, none of the three kernels can learn these ‘+’ samples well.
However, these samples were to the right of the boundary in Fig. 1d where the three kernels
were combined. To analyze the reason, it should be stated that the classifier functions of DR
with linear, polynomial and RBF kernels in Fig. la—c are different from those of MVDR
with the combination of linear, polynomial and RBF kernels in Fig. 1d due to the difference
between the solutions of DR and MVDR. As stated in Sect. 4, the proposed MVDR is not
simply combined by the separate DR. The W/, b;, [ = 1 ... M in the MVDR are optimized
in one learning processing and play an influence for each other. Therefore, although none
of the three kernels in DR can learn these ‘4’ samples well, these ‘+’ samples can also be
learned right by MVDR in Fig. 1. That is to say that the three sub-classifiers in MVDR are
different from that the three classifiers of DR. It is thus not contradictory to the assumption
that these kernels in MVDR are complementary. To further validate the proposed MVDR, we
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Fig.1 The discriminant boundaries in the two-banana data set: a DR with linear kernel; b DR with polynomial
kernel; ¢ DR with RBF kernel; d MVDR with the same linear, polynomial, and RBF kernels as (a)—(c)

will compare it with DRMV that separately carries out the M DR algorithms in the M feature
spaces, respectively, and then combines their outputs by the majority voting technique in the
next section.

5.2 UCI Data Sets
5.2.1 Classification Performance

This section implements the proposed MVDR on UCI data sets to further validate its
effectiveness. Simultaneously, this section also carries out the DR algorithm based on the
single kernel and two kinds of combinations (denoted as DRMV and DRFE, respectively).
The DRMYV separately carries out the M DR algorithms in the M feature spaces, respec-
tively, and then combines their outputs by the majority voting technique. The DRFE first
concatenates the M transformed feature vectors into one single ensemble vector, and then
implements the DR algorithm with the ensemble vector. In addition, the multiple kernel
learning algorithm denoted as MKL [34] is also compared with the proposed method. All the
implemented algorithms MVDR, DRFE, DRMV and MKL [34] adopt the same empirical
kernels where M is set to 3 or 5 on the used data sets. The results of the algorithm DR are
given in the optimal kernel case through MCCV. We first give the experimental results of the
DR with different kernels (views) and SVM with RBF kernels. We list the results in Table 2.
From this table, we can find that the proposed MVDR has a significant superiority to the

@ Springer



A Novel Regularization Learning for Single-View Patterns 171

Table 2 Classification accuracy comparison between the algorithms MVDR, DR, and SVM

Data sets DR MVDR SVM
Linear poly RBF combination RBF
Sonar 0.7231 0.6481 0.7296 0.7639 0.7333
ITono. 0.6393 0.6707 0.8033 0.9047 0.9426
Hous. 0.7511 0.7819 0.7511 0.9267 0.9239
Echo. 0.6045 0.6239 0.6134 0.6298 0.8776
Shut. 0.5714 0.6285 0.6142 0.6714 0.5714
Glas. 0.7295 0.6514 0.7733 0.8695 0.8761
Soy. 0.9956 0.9956 1 1 0.9173
Der. 0.2888 0.4361 0.2988 0.4716 0.4733
Lens. 0.2923 0.3384 0.3461 0.3769 0.5846
Cmc 0.4088 0.4517 0.4774 0.5064 0.5168
Wine 0.3103 0.6896 0.5745 0.9056 0.8443
Lung. 0.4733 0.4 0.48 0.5066 0.4133

Bold values indicate the best accuracy of the algorithms on each data set

1
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0.4
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Classification accuracy

0.2

0.1

0

1 2 3 4 5 6

Sonar lono. Hous. Echo. Shut. Glas. Soy. Der. Lens. Cmc Wine Lung.

Fig. 2 Classification accuracies of the algorithms: MVDR, DR, DRMV, DRFE, MKL [34]

single DR in terms of classification. Compared with SVM with RBF kernels, the proposed
MVDR succeeds in some datasets (Sonar, Hous., Shut., Soy., Wine, Lung.) but fails in some
datasets (Iono., Echo., Glas., Der., Lens., Cmc). Thus, our future work is to extend our method
into the SVM framework.

Figure 2 shows the classification accuracies of these implemented algorithms on the
data sets that are Sonar, Echocardiogram, Ionosphere, House-votes, Shuttle-landing-control,
Glass, Soybean-small, Dermatology, Lenses, Cmc, Wine, Lung-cancer (denoted for short as
Sonar, Iono., Hous., Echo., Shut., Glas., Soy., Der., Lens., Cmc, Wine, Lung., respectively).
Figure 2 gives the histogram of the classification results. The higher the histogram is, the
better its corresponding algorithm is. Then, it can be found that: (1) the proposed MVDR is
superior to DR on all the used data sets; (2) the DRFE or the MKL [34] learning take the sec-
ond or third place, and both are worse performance than the proposed MVDR in most cases.

In addition to reporting the average classification accuracies, we also perform the paired
t-test [25] by comparing the proposed MVDR with the other algorithms DR, DRFE, DRMV
and MKL [34]. The null hypothesis Hy demonstrates that there is no significant difference
between the mean number of the samples correctly classified by the proposed method and
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Fig. 3 The p-value as a function of the kernel alignment (KA) value on the used data sets

Table 3 Running time (in second) comparison between the algorithms MVDR, DR, DRMV, DRFE, MKL

(34]

Data sets MVDR DR DRMV DRFE MKL
Sonar 6.643 0.249 0.0749 0.5907 221.528
Echo. 0.1687 0.0124 0.038 0.1265 0.0953
Iono. 3.1548 0.145 0.6517 2.3487 68941.02
Hous. 5.7984 0.1406 0.6424 5.1593 36955.45
Shut. 0.0048 0.0015 0.0046 0.0015 0.0513
Glas. 0.0844 0.0438 0.0596 0.0656 2967.32
Soy. 0.0313 0.0015 0.0048 0.0139 0.2562
Der. 1.4252 0.1282 0.3892 1.5953 1.1874
Lens. 0.0015 0.0015 0.0016 0.0047 0.0406
Cmc 82.7547 21.9451 37.3142 136.1033 8.531
Wine 0.1124 0.000413 0.0265 0.0672 0.2045
Lung. 0.7283 0.00020 0.0545 0.614 0.147

the other algorithms. Under this assumption, the p-value of each test is the probability of a
significant difference in the correctness values occurring between the two testing sets. Thus,
the smaller the p-value, the less likely that the observed difference results from identical test-
ing set correctness distributions. The threshold for the p-value is set to 0.05. Figure 3 gives
all the p-values of the compared algorithms on the used data sets. From this figure, it can
be found that: (1) the null hypothesis Hy is rejected between MVDR and DR on 7 data sets,
i.e., MVDR is significantly better than DR on these data sets; (2) except DRFE, Hj is also
rejected between the proposed method and DRMV, MKL [34] on most data sets used here.

5.2.2 Running Time

Table 3 reports the training time of the proposed MVDR and those compared algorithms (DR,
DRMYV, DRFE and MKL [34]) with their optimal parameters in 10 runs. All the computa-
tions are performed on Pentium IV 2.80 GHz processor running Windows 2000 Terminal and
MATLAB environment. From Table 3, although the proposed MVDR has a longer running
time than DR on most of the data sets due to multiple kernels used, the proposed method has
a significantly shorter running time with respect to the MKL [34] on most cases. Further,
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compared with both DRMV and DRFE, it can also be noted that the proposed MVDR has a
competitive efficiency.

5.3 Further Analysis of Multiple Views

The existing MVL such as co-training requires the conditional independence assumption
well satisfied where the patterns are obtained from multiple sources [5]. However, Wang
and Zhou [43] give a deep discussion on co-training style algorithms in semi-supervised
problems, and theoretically demonstrate that the base learners with enough differences can
lead to a superior performance in co-training style algorithms. They explain why co-training
algorithms can succeed in some cases without two views. This paper extends the work of
Wang and Zhou [43] and gets a similar conclusion on supervised problems. In the proposed
algorithm MVDR, on the one hand only the single-view patterns are available. On the other
hand, the generated views are induced from the multiple empirical kernel mappings. Thus
we adopt kernel alignment [9] as a good correlation measure between the induced M views
to explore the reasons why the performance of the proposed MVDR can be improved. The
definition of kernel alignment for two views is given as follows:

Definition (Kernel Alignment [9]) The alignment between the Gram matrices K; and K
(one empirical kernel can correspond to one Gram matrix) is

tr (KTK;
Aij = (K7 K) : (25)
Jir (KTKj)ir (KTK))
Then the alignment between M (M > 2) views is given as
) M M
A= —— Aji. 26
M(M—I)Zz Y (26)

i=1 j#i

The A value can be taken as the cosine value of the angle between the Gram matrices, it
satisfies —1 < A < 1. Here, since the Gram matrix K is positive semi-definite, 0 < A < 1.
Intuitively, the bigger the value of A, the more correlated the matrices and also the more
correlated the corresponding views. If A;; = 1, K; = §K;, & € R.

One ‘¢’ (‘x’ or ‘[7") in Fig. 3 denotes on one certain data set, what the p-value between
MVDR and one certain algorithm is, and what its corresponding A value of MVDR is. From
the left sub-plot of Fig. 3, it can be clearly found that the A values of those points (p-value
<0.05) are most in the range from 0.25 to 0.55. In other words, the weaker correlation between
the views leads to the performance improvement in the proposed MVDR. The similar result
can also be found in the right sub-figure of Fig. 3. A further work about the relationship
between the kernel alignment and MVDR will be implemented in future.

6 Conclusion
The contribution of this paper is to develop a novel MVL named MVDR on single-view
patterns. The proposed MVDR maps the original single-view patterns into multiple feature

spaces with different empirical kernels and associates each generated space with our previ-
ous work of DR, where the DR learning in each space is taken as one view of the proposed
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MVDR. Simultaneously, the proposed MVDR has an analytic solution to the optimization
problem and a direct optimization formulation for multi-class problems without one-against-
all or one-against-one strategies. The experimental results show that the proposed method
provides a complementarity between different views and thus has a superior classification
performance to the original single-view algorithm DR. Further, compared with the other
algorithms DRFE, DRMV and MKL [34], the proposed method has a better or competi-
tive performance in terms of classification and computation. Finally, it is also found that the
improved classification performance of our method is induced by a weak correlation between
the views, which is validated by the experiments here.
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