
(12) United States Patent
Spata

USOO8671.409B2

US 8,671,409 B2
Mar. 11, 2014

(10) Patent No.:
(45) Date of Patent:

(54) SCHEDULING METHOD AND SYSTEM,
CORRESPONDING COMPUTATIONAL GRD
AND COMPUTER PROGRAMI PRODUCT

(75) Inventor: Massimo Orazio Spata, Catania (IT)

(73) Assignee: STMicroelectronics S.R.L., Agrate
Brianza (MB) (IT)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1317 days.

(21) Appl. No.: 12/101,740

(22) Filed: Apr. 11, 2008

(65) Prior Publication Data

US 2008/O263,557 A1 Oct. 23, 2008

(30) Foreign Application Priority Data

Apr. 13, 2007 (IT) TO2OO7AO258

(51) Int. Cl.
G06F 9/46 (2006.01)

(52) U.S. Cl.
USPC .. 718/102

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,055,571 A * 4/2000 Fulp et al. TO9,224
2004/01 11527 A1* 6/2004 Czap et al. ... 709/235
2007/0094002 A1* 4, 2007 BerStis et al. . 703/22

OTHER PUBLICATIONS

Chun-Tian Cheng (parallel algorithm for grid resource allocation
based on Nash Equilibrium, Aug. 2006, IEEE).*
Massimo Orazio Spata (Agent-based negotiation techniques for a
gird, Dec. 2006, IEEE).*

* cited by examiner

Primary Examiner — Emerson Puente
Assistant Examiner — Sisley Kim
(74) Attorney, Agent, or Firm — Allen, Dyer, Doppelt,
Milbrath & Gilchrist, PA.

(57) ABSTRACT

A scheduler device schedules executions of jobs using
resources of a computational grid. The scheduler is config
ured for identifying an equilibrium threshold between
resources and jobs. Below the equilibrium threshold, the
scheduler schedules the execution of the jobs using the
resources of the computational grid according to Pareto-op
timal strategies. Above the equilibrium threshold, the sched
uler schedules the execution of the jobs using the resources of
the computational grid according to Nash-equilibrium strat
eg1eS.

32 Claims, 4 Drawing Sheets

PHA

PRA

U.S. Patent Mar. 11, 2014 Sheet 1 of 4 US 8,671,409 B2

JR R

R2

Rn

FIG. Rn

U.S. Patent Mar. 11, 2014 Sheet 2 of 4 US 8,671.409 B2

US 8,671,409 B2 Sheet 3 of 4 Mar. 11, 2014 Patent U.S.

8 9IH
was as a war a way was fur

WHd

OWNINGIINH HWN ONB':[T OXIMIWHOAMABH13NHETETTI f

y

19

US 8,671,409 B2 Sheet 4 of 4 Mar. 11, 2014 U.S. Patent

00%

US 8,671,409 B2
1.

SCHEDULING METHOD AND SYSTEM,
CORRESPONDING COMPUTATIONAL GRD
AND COMPUTER PROGRAMI PRODUCT

FIELD OF THE INVENTION

The present invention relates to techniques of selective
allocation (scheduling) of resources and has been developed
with particular attention paid to its possible use in the field of
computational grids, for example for simulation purposes

BACKGROUND OF THE INVENTION

Computer simulation has become an important tool for
studying and interpreting various physical processes. This
technique presents, however, considerable limits in relation to
its aims and to the accuracy of the results, owing to the
stringent requirements in terms of computational power that
are difficult to meet even using the most advanced Supercom
puters. Simulating a very complex model calls for Supple
mentary computing power as the number of parameters of the
model increases.
One way to address this problem is to Supply the computing

power used by exploiting a network of computers (servers)
connected to one another. From the user's standpoint, this
approach is desired to be transparent. It is desirable, in fact,
that the network should appear as a single large virtual Super
computer. This new computational paradigm is called "grid.”
Providing an integrated computing-grid environment may
make it possible to give rise to computing infrastructures with
incomparable potential.

From the conceptual standpoint, a grid is simply a set of
computational resources that perform tasks or jobs assigned
to it. It appears to the users as a single large system that offers
a single access point with distributed and powerful resources.
The users treat the grid as a single computational resource.
The grid accepts the tasks assigned by the users and allocates
them selectively (i.e., "schedules' them) in view of their
execution on Suitable systems comprised in the grid on the
basis of resource-management policies. The users can thus
entrust to the grid tasks that are even rather burdensome (for
example, many activities to be carried out in a short time),
without having to be concerned as to where the tasks will
materially be carried out.
The main advantages linked to the use of a computational

grid (the so-called “Grid Computing') are reduction of hard
ware costs, balancing of the job load between the various
“machines” (via a load management system), capacity for
managing heterogeneous systems, increase in productivity,
and lower exposure to hardware obsolescence.

In actual fact, however, it is difficult to define a system
approach to the management of the grid resources to be really
transparent for the users. This is chiefly due to the heteroge
neous architectural characteristics of the grid.

In this connection, one may think that the users of the grid
may implementa manual approach to allocating the resources
of the grid (carried out via job-description tools, i.e., using
JDL (Job Description Language) script. This approach puts
the choice and estimation of the resources used at the disposal
of the user of the grid, and this inevitably implies a risk of
overestimation or underestimation of the resources due to
human error, with consequent waste of the resources of the
grid (see in this connection the article by Spata, et al. entitled,
“Agent-based negotiation techniques for a Grid: the Prophet
Agents”, 2" IEEE International Conference on e-Science
and Grid Computing 2006.

10

15

25

30

35

40

45

50

55

60

65

2
There have on the other hand already been experiments in

the computer-program sector of the application of principles
and criteria drawn from the world of economy (see, for
example, the article by D. Ferguson, et al. entitled, “Eco
nomic models for allocating resources in computer systems’.
in Scott Learwater, Editor, “Market-Based Control: A Para
digm for Distributed Resource Allocation”, World Scientific,
Hong Kong, 1996 and the article by Y.K. Kwok, etal. entitled,
“Non-Cooperative Grids: Game Theoretic Modeling and
Strategy Optimization’, submitted to IEEE Trans. Parallel
and Distributed Systems, December 2004).

In the article by D. Ferguson, et al. entitled, “Economic
models for allocating resources in computer systems, it is
shown that, by applying a scheduling algorithm based upon
the so-called Nash equilibrium as economic model for dis
tributed systems, the average queuing time decreases when
the use of the system resources increases. On the other hand,
it has been shown that, using the optimal algorithm, if the use
of the resources increases, the average queuing time increases
also. In fact, starting from a queue with Zero load, with homo
geneous jobs belonging to the same class, it emerges that the
scheduling procedure based upon Nash equilibrium is advan
tageous only if the utilization factor per queue (understood as
container of homogeneous computational servers) is higher
than an agreed threshold time. In fact, when the queue has
emptied and the jobs have an average duration shorter, for
example, than one hour, the scheduling algorithms based
upon balancing of the load operate already very well. The
problem starts to arise when the jobs last on average more
than one hour, loading heavily the CPU (jobs of a CPU-bound
type).

In the article by Y. K. Kwok, et al. entitled, “Non-Coop
erative Grids: Game Theoretic Modeling and Strategy Opti
mization', three different scheduling procedures are com
pared: Nash equilibrium, random, and MiniMin (optimal).
Here, the results show that the approaches based upon game
theory and on Nash equilibrium are very similar to a random
planning strategy, while the Pareto-optimal algorithm (Min
Min) proves to be the best scheduling algorithm. In this docu
ment, no information is given on the system-utilization factor,
p. In fact, the main problem of scheduling procedures based
upon optimal strategies (i.e., MiniMin) lies in that they can be
applied advantageously only when the value of this factor
remains lower than a given threshold X.

SUMMARY OF THE INVENTION

The foregoing analysis shows that there is a need for sched
uling techniques (and hence for Schedulers) capable of oper
ating in an altogether automatic way and in conditions of
transparency for users. In particular, there is a need to have
available approaches that may take into account the fact that
the grid architecture resembles a distributed architecture. It is
desired that the grid should present the following character
istics; heterogeneity in terms of operating system, clock rate,
representation of the data, memory, hardware architectures,
and openness to guarantee Scalability and re-implementation
of platforms. Moreover, it is desired that the grid present
security to guarantee confidentiality and integrity of the data,
Scalability, understood as the capacity to guarantee adequate
performance even though the number of users and resources
increases in time, and resistance to faults (fault tolerance), in
particular with regard to the capacity for masking and toler
ating momentary breakdown. Finally, the grid should present
synchronization, i.e., the capacity to order the events com
pletely, with mutual exclusion, integrity of the operations,
and competitive control of the deadlock points, and transpar

US 8,671,409 B2
3

ency, with the possibility of guaranteeing access to local and
remote resources with the same procedures, without appre
ciable losses in terms of performance and without having any
need to know the state of the resources.

In these systems, the notion of time may be vital for giving
a precise order to the events that derive from parallelizable
processes. An object of the present invention is to provide an
approach that may have the characteristics outlined above.
According to an embodiment, that object may be achieved
thanks to a method having the characteristics described
above. Other embodiments relate to a corresponding system
and a computational grid that comprises the system, as well as
to a computer program product, loadable in the memory of at
least one computer and including software code portions for
implementing the method when the product is run on at least
one computer. As used herein, the reference to Such a com
puter program product is intended to be similar to a computer
readable medium containing instructions for control of the
processing system for coordinating implementation of the
method according to the embodiment. The reference to at
least one computer is of course intended to highlight the
possibility that the present embodiment is implemented in
modular and/or distributed form.

In particular, the approach described herein is based upon
the use of a microeconomy paradigm for managing the grid
resources. There exists, in fact, a metaphorical relation
between a grid and a microeconomic model, in which one of
the most important aims is to analyze the market mechanisms
that establish the relative prices between goods and services
and the allocation of limited resources among a large number
ofalternative uses. Typical sectors of study in microeconomy
are game theory and Nash equilibrium.

In a preferred embodiment, the approach described herein
is founded precisely upon a system of grid adaptation of an
intelligent type (Intelligent Grid Matchmaking System),
which implements a scheduling procedure based upon game
theory and upon Nash equilibrium applied to distributed sys
tems, like a computational grid.
A possible embodiment of the approach described herein

involves the use of an automatic grid middleware that Syn
chronizes the actions of booking the computational resources
So as to automate concurrent access to shared resources. This
process of automation can be obtained via procedures that
ensure a job-completion time and schedule execution of the
jobs in a grid.

By way of Summary, since a computational grid is a dis
tributed architecture, where heterogeneity is a standard
attribute, both on the one hand simulators (software and
applications) and on the other hand hardware, the approach
described herein enables automation of the process of sub
mitting jobs at the user end, freeing the user himself from
choices and estimation regarding the duration of the job to be
submitted, the type of hardware compatible for the applica
tion (for example a 32-bit application may not be executed on
a 64-bit computation server), and to the amount of resource
allocated (in terms of CPU and RAM time). The user, in fact,
is often not able to estimate these parameters correctly. In
addition to this, this request for inference at the user end
implies a lack of transparency, which, as has been seen, pro
vides instead a preferential characteristic that, it is expected,
should be present in a distributed system, Such as a compu
tational grid.

In a preferred embodiment, the approach described herein
pursues the aim of masking the hardware and Software
entropy implicit in a grid through the classification of the jobs
and resources in homogeneous classes via a technique based
upon the use of Prophet Agents (see the article by Spata, et al.

10

15

25

30

35

40

45

50

55

60

65

4
entitled, “Agent-based negotiation techniques for a Grid: the
Prophet Agents, 2nd IEEE International Conference on
e-Science and Grid Computing 2006), and the creation of a
system of adaptation (“matchmaking') between a specific
class ofjob and a specific class of resources and Scheduling of
the job in the queue, maximizing the throughput (High
Throughput Computing HTC) with the use of Prisoner
Agents.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described, purely by way of
non-limiting examples, with reference to the annexed figures,
in which:

FIG. 1 illustrates, in the form of a block diagram, a typical
context of application of the present invention;

FIG. 2 is a diagram representing the functional organiza
tion of the present invention;

FIG.3 shows the diagram of the sequence and interaction
between the agents, according to the present invention and

FIG. 4 shows the goal model of the aforesaid agents of the
present invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

In FIG. 1, the references R, R2, ... R. R., represent, as
a whole, homogeneous computational resources (job nodes
or Worker Nodes WN) belonging to the same queue of a
known type, connected to one another, also here according to
criteria in themselves known, so as to form a computational
grid.
A scheduler module S receives from the users of the grid

requests for carrying out jobs JR. These requests may typi
cally be likened to requests for execution of computational
jobs, such as computational jobs that correspond to the simu
lation of a complex system.
As represented more clearly in the functional diagram of

FIG. 2, the jobs JR are supplied to a module JC, which
functions as classifier and co-operates on the one hand, with
the applications A that are to be run on the system (in the
sequel of the present description constant implicit reference
will be made to a computational grid, even though the refer
ence must not be interpreted as in any way limiting the scope
of the invention), and, on the other hand, with a Load-Bal
ancing module LB, which in turn interacts with an HRC
module that carries out classification/assignment of the hard
ware resources of the system in respective queues.
The HRC module interfaces with the hardware resources

proper (CPU and RAM resources, for example), designated
as a whole by HR, via a function AA of architectural analysis
and of administration of the system, i.e., of the grid.

In the absence of more specific indications given in what
follows, the modules/functions just described are to be con
sidered as a whole known in the art and hence Such as not to
require any further detailed description herein.
The diagram of FIG. 2 highlights the presence, in the field

of the scheduler S, of two classes of agents (the term "agent'
is used herein with the meaning that it normally has in the
world of networks and computer systems), namely Prophet
Agents PHA, of the type described in the article by Spata, et
al. entitled, "Agent-based negotiation techniques for a Grid:
the Prophet Agents’ and Prisoner Agents PRA, which interact
with the homogeneous server queues R1, R2, ..., Rin-1, Rn
and are able to know the (average) time of completion of the
jobs using the grid thanks to information Supplied, in a known
way, by the prophet agents PHA.

US 8,671,409 B2
5

In general, in a game, Pareto-optimal strategies are applied
when the allocation of resources is unable to improve the
condition of a player without worsening the condition of
another player. In the context of interest herein, these strate
gies function until a threshold equilibrium is exceeded
between the resources (CPU and RAM resources, for
example) and jobs, contrary to what applies for Nash-equi
librium strategies. Consequently, a threshold is identified
experimentally, below which Pareto-optimal strategies are
applied and above which Nash-equilibrium strategies are
applied.

To explain in detail what is meant exactly by “Nash equi
librium” it may be useful to clarify some simple mathematical
aspects of game theory and define some basic concepts.
A game is characterized by a set G of players, or agents,

that can be designated by i=1,..., N, and a set S of strategies,
including a set of N vectors S. (S, , S,2,..., S. s.l.).
each of which contains the set of the strategies that the i-th
player has at his disposal, i.e., the set of the actions that he can
perform. (for reasons of brevity, designated in what follows
by s, is the strategy chosen by the i-th player.) Moreover, there
is a set U of functions of the type u, U.(S. S. ..., s), which
associate to each player the gain or payoffu, deriving from a
given combination of Strategies (the payoff of a player in
general depends in fact not only upon his strategy but also
upon the strategies chosen by his adversaries).
A Nash equilibrium for a given game is a combination of

strategies (indicated by the SuperScript *) S. S. s.
Such that U, (S. S. S. s.)>U.(S*, S.
s, s.) for eachi and for each strategy s, chosen by the
i-th player.
The meaning of the latter inequality is very simple. If a

game admits of at least one Nash equilibrium, each agent has
available at least one strategy that he has no interest in aban
doning if all the other players have played their own strategy
s*. In fact, as may be inferred directly from the inequality, if
the playeri plays any strategy available to him different from
s*, while all the others have played their own strategy s, he
can only worsen his own payoff or, at the most, leave it
unchanged.

It may be inferred then that if the players reach a Nash
equilibrium, no one can any longer improve his own result by
modifying only his own strategy, and is thus bound by the
choices of the others. Since this applies to all the players, it is
evident that if a Nash equilibrium exists and this is unique, it
represents an approach to the game in so far as none of the
players have any interest in changing strategy.
A Nash equilibrium thus defined 5, 6 can be viewed as a

record of the equilibrium strategies S* including the optimal
responses of all the agents, obtained through the intersection
of sets of optimal strategies for each agent.
The ensuing discussion will regard the agent payoffmodel,

u(x). We shall assume that M* is a set of jobs belonging to the
same class, denoted by j.j2,j. where J-1.j2,...,j}
is the set of alternatives available. The components of these
classes J have a number of common attributes that can be
classified, according to the criteria set forth in 1, 7, as
functional and non-functional attributes (NF).

Given N attributes NFX1, X2,..., X, a is a value of • 3 Ns a

attribute X, of a component, where m=1,2,..., Mand n=1.
2. N. Hence, according to the Von Neumann and Mor
genstern method, we have

10

15

25

30

35

40

45

50

55

60

65

O a' = min amn: a = max. amn} ls is : Isasi-f

RX, a'a, is then the field of values that an attribute X,
can assume from among all the alternatives available. For
each attribute NFX, a utility function u:RX->0.1 is con
structed.

Given XeRX, u(x,) represents the utility function
obtained when a component receives a number of attribute X,
of X. For the next event, u, is indicated simply by u, elimi
nating the Subscript n.

For the attribute X let x', x'eRX be, respectively, the
worst and the best from among all the possible values. It is
assumed that the best (worst) choice is one of high (low) value
and that

The payoff function is given (see the article by S. Merad, et
al. entitled, “Dynamic Selection of Software Components in
the Face of Changing Requirements'. Department of Com
puting Science, University of Newcastle-upon-Tyne, U.K.,
Technical Report No. 664, 1999) by

x -y)

This formula expresses the agent payoff matrix M'. To
identify the scheduling/planning algorithm, the procedure
may be as described in what follows.

Given mprisoner agents g g g., and given mijobsj.
j. . . . , j, assigned to the grid, assuming that WN,
WN,..., WN are c job nodes (Worker Nodes) inherent in
the same calculation server classes, and assuming that the
number of jobs is larger than the number of WN, it is helpful
to co-allocate more jobs on the same node WN. The players
agents of a prisoner type (Prisoner Agents PRA) may choose
which jobs are to be allocated on a server according to an
approach to the Prisoner's Dilemma offered by Nash equilib
rium and considering the possible strategies that can be
adopted for maximizing his own profit on the basis of guesses
(conjectures) of the agents.
A model is then formulated in terms of:

players-agents jobs, j. j.javailable move, choice of
WN, choice of WN,..., choice of WN, profit, maximiza
tion of the likelihood of optimizing the probability of the
job-completion time for an agent j, and payoff matrix
M={M', M', ..., M.}.
The Table 1 reproduced below illustrates the notation in the

formulation according to game theory.

TABLE 1

Symbol Definition

T Time of completion estimated for the
j-th job

WN, Node of j-th job
l Service time of a node WN for a

specific class of jobs
C Number of WN belonging to a

queue
J Homogeneous class of jobs 1,...,j
S* Nash-equilibrium vector strategy
M: Set of jobs belonging to same class
N Number of attributes NF

belonging to same class

US 8,671,409 B2
7

TABLE 1-continued

Symbol Definition

Xy Class of attributes NF
an Value of attribute of Xn for the

component, with m = 1,..., M* and
n = 1,..., N

u(x) Utility function for a class
of attributes NF

X(W) Worst value of the class X,
of attributes NF

X(B)n Best value of the class X,
of attributes NF

RX, Field of values for the class X,
of attributes NF

9i i-th agent-player
with i = 1,..., m

P Number of payoff matrix
N Number of attributes NFX

M Number of jobs-agents
M Payoff matrix of the Prisoner

Dilemma

In order to apply this model to a specific example, we shall
assume having three agents for three jobs that are to be sched
uled on two WN. The possible moves are equivalent to all the
possible allocations of jobs j. j. . . . , j, on the nodes WN.
WN,..., WN. The total number of available moves for each
agent is given by the number of WN that can be selected raised
to the number of the jobs-agents c".

In the model here proposed, the payoff is optimization of
the probability of job completion time (see the article by
Spata, et al. entitled, "Agent-based negotiation techniques for
a Grid: the Prophet Agents'-2' IEEE International Confer
ence on e-Science and Grid Computing 2006). The payoff
matrix M={M', with i=1,..., p includes a matrix number
equal to p and a number of rows and columns equal to the
number c of the nodes WN. The matrix rows are records
referring to the number of agents/jobs.

2: (n - 2) ... if (n > 2)
Thus p = us p { ... if (n = 2)

In the example here considered, the payoff matrix for the
Prisoner's Dilemma can be represented as a matrix of dimen
sions cc.p. On the hypothesis that each agent finds a job, the
payoff is represented with records of the type: (x, y, z) (see the
article by Osborne, et al. entitled, “A Course in Game
Theory’ the MIT Press (Jul 12, 1994), p. 9 paragraph
“Strategic Games').

To construct the payoff matrix, a matrix of attributes is
constructed for each job. The matrix includes (X), the esti
mated service time of a job (LL), (X2), the length of the
queue (L), and (X), the estimated interarrival rate of the jobs
(www).

Hence, following the model described in the article by S.
Merad, et al., entitled, “Dynamic Selection of Software Com
ponents in the Face of Changing Requirements'. Department
of Computing Science, University of Newcastle-upon-Tyne,
U.K., Technical Report No. 664, 1999, the attribute columns
are (X, X2, X) and are represented by the following matrix:

10

15

25

30

35

40

45

50

55

60

65

Attributes

Jobs l La A

j 811 a 12 813
J2 82 822 823

jm 8, 1 8.2 an

The value of three attribute components NF with respect to
njobs j. j. , is calculated for each vector of attributes
NFX, X, X and for each possible choice of nodes (WN1,
WN2).

Then, u(x) is calculated on WN if Xu, XLG X w.
and then on WN2

x - yw)

-"
x2 - s")
...) x.W)

sp) - ")

Calculated in a similar way are u(x), u(X) and u(X)
for WN, and so forth up to WN. In this way, there are three
utility “weights’ per job on each WN. These three compo
nents represent weights associated to respective attributes;
the average value offers a (weighted) utility function unique
for each job.

Substituting the values X, X and X in the function u(x) for

Then, the Prisoner's Dilemma of game theory, applied to
the model, yields the matrix p M'={M', M', ..., M'}, where
the vector values have been calculated via u(x). In other
words, each prisoner agent G makes guesses (conjectures) on
the other agent strategies and makes the best choice (with
higher profit value) for him, making Sure that each other agent
may not have another strategies with higher profit u(x), mov
ing over the entire matrix and following Nash-equilibrium
approaches for the Prisoner's Dilemma problem.

Then, for example, given three jobs and two nodes WN, the
matrix of the Prisoner's Dilemma M' is

US 8,671,409 B2

where M1 is the input matrix number 1, and u(x)y is the
weighting function obtained from individual attribute com
ponents for the i-th job on the j-th node WN.

Nash equilibrium is calculated on the payoff matrix in the
following way. There is a fixed payoff for the agents g and g,
and then the second agent g moves on the row (axis X of the
matrix) to verify whether there exists a better strategy (in
terms of payoff u(x), first component). There is a fixed payoff
for the agents g2 and gs, and then the first agent g moves on
the columns (axis y of the matrix) to verify whether there
exists a better strategy (in terms of payoff u(X), second com
ponent). There is a fixed payoff for the agents g and g, and
then the third agent g moves on the axis Z of the matrix to
verify whether there exists a better strategy (in terms of payoff
u(x), third component) (see the article by Osborne, et al.
entitled, “A Course in Game Theory” The MIT Press (Jul.
12, 1994), p. 9, paragraph "Strategic Games').

In what follows, there will be described in even greater
detail, also with reference to FIGS. 3 and 4, a possible
embodiment of an agents system that aims at providing, on a
computational grid, an infrastructure that is able to analyze
the set of the jobs executed on the grid in order to obtain a
scheduling algorithm, for example of an HTC (High
Throughput Computing) type.

In Such a possible embodiment, the main entities forming
part of the system are a database (jobinfo) that represents and
identifies the jobs to be done, AgentNash (or Nashagent NA),
AgentProphet (or prophet agent PHA), AgentInterpreter (or
interpreter agent IA), and FindNashEquil (the Nash-equilib
rium search function).
The database jobInfo has an initial structure that enables

classification of each job in a series of subclasses, for example
with recourse to a table of the type:

ID: INTEGER(10)
() fet name: VARCHAR(30)
() subclass: INTEGER(10)
() value netlist: DOUBLE
() lambda: DOUBLE

where fet name identifies the type of job. Subclass is an
integer specifying the Subclass of the job in question, value
netlist is a classification parameter, greater details of which
are provided hereinafter, and lambda is the average interar
rival time of the jobs JR.
The Nash agent NA is the main agent of the system. There

exists a single instance, which analyzes, for example, 6jobs a
time to be scheduled on, for example, 4 worker nodes. Its
behavior is defined by the class NashBehavior. The Target is
to create a file (called: matrix.txt) containing the payoff

10

15

25

30

35

40

45

50

55

60

65

10
matrices for the last 6 jobs. After having defined the matrix on
file, Nash equilibrium is sought.
The computational steps envision that, in the first place, the

Nash agent instantiates an object Listener L, which knows the
information on the jobs JR entered in the grid, and then takes
cyclically, via the Listener L, the last 6 jobs submitted on the
grid, and the corresponding information.
The Nashagent represents then for each job a prophet agent

PHA, for receiving, via this, from the prisoner agent PRA,
nunetlistComplexity and lambda. Starting from the 6 pairs
of nu netlistComplexity, and lambda, the Nash agent con
structs the matrix of the NF-attributes and calculates the
utility function on each worker node starting from the NF
attributes. It then calculates the function U, starting from the
utility function, and writes the matrix obtained from analysis
of the 6 jobs on the 4 worker nodes, exploiting the Prisoner's
Dilemma.

In greater detail, the Listener agent L. may be defined as
follows:

Listener

- directoryFile:String = "C:\\Docum.
- listener: Listener = newListener
- ID: long
- Listener()
+ getIstance(): Listener
+getLastSixJob (): Vector
- parsing (numberJobsfinds: int): void

The class is formed on the basis of a design pattern of a
singleton type, the purpose of which is to enable creation of
just one instance, the latter being referenced by the Nash
agent NA. This class is introduced into the agents system for
retrieval of the information on the set of the jobs executed on
the grid, in particular for enabling the caller, i.e., the Nash
agent NA to retrieve the information discussed. For this pur
pose, there is envisioned within the class a private variable
that points at the log file that contains the information on the
job.

Cyclically, from the Nash agent NA an attempt is made to
retrieve the last jobs (for example, the last 6 jobs) submitted in
the grid via the single instance of the Listener class.

In the case where there are not yet in the system, for
example, 6 jobs awaiting scheduling, the Listener agent L
may return “null'; otherwise, there may be returned to the
invoker an object Vector containing, in each location, an array
of strings referring to a single job, as follows:
array0=a table of the Data Base on which to make the

query;
array1 a feat name, i.e., the name of the feature to make

the query;
array2=a type of worker node: in the simulations all the

nodes may be of a SUNSO type:
array3-a path Name of the file top.CIR associated to the

job. The value may be retrieved dynamically by the listener;
array4Fan id of the job, non-static parameter, assigned

via the use of an incremental variable of a long type; and
array5=null, it may be up to the agentNash to set the value

with its own name.
Whenever a new execution of the agents system for a

simulation of the scheduling algorithm is launched, the Lis
tener agent L starts to read, starting preferentially from the
end of the file, so as to be certain that information on “old”
jobs may not be taken into consideration.

US 8,671,409 B2
11

With regard to the prophet agents PHA, it is envisioned that
for each job, an agent of this type may be represented, whose
behavior is defined by a class ProphetBehavior, with the
target of returning to the Nash agent NA the pair
(nunetlistComplexity, lambda).
The computations performed by a prophet agent PHA may

include receiving at the input the parameters of the job from
the Nashagent, creating an instance of the class Database, and
starting two queries via the instance of step 2 and extracting
nu and lambda, respectively. Moreover, the computations
may include creating an interpreter agent IA and awaiting
therefrom the value of the netlistcomplexity (for this purpose,
it indicates where the TOPCIR file is located), and returning
to the Nash agent NA the parameter of nunetlistComplexity
(average completion time) and lambda (average interarrival
time).
An instance of the interpreter agent IA is created for ana

lyzing the netList TOPCIR file associated to each job. The
behavior of the agent is defined by a class InterpreterBehavior
with the target of calculating the netlistComplexity and send
ing the value to the prophet agent that has made request.
The computations performed by an interpreter agent IA

may include identifying all the dependent files starting from
the file TOPCIR, counting the number of nonzero rows of the
file, and calculating the netlistComplexity.

Preferably, within the agent there exists an array of the type
private final String wordSearch ={“...tran”, “pss”, “...hb',
“...dc”, “...ac. "..noise', which describes the set of the key
words to be sought for defining the netlistComplexity. When
ever in a file one of the keywords in the set given above is
found, the associated weight is taken from the underlying
array private final double weightWord ={0.8,0.5,0.5,0.5,
0.8, 0.8}.

In each file that is analyzed, starting from the file TOPCIR,
if the same keyword were to be identified a number of times,
for the system this would be equivalent to finding it just once.
The typical modalities of interaction between the agents

described (L=Listener, PRA prisoner agent: PHA prophet
agent; IA interpreter agent) are described in FIG. 3, where it
will be appreciated that the return messages are entered for
the sole purpose of facilitating reading of the diagram.

Reading of FIG.3 starts from the prisoner agent PRA, who,
in 50, asks the listener L for the information on the last, say,
6 jobs submitted to the grid as contained in the respective file
of analysis LSB.event().

51 expresses then the request, made by the prisoner agent
PRA to the prophet agent PHA, of the values
nunetlistComplexity, lambda for the individual job amongst
the ones considered. The prophet agent PHA, in 54, passes the
request of netlistComplexity on to the interpreter agent IA,
while 55 expresses the reading of the file NetList correspond
ing to the job by the interpreter agent IA queried.

54 and 55 correspond then to the definition, by the prisoner
agent PRA, of the payoff matrix and to retrieval, once again
by the prisoner agent PRA, of the corresponding Nash equi
librium.

Finally, FIG. 4 illustrates the high-level purposes (goals
and Sub-goals) of the various components i.e., of the agents
described above. In particular, at the level of (sub)purposes or
Subgoals the following functions are envisioned, receiving
information on the last 6 jobs submitted (101), calculating the
netlist complexity (102), calculating the non-functional
attributes (103), creating the payoff matrix (104), with the
qualitative purpose of sending in due time to the Nash agent
NA the values computed (106), and seeking Nash equilibrium
(105).

5

10

15

25

30

35

40

45

50

55

60

65

12
The foregoing has the final purpose 200 of defining a

scheduling algorithm (for example, of an HTC type).
The Nash-equilibrium search by the prisoner agents PRA

applied on the matrix of the Prisoner's Dilemma can be exem
plified (always assuming, as it is reasonable to do, that the
jobs of the grid and the nodes WN can be distributed in
homogeneous classes) by the pseudocode reproduced here
inafter. The pseudocode refers to the scheduling of a grid job
via optimal allocation of the resources with the choice of a
class of homogeneous nodes WN.

Begin

Calculate NF-attributes values a for matrix (4.a);
Calculate payoff values u(x) for matrix (4.b) using
formulas (4.1, 4.2):
Calculate Z max = max(u(x) was) for i = 1,..., c.
for each matrix M

f* fixed payoff component for agent j and j and
playing with agent 2 moving on X-axis of matrix
(4.b) to verify if exists a better strategy for
him:*.
for each WN, e {WN, WN,...

if (u(x)ww12 u(x) is N2) then
ffixed payoff component for agent 2 and and
playing with agent moving on y-axis of
matrix (4.b) to verify if exists a better
strategy for him:*/
if (u(x)wy11 > u(x) was 1) then

/*fixed payoff component for agent j andja
and playing with agent moving on Z-axis of
matrix (4.b) to verify if exists a better
strategy for him:*/

if (u?X) is >= Z max then
s'= u(x)wn 11, u(x)wn 12, u(x)ww13):

end if
else

/* given i' > i
if (u(x) was 1 > u(x)wn; 1) then

if (u(x) was >= Z max then
s'= u(x) was 1, u(x) way 12, u(x)wN3;

end if
end if

else
i? given i' > i
if (u(x) up > u(x)tryp) then

if (u(x) was 1 > u(x)wn; 1) then
if (u(x) was >= Z max then

s'= u(x) was 1, u(x) was 2, u(x) was:
end if

end if
end if

end if
end For

end For
returns
End

The approach described herein enables the intrinsic limi
tations represented by the intrinsically heterogeneous and
complex infrastructure linked to Grid Computing techniques
to be overcome.

Moreover, the approach described herein is suited to the
provision of an efficient middleware capable of making dis
tributed applications so as to improve the performance,
increase the rate of execution, and automate the user-request
procedures. The users do not therefore have to make any
hypothesis or estimate of the characteristics of the jobs
entrusted to the grid (for example: usages in terms of memory
or CPU). The concomitant access to distributed and shared
resources of calculation is based upon a “Resource Negotia
tion' procedure.

This job-allocation mechanism can be based upon an
approach of automatic negotiation, overcoming the approach

US 8,671,409 B2
13

(implemented by the user) of manual booking, the approach
leaving to the users of the grid the choice and the estimation
of the resources used, with consequent risk of overestimating
or underestimating resources and thus waste of grid
SOUCS.

Of course, without prejudice to the principle of the
approach, the details of implementation and the embodiments
may be varied, even significantly, with respect to what is
described and illustrated herein, without this implying any
departure from the scope of the approach, as defined by the
annexed claims.

That which is claimed:
1. A method for Scheduling execution of jobs using

resources of a computational grid comprising:
identifying an equilibrium threshold between the resources

and the jobs, with the equilibrium threshold being used
to identify below which Pareto-optimal strategies are
applied and above which Nash-equilibrium strategies
are applied;

if below the equilibrium threshold, then scheduling the
execution of the jobs using the resources of the compu
tational grid according to the Pareto-optimal strategies;
and

if above the equilibrium threshold, then scheduling the
execution of the jobs using the resources of the compu
tational grid according to the Nash-equilibrium strate
g1eS.

2. A method according to claim 1, wherein the equilibrium
threshold comprises a temporal threshold in terms of duration
of execution of the jobs.

3. A method according to claim 1, wherein the resources of
the computational grid include at least one of central process
ing unit (CPU) resources and memory resources.

4. A method according to claim 1, wherein the Pareto
optimal strategies include an allocation of the jobs to the
resources of the computational grid by reaching a condition in
which a job condition of one of the resources of the compu
tational grid cannot be improved without worsening a job
condition of another of the resources of the computational
grid.

5. A method according to claim 1, wherein the Nash-equi
librium strategies include an allocation of the jobs to the
resources of the computational grid by reaching a condition in
which the resources of the computational grid have no interest
in abandoning their own allocation strategy if all other
resources of the computational grid have adopted their allo
cation strategy.

6. A method according to claim 1, wherein the Nash-equi
librium strategies include evaluating a Nash-equilibrium as
record of equilibrium strategies including optimal responses
of the resources of the computational grid obtained by an
intersection of sets of optimal strategies for each resource.

7. A method according to claim 1, further comprising:
producing a model of the computational grid including

agents representing the jobs, and capable of making
moves corresponding to a choice of a given resource for
carrying out a given job; and

evaluating a Nash-equilibrium according to a threshold of
the payoff of the agents.

8. A method according to claim 7, further comprising iden
tifying a profit as a threshold of a likelihood of optimizing a
probability of a completion time of a given job for one of the
agents.

9. A method according to claim 8, further comprising
evaluating the profit on a basis of a payoff matrix with asso
ciated attributes for each job.

10

15

25

30

35

40

45

50

55

60

65

14
10. A method according to claim 9, wherein the attributes

comprise at least one of an estimated service time for a given
job by a resource of the computational grid, a length of a
queue for rendering a service, and an estimated interarrival
rate of the jobs.

11. A method according to claim 1, further comprising
determining, for each of the resources of the computational
grid, a utility function unique to each of the jobs.

12. A method according to claim 11, further comprising
determining the unique utility function based upon a plurality
of utility components representing weights associated to
respective attributes for a given job.

13. A method according claim 11, further comprising:
classifying the jobs and the resources of the computational

grid in homogeneous classes; and
creating an adaptation between the homogenous classes of

the jobs and the classes of the resources of the compu
tational grid by increasing a computational throughput
of the computational grid to a threshold.

14. A method according to claim 12, further comprising:
creating, for the jobs, respective profitagents, for acquiring

information based upon a completion time of respective
jobs and information based upon an interarrival time of
respective jobs;

creating a main agent for Scheduling execution of the jobs
using the resources of the computational grid, the main
agent receiving from respective prophet agents the infor
mation based upon the completion time of the respective
jobs and the information based upon the interarrival time
the respective jobs; and

creating a payoff matrix file for a set of the jobs that have
arrived last at the computational grid and finding a cor
responding Nash equilibrium.

15. A scheduler device for scheduling execution of jobs
using resources of a computational grid and comprising:

a processor configured for identifying an equilibrium
threshold between the resources and the jobs, with the
equilibrium threshold being used to identify below
which Pareto-optimal strategies are applied and above
which Nash-equilibrium strategies are applied;

said processor being further being configured for schedul
ing the execution of the jobs using the resources of the
computational grid according to the Pareto-optimal
strategies if below the equilibrium threshold and sched
uling the execution of the jobs using the resources of the
computational grid according to the Nash-equilibrium
strategies if above the equilibrium threshold.

16. A scheduler device according to claim 15, wherein the
equilibrium threshold comprises a temporal threshold in
terms of duration of execution of the jobs.

17. A scheduler device according to claim 15, wherein the
resources of the computational grid include at least one of
CPU resources and memory resources.

18. A scheduler device according to claim 15, wherein the
Pareto-optimal strategies include an allocation of the jobs to
the resources of the computational grid by reaching a condi
tion in which a job condition of one of the resources of the
computational grid cannot be improved without worsening a
job condition of another of the resources of the computational
grid.

19. A scheduler device according to claim 15, wherein the
Nash-equilibrium strategies include an allocation of the jobs
to the resources of the computational grid by reaching a
condition in which the resources of the computational grid
have no interest in abandoning their own allocation strategy if
all other resources of the computational grid have adopted
their allocation strategy.

US 8,671,409 B2
15

20. A scheduler device according to claim 15, wherein the
Nash-equilibrium strategies include evaluating a Nash-equi
librium as record of equilibrium strategies including optimal
responses of the resources of the computational grid obtained
by an intersection of sets of optimal strategies for each s
eSOUCe.

21. A computational grid comprising:
a plurality of resources for carrying out jobs; and
a scheduler device comprising a processor configured for

identifying an equilibrium threshold between the
resources and the jobs, with the equilibrium threshold
being used to identify below which Pareto-optimal strat
egies are applied and above which Nash-equilibrium
Strategies are applied:

said processor being further being configured for schedul
ing the execution of the jobs using the resources of the
computational grid according to the Pareto-optimal
strategies if below the equilibrium threshold and sched
uling the execution of the jobs using the resources of the
computational grid according to the Nash-equilibrium
strategies if above the equilibrium threshold.

22. A computational grid according to claim 21, wherein
the equilibrium threshold comprises a temporal threshold in
terms of duration of execution of the jobs.

23. A computational grid according to claim 21, wherein
the resources of the computational grid include at least one of 25
CPU resources and memory resources.

24. A computational grid according to claim 21, wherein
the Pareto-optimal strategies include an allocation of the jobs
to the resources of the computational grid by reaching a
condition in which a job condition of one of the resources of 30
the computational grid cannot be improved without worsen
ing a job condition of another of the resources of the compu
tational grid.

25. A computational grid according to claim 21, wherein
the Nash-equilibrium strategies include an allocation of the 35
jobs to the resources of the computational grid by reaching a
condition in which the resources of the computational grid
have no interest in abandoning their own allocation strategy if
all other resources of the computational grid have adopted
their allocation strategy.

26. A computational grid according to claim 21, wherein
the Nash-equilibrium strategies include evaluating a Nash
equilibrium as record of equilibrium strategies including
optimal responses of the resources of the computational grid
obtained by an intersection of sets of optimal strategies for 45
each resource.

10

15

40

16
27. A non-transitory computer-readable medium for

scheduling execution of jobs using resources of a computa
tional grid, the computer-readable medium comprising:

a first computer executable module for identifying an equi
librium threshold between the resources and the jobs,
with the equilibrium threshold being used to identify
below which Pareto-optimal strategies are applied and
above which Nash-equilibrium strategies are applied:

a second computer executable module for scheduling the
execution of the jobs using the resources of the compu
tational grid according to the Pareto-optimal strategies if
below the equilibrium threshold; and

a third computer executable module for scheduling the
execution of the jobs using the resources of the compu
tational grid according to the Nash-equilibrium strate
gies if above the equilibrium threshold.

28. A non-transitory computer-readable medium accord
ing to claim 27, wherein the equilibrium threshold comprises
a temporal threshold in terms of duration of execution of the
jobs.

29. A non-transitory computer-readable medium accord
ing to claim 27, wherein the resources of the computational
grid include at least one of CPU resources and memory
eSOl CeS.

30. A non-transitory computer-readable medium accord
ing to claim 27, wherein the Pareto-optimal strategies include
an allocation of the jobs to the resources of the computational
grid by reaching a condition in which a job condition of one
of the resources of the computational grid cannot be improved
without worsening a job condition of another of the resources
of the computational grid.

31. A non-transitory computer-readable medium accord
ing to claim 27, wherein the Nash-equilibrium strategies
include an allocation of the jobs to the resources of the com
putational grid by reaching a condition in which the resources
of the computational grid have no interest in abandoning their
own allocation strategy if all other resources of the computa
tional grid have adopted their allocation strategy.

32. A non-transitory computer-readable medium accord
ing to claim 27, wherein the Nash-equilibrium strategies
include evaluating a Nash-equilibrium as record of equilib
rium strategies including optimal responses of the resources
of the computational grid obtained by an intersection of sets
of optimal strategies for each resource.

ck ck ck ck ck

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 8,671,409 B2 Page 1 of 1
APPLICATIONNO. : 12/101740
DATED : March 11, 2014
INVENTOR(S) : Spata

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

Column 14, Line 13 Insert:--to-- after “according

Delete: “11”
Insert: --1--

Column 14, Line 20 Delete: “12
Insert: --1--

Column 14, Line 41 Delete: “processor being
Insert:--processor

Column 15, Line 14 Delete: “processor being
Insert: --processor

Signed and Sealed this
Fourteenth Day of July, 2015

74-4-04- 2% 4
Michelle K. Lee

Director of the United States Patent and Trademark Office

