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(57) ABSTRACT 

A scheduler device schedules executions of jobs using 
resources of a computational grid. The scheduler is config 
ured for identifying an equilibrium threshold between 
resources and jobs. Below the equilibrium threshold, the 
scheduler schedules the execution of the jobs using the 
resources of the computational grid according to Pareto-op 
timal strategies. Above the equilibrium threshold, the sched 
uler schedules the execution of the jobs using the resources of 
the computational grid according to Nash-equilibrium strat 
eg1eS. 
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SCHEDULING METHOD AND SYSTEM, 
CORRESPONDING COMPUTATIONAL GRD 
AND COMPUTER PROGRAMI PRODUCT 

FIELD OF THE INVENTION 

The present invention relates to techniques of selective 
allocation (scheduling) of resources and has been developed 
with particular attention paid to its possible use in the field of 
computational grids, for example for simulation purposes 

BACKGROUND OF THE INVENTION 

Computer simulation has become an important tool for 
studying and interpreting various physical processes. This 
technique presents, however, considerable limits in relation to 
its aims and to the accuracy of the results, owing to the 
stringent requirements in terms of computational power that 
are difficult to meet even using the most advanced Supercom 
puters. Simulating a very complex model calls for Supple 
mentary computing power as the number of parameters of the 
model increases. 
One way to address this problem is to Supply the computing 

power used by exploiting a network of computers (servers) 
connected to one another. From the user's standpoint, this 
approach is desired to be transparent. It is desirable, in fact, 
that the network should appear as a single large virtual Super 
computer. This new computational paradigm is called "grid.” 
Providing an integrated computing-grid environment may 
make it possible to give rise to computing infrastructures with 
incomparable potential. 

From the conceptual standpoint, a grid is simply a set of 
computational resources that perform tasks or jobs assigned 
to it. It appears to the users as a single large system that offers 
a single access point with distributed and powerful resources. 
The users treat the grid as a single computational resource. 
The grid accepts the tasks assigned by the users and allocates 
them selectively (i.e., "schedules' them) in view of their 
execution on Suitable systems comprised in the grid on the 
basis of resource-management policies. The users can thus 
entrust to the grid tasks that are even rather burdensome (for 
example, many activities to be carried out in a short time), 
without having to be concerned as to where the tasks will 
materially be carried out. 
The main advantages linked to the use of a computational 

grid (the so-called “Grid Computing') are reduction of hard 
ware costs, balancing of the job load between the various 
“machines” (via a load management system), capacity for 
managing heterogeneous systems, increase in productivity, 
and lower exposure to hardware obsolescence. 

In actual fact, however, it is difficult to define a system 
approach to the management of the grid resources to be really 
transparent for the users. This is chiefly due to the heteroge 
neous architectural characteristics of the grid. 

In this connection, one may think that the users of the grid 
may implementa manual approach to allocating the resources 
of the grid (carried out via job-description tools, i.e., using 
JDL (Job Description Language) script. This approach puts 
the choice and estimation of the resources used at the disposal 
of the user of the grid, and this inevitably implies a risk of 
overestimation or underestimation of the resources due to 
human error, with consequent waste of the resources of the 
grid (see in this connection the article by Spata, et al. entitled, 
“Agent-based negotiation techniques for a Grid: the Prophet 
Agents”, 2" IEEE International Conference on e-Science 
and Grid Computing 2006. 
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2 
There have on the other hand already been experiments in 

the computer-program sector of the application of principles 
and criteria drawn from the world of economy (see, for 
example, the article by D. Ferguson, et al. entitled, “Eco 
nomic models for allocating resources in computer systems’. 
in Scott Learwater, Editor, “Market-Based Control: A Para 
digm for Distributed Resource Allocation”, World Scientific, 
Hong Kong, 1996 and the article by Y.K. Kwok, etal. entitled, 
“Non-Cooperative Grids: Game Theoretic Modeling and 
Strategy Optimization’, submitted to IEEE Trans. Parallel 
and Distributed Systems, December 2004). 

In the article by D. Ferguson, et al. entitled, “Economic 
models for allocating resources in computer systems, it is 
shown that, by applying a scheduling algorithm based upon 
the so-called Nash equilibrium as economic model for dis 
tributed systems, the average queuing time decreases when 
the use of the system resources increases. On the other hand, 
it has been shown that, using the optimal algorithm, if the use 
of the resources increases, the average queuing time increases 
also. In fact, starting from a queue with Zero load, with homo 
geneous jobs belonging to the same class, it emerges that the 
scheduling procedure based upon Nash equilibrium is advan 
tageous only if the utilization factor per queue (understood as 
container of homogeneous computational servers) is higher 
than an agreed threshold time. In fact, when the queue has 
emptied and the jobs have an average duration shorter, for 
example, than one hour, the scheduling algorithms based 
upon balancing of the load operate already very well. The 
problem starts to arise when the jobs last on average more 
than one hour, loading heavily the CPU (jobs of a CPU-bound 
type). 

In the article by Y. K. Kwok, et al. entitled, “Non-Coop 
erative Grids: Game Theoretic Modeling and Strategy Opti 
mization', three different scheduling procedures are com 
pared: Nash equilibrium, random, and MiniMin (optimal). 
Here, the results show that the approaches based upon game 
theory and on Nash equilibrium are very similar to a random 
planning strategy, while the Pareto-optimal algorithm (Min 
Min) proves to be the best scheduling algorithm. In this docu 
ment, no information is given on the system-utilization factor, 
p. In fact, the main problem of scheduling procedures based 
upon optimal strategies (i.e., MiniMin) lies in that they can be 
applied advantageously only when the value of this factor 
remains lower than a given threshold X. 

SUMMARY OF THE INVENTION 

The foregoing analysis shows that there is a need for sched 
uling techniques (and hence for Schedulers) capable of oper 
ating in an altogether automatic way and in conditions of 
transparency for users. In particular, there is a need to have 
available approaches that may take into account the fact that 
the grid architecture resembles a distributed architecture. It is 
desired that the grid should present the following character 
istics; heterogeneity in terms of operating system, clock rate, 
representation of the data, memory, hardware architectures, 
and openness to guarantee Scalability and re-implementation 
of platforms. Moreover, it is desired that the grid present 
security to guarantee confidentiality and integrity of the data, 
Scalability, understood as the capacity to guarantee adequate 
performance even though the number of users and resources 
increases in time, and resistance to faults (fault tolerance), in 
particular with regard to the capacity for masking and toler 
ating momentary breakdown. Finally, the grid should present 
synchronization, i.e., the capacity to order the events com 
pletely, with mutual exclusion, integrity of the operations, 
and competitive control of the deadlock points, and transpar 
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ency, with the possibility of guaranteeing access to local and 
remote resources with the same procedures, without appre 
ciable losses in terms of performance and without having any 
need to know the state of the resources. 

In these systems, the notion of time may be vital for giving 
a precise order to the events that derive from parallelizable 
processes. An object of the present invention is to provide an 
approach that may have the characteristics outlined above. 
According to an embodiment, that object may be achieved 
thanks to a method having the characteristics described 
above. Other embodiments relate to a corresponding system 
and a computational grid that comprises the system, as well as 
to a computer program product, loadable in the memory of at 
least one computer and including software code portions for 
implementing the method when the product is run on at least 
one computer. As used herein, the reference to Such a com 
puter program product is intended to be similar to a computer 
readable medium containing instructions for control of the 
processing system for coordinating implementation of the 
method according to the embodiment. The reference to at 
least one computer is of course intended to highlight the 
possibility that the present embodiment is implemented in 
modular and/or distributed form. 

In particular, the approach described herein is based upon 
the use of a microeconomy paradigm for managing the grid 
resources. There exists, in fact, a metaphorical relation 
between a grid and a microeconomic model, in which one of 
the most important aims is to analyze the market mechanisms 
that establish the relative prices between goods and services 
and the allocation of limited resources among a large number 
ofalternative uses. Typical sectors of study in microeconomy 
are game theory and Nash equilibrium. 

In a preferred embodiment, the approach described herein 
is founded precisely upon a system of grid adaptation of an 
intelligent type (Intelligent Grid Matchmaking System), 
which implements a scheduling procedure based upon game 
theory and upon Nash equilibrium applied to distributed sys 
tems, like a computational grid. 
A possible embodiment of the approach described herein 

involves the use of an automatic grid middleware that Syn 
chronizes the actions of booking the computational resources 
So as to automate concurrent access to shared resources. This 
process of automation can be obtained via procedures that 
ensure a job-completion time and schedule execution of the 
jobs in a grid. 

By way of Summary, since a computational grid is a dis 
tributed architecture, where heterogeneity is a standard 
attribute, both on the one hand simulators (software and 
applications) and on the other hand hardware, the approach 
described herein enables automation of the process of sub 
mitting jobs at the user end, freeing the user himself from 
choices and estimation regarding the duration of the job to be 
submitted, the type of hardware compatible for the applica 
tion (for example a 32-bit application may not be executed on 
a 64-bit computation server), and to the amount of resource 
allocated (in terms of CPU and RAM time). The user, in fact, 
is often not able to estimate these parameters correctly. In 
addition to this, this request for inference at the user end 
implies a lack of transparency, which, as has been seen, pro 
vides instead a preferential characteristic that, it is expected, 
should be present in a distributed system, Such as a compu 
tational grid. 

In a preferred embodiment, the approach described herein 
pursues the aim of masking the hardware and Software 
entropy implicit in a grid through the classification of the jobs 
and resources in homogeneous classes via a technique based 
upon the use of Prophet Agents (see the article by Spata, et al. 
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4 
entitled, “Agent-based negotiation techniques for a Grid: the 
Prophet Agents, 2nd IEEE International Conference on 
e-Science and Grid Computing 2006), and the creation of a 
system of adaptation (“matchmaking') between a specific 
class ofjob and a specific class of resources and Scheduling of 
the job in the queue, maximizing the throughput (High 
Throughput Computing HTC) with the use of Prisoner 
Agents. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The invention will now be described, purely by way of 
non-limiting examples, with reference to the annexed figures, 
in which: 

FIG. 1 illustrates, in the form of a block diagram, a typical 
context of application of the present invention; 

FIG. 2 is a diagram representing the functional organiza 
tion of the present invention; 

FIG.3 shows the diagram of the sequence and interaction 
between the agents, according to the present invention and 

FIG. 4 shows the goal model of the aforesaid agents of the 
present invention. 

DETAILED DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

In FIG. 1, the references R, R2, ... R. R., represent, as 
a whole, homogeneous computational resources (job nodes 
or Worker Nodes WN) belonging to the same queue of a 
known type, connected to one another, also here according to 
criteria in themselves known, so as to form a computational 
grid. 
A scheduler module S receives from the users of the grid 

requests for carrying out jobs JR. These requests may typi 
cally be likened to requests for execution of computational 
jobs, such as computational jobs that correspond to the simu 
lation of a complex system. 
As represented more clearly in the functional diagram of 

FIG. 2, the jobs JR are supplied to a module JC, which 
functions as classifier and co-operates on the one hand, with 
the applications A that are to be run on the system (in the 
sequel of the present description constant implicit reference 
will be made to a computational grid, even though the refer 
ence must not be interpreted as in any way limiting the scope 
of the invention), and, on the other hand, with a Load-Bal 
ancing module LB, which in turn interacts with an HRC 
module that carries out classification/assignment of the hard 
ware resources of the system in respective queues. 
The HRC module interfaces with the hardware resources 

proper (CPU and RAM resources, for example), designated 
as a whole by HR, via a function AA of architectural analysis 
and of administration of the system, i.e., of the grid. 

In the absence of more specific indications given in what 
follows, the modules/functions just described are to be con 
sidered as a whole known in the art and hence Such as not to 
require any further detailed description herein. 
The diagram of FIG. 2 highlights the presence, in the field 

of the scheduler S, of two classes of agents (the term "agent' 
is used herein with the meaning that it normally has in the 
world of networks and computer systems), namely Prophet 
Agents PHA, of the type described in the article by Spata, et 
al. entitled, "Agent-based negotiation techniques for a Grid: 
the Prophet Agents’ and Prisoner Agents PRA, which interact 
with the homogeneous server queues R1, R2, ..., Rin-1, Rn 
and are able to know the (average) time of completion of the 
jobs using the grid thanks to information Supplied, in a known 
way, by the prophet agents PHA. 
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In general, in a game, Pareto-optimal strategies are applied 
when the allocation of resources is unable to improve the 
condition of a player without worsening the condition of 
another player. In the context of interest herein, these strate 
gies function until a threshold equilibrium is exceeded 
between the resources (CPU and RAM resources, for 
example) and jobs, contrary to what applies for Nash-equi 
librium strategies. Consequently, a threshold is identified 
experimentally, below which Pareto-optimal strategies are 
applied and above which Nash-equilibrium strategies are 
applied. 

To explain in detail what is meant exactly by “Nash equi 
librium” it may be useful to clarify some simple mathematical 
aspects of game theory and define some basic concepts. 
A game is characterized by a set G of players, or agents, 

that can be designated by i=1,..., N, and a set S of strategies, 
including a set of N vectors S. (S, , S,2,..., S. . . . . s.l.). 
each of which contains the set of the strategies that the i-th 
player has at his disposal, i.e., the set of the actions that he can 
perform. (for reasons of brevity, designated in what follows 
by s, is the strategy chosen by the i-th player.) Moreover, there 
is a set U of functions of the type u, U.(S. S. ..., s), which 
associate to each player the gain or payoffu, deriving from a 
given combination of Strategies (the payoff of a player in 
general depends in fact not only upon his strategy but also 
upon the strategies chosen by his adversaries). 
A Nash equilibrium for a given game is a combination of 

strategies (indicated by the SuperScript *) S. S. . . . . s. 
Such that U, (S. S. . . . . S. . . . . s.)>U.(S*, S. . . . . 
s, . . . . s.) for eachi and for each strategy s, chosen by the 
i-th player. 
The meaning of the latter inequality is very simple. If a 

game admits of at least one Nash equilibrium, each agent has 
available at least one strategy that he has no interest in aban 
doning if all the other players have played their own strategy 
s*. In fact, as may be inferred directly from the inequality, if 
the playeri plays any strategy available to him different from 
s*, while all the others have played their own strategy s, he 
can only worsen his own payoff or, at the most, leave it 
unchanged. 

It may be inferred then that if the players reach a Nash 
equilibrium, no one can any longer improve his own result by 
modifying only his own strategy, and is thus bound by the 
choices of the others. Since this applies to all the players, it is 
evident that if a Nash equilibrium exists and this is unique, it 
represents an approach to the game in so far as none of the 
players have any interest in changing strategy. 
A Nash equilibrium thus defined 5, 6 can be viewed as a 

record of the equilibrium strategies S* including the optimal 
responses of all the agents, obtained through the intersection 
of sets of optimal strategies for each agent. 
The ensuing discussion will regard the agent payoffmodel, 

u(x). We shall assume that M* is a set of jobs belonging to the 
same class, denoted by j.j2, ....j. where J-1.j2,...,j} 
is the set of alternatives available. The components of these 
classes J have a number of common attributes that can be 
classified, according to the criteria set forth in 1, 7, as 
functional and non-functional attributes (NF). 

Given N attributes NFX1, X2,..., X, a is a value of • 3 Ns a 

attribute X, of a component, where m=1,2,..., Mand n=1. 
2. . . . . N. Hence, according to the Von Neumann and Mor 
genstern method, we have 
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O a' = min amn: a = max. amn} ls is : Isasi-f 

RX, a'a, is then the field of values that an attribute X, 
can assume from among all the alternatives available. For 
each attribute NFX, a utility function u:RX->0.1 is con 
structed. 

Given XeRX, u(x,) represents the utility function 
obtained when a component receives a number of attribute X, 
of X. For the next event, u, is indicated simply by u, elimi 
nating the Subscript n. 

For the attribute X let x', x'eRX be, respectively, the 
worst and the best from among all the possible values. It is 
assumed that the best (worst) choice is one of high (low) value 
and that 

The payoff function is given (see the article by S. Merad, et 
al. entitled, “Dynamic Selection of Software Components in 
the Face of Changing Requirements'. Department of Com 
puting Science, University of Newcastle-upon-Tyne, U.K., 
Technical Report No. 664, 1999) by 

x -y) 

This formula expresses the agent payoff matrix M'. To 
identify the scheduling/planning algorithm, the procedure 
may be as described in what follows. 

Given mprisoner agents g g . . . . g., and given mijobsj. 
j. . . . , j, assigned to the grid, assuming that WN, 
WN,..., WN are c job nodes (Worker Nodes) inherent in 
the same calculation server classes, and assuming that the 
number of jobs is larger than the number of WN, it is helpful 
to co-allocate more jobs on the same node WN. The players 
agents of a prisoner type (Prisoner Agents PRA) may choose 
which jobs are to be allocated on a server according to an 
approach to the Prisoner's Dilemma offered by Nash equilib 
rium and considering the possible strategies that can be 
adopted for maximizing his own profit on the basis of guesses 
(conjectures) of the agents. 
A model is then formulated in terms of: 

players-agents jobs, j. j. . . . .javailable move, choice of 
WN, choice of WN,..., choice of WN, profit, maximiza 
tion of the likelihood of optimizing the probability of the 
job-completion time for an agent j, and payoff matrix 
M={M', M', ..., M.}. 
The Table 1 reproduced below illustrates the notation in the 

formulation according to game theory. 

TABLE 1 

Symbol Definition 

T Time of completion estimated for the 
j-th job 

WN, Node of j-th job 
l Service time of a node WN for a 

specific class of jobs 
C Number of WN belonging to a 

queue 
J Homogeneous class of jobs 1,...,j 
S* Nash-equilibrium vector strategy 
M: Set of jobs belonging to same class 
N Number of attributes NF 

belonging to same class 
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TABLE 1-continued 

Symbol Definition 

Xy Class of attributes NF 
an Value of attribute of Xn for the 

component, with m = 1,..., M* and 
n = 1,..., N 

u(x) Utility function for a class 
of attributes NF 

X(W) Worst value of the class X, 
of attributes NF 

X(B)n Best value of the class X, 
of attributes NF 

RX, Field of values for the class X, 
of attributes NF 

9i i-th agent-player 
with i = 1,..., m 

P Number of payoff matrix 
N Number of attributes NFX 

M Number of jobs-agents 
M Payoff matrix of the Prisoner 

Dilemma 

In order to apply this model to a specific example, we shall 
assume having three agents for three jobs that are to be sched 
uled on two WN. The possible moves are equivalent to all the 
possible allocations of jobs j. j. . . . , j, on the nodes WN. 
WN,..., WN. The total number of available moves for each 
agent is given by the number of WN that can be selected raised 
to the number of the jobs-agents c". 

In the model here proposed, the payoff is optimization of 
the probability of job completion time (see the article by 
Spata, et al. entitled, "Agent-based negotiation techniques for 
a Grid: the Prophet Agents'-2' IEEE International Confer 
ence on e-Science and Grid Computing 2006). The payoff 
matrix M={M', with i=1,..., p includes a matrix number 
equal to p and a number of rows and columns equal to the 
number c of the nodes WN. The matrix rows are records 
referring to the number of agents/jobs. 

2: (n - 2) ... if (n > 2) 
Thus p = us p { ... if (n = 2) 

In the example here considered, the payoff matrix for the 
Prisoner's Dilemma can be represented as a matrix of dimen 
sions cc.p. On the hypothesis that each agent finds a job, the 
payoff is represented with records of the type: (x, y, z) (see the 
article by Osborne, et al. entitled, “A Course in Game 
Theory’ the MIT Press (Jul 12, 1994), p. 9 paragraph 
“Strategic Games'). 

To construct the payoff matrix, a matrix of attributes is 
constructed for each job. The matrix includes (X), the esti 
mated service time of a job (LL), (X2), the length of the 
queue (L), and (X), the estimated interarrival rate of the jobs 
(www). 

Hence, following the model described in the article by S. 
Merad, et al., entitled, “Dynamic Selection of Software Com 
ponents in the Face of Changing Requirements'. Department 
of Computing Science, University of Newcastle-upon-Tyne, 
U.K., Technical Report No. 664, 1999, the attribute columns 
are (X, X2, X) and are represented by the following matrix: 
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Attributes 

Jobs l La A 

j 811 a 12 813 
J2 82 822 823 

jm 8, 1 8.2 an 

The value of three attribute components NF with respect to 
njobs j. j. . . . . , is calculated for each vector of attributes 
NFX, X, X and for each possible choice of nodes (WN1, 
WN2). 

Then, u(x) is calculated on WN if Xu, XLG X w. 
and then on WN2 

x - yw) 

-" 
x2 - s") 
...) x.W) 

sp) - ") 

Calculated in a similar way are u(x), u(X) and u(X) 
for WN, and so forth up to WN. In this way, there are three 
utility “weights’ per job on each WN. These three compo 
nents represent weights associated to respective attributes; 
the average value offers a (weighted) utility function unique 
for each job. 

Substituting the values X, X and X in the function u(x) for 

Then, the Prisoner's Dilemma of game theory, applied to 
the model, yields the matrix p M'={M', M', ..., M'}, where 
the vector values have been calculated via u(x). In other 
words, each prisoner agent G makes guesses (conjectures) on 
the other agent strategies and makes the best choice (with 
higher profit value) for him, making Sure that each other agent 
may not have another strategies with higher profit u(x), mov 
ing over the entire matrix and following Nash-equilibrium 
approaches for the Prisoner's Dilemma problem. 

Then, for example, given three jobs and two nodes WN, the 
matrix of the Prisoner's Dilemma M' is 
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where M1 is the input matrix number 1, and u(x)y is the 
weighting function obtained from individual attribute com 
ponents for the i-th job on the j-th node WN. 

Nash equilibrium is calculated on the payoff matrix in the 
following way. There is a fixed payoff for the agents g and g, 
and then the second agent g moves on the row (axis X of the 
matrix) to verify whether there exists a better strategy (in 
terms of payoff u(x), first component). There is a fixed payoff 
for the agents g2 and gs, and then the first agent g moves on 
the columns (axis y of the matrix) to verify whether there 
exists a better strategy (in terms of payoff u(X), second com 
ponent). There is a fixed payoff for the agents g and g, and 
then the third agent g moves on the axis Z of the matrix to 
verify whether there exists a better strategy (in terms of payoff 
u(x), third component) (see the article by Osborne, et al. 
entitled, “A Course in Game Theory” The MIT Press (Jul. 
12, 1994), p. 9, paragraph "Strategic Games'). 

In what follows, there will be described in even greater 
detail, also with reference to FIGS. 3 and 4, a possible 
embodiment of an agents system that aims at providing, on a 
computational grid, an infrastructure that is able to analyze 
the set of the jobs executed on the grid in order to obtain a 
scheduling algorithm, for example of an HTC (High 
Throughput Computing) type. 

In Such a possible embodiment, the main entities forming 
part of the system are a database (jobinfo) that represents and 
identifies the jobs to be done, AgentNash (or Nashagent NA), 
AgentProphet (or prophet agent PHA), AgentInterpreter (or 
interpreter agent IA), and FindNashEquil (the Nash-equilib 
rium search function). 
The database jobInfo has an initial structure that enables 

classification of each job in a series of subclasses, for example 
with recourse to a table of the type: 

ID: INTEGER(10) 
() fet name: VARCHAR(30) 
() subclass: INTEGER(10) 
() value netlist: DOUBLE 
() lambda: DOUBLE 

where fet name identifies the type of job. Subclass is an 
integer specifying the Subclass of the job in question, value 
netlist is a classification parameter, greater details of which 
are provided hereinafter, and lambda is the average interar 
rival time of the jobs JR. 
The Nash agent NA is the main agent of the system. There 

exists a single instance, which analyzes, for example, 6jobs a 
time to be scheduled on, for example, 4 worker nodes. Its 
behavior is defined by the class NashBehavior. The Target is 
to create a file (called: matrix.txt) containing the payoff 
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10 
matrices for the last 6 jobs. After having defined the matrix on 
file, Nash equilibrium is sought. 
The computational steps envision that, in the first place, the 

Nash agent instantiates an object Listener L, which knows the 
information on the jobs JR entered in the grid, and then takes 
cyclically, via the Listener L, the last 6 jobs submitted on the 
grid, and the corresponding information. 
The Nashagent represents then for each job a prophet agent 

PHA, for receiving, via this, from the prisoner agent PRA, 
nunetlistComplexity and lambda. Starting from the 6 pairs 
of nu netlistComplexity, and lambda, the Nash agent con 
structs the matrix of the NF-attributes and calculates the 
utility function on each worker node starting from the NF 
attributes. It then calculates the function U, starting from the 
utility function, and writes the matrix obtained from analysis 
of the 6 jobs on the 4 worker nodes, exploiting the Prisoner's 
Dilemma. 

In greater detail, the Listener agent L. may be defined as 
follows: 

Listener 

- directoryFile:String = "C:\\Docum. 
- listener: Listener = newListener 
- ID: long 
- Listener() 
+ getIstance( ): Listener 
+getLastSixJob (): Vector 
- parsing (numberJobsfinds: int): void 

The class is formed on the basis of a design pattern of a 
singleton type, the purpose of which is to enable creation of 
just one instance, the latter being referenced by the Nash 
agent NA. This class is introduced into the agents system for 
retrieval of the information on the set of the jobs executed on 
the grid, in particular for enabling the caller, i.e., the Nash 
agent NA to retrieve the information discussed. For this pur 
pose, there is envisioned within the class a private variable 
that points at the log file that contains the information on the 
job. 

Cyclically, from the Nash agent NA an attempt is made to 
retrieve the last jobs (for example, the last 6 jobs) submitted in 
the grid via the single instance of the Listener class. 

In the case where there are not yet in the system, for 
example, 6 jobs awaiting scheduling, the Listener agent L 
may return “null'; otherwise, there may be returned to the 
invoker an object Vector containing, in each location, an array 
of strings referring to a single job, as follows: 
array0=a table of the Data Base on which to make the 

query; 
array1 a feat name, i.e., the name of the feature to make 

the query; 
array2=a type of worker node: in the simulations all the 

nodes may be of a SUNSO type: 
array3-a path Name of the file top.CIR associated to the 

job. The value may be retrieved dynamically by the listener; 
array4Fan id of the job, non-static parameter, assigned 

via the use of an incremental variable of a long type; and 
array5=null, it may be up to the agentNash to set the value 

with its own name. 
Whenever a new execution of the agents system for a 

simulation of the scheduling algorithm is launched, the Lis 
tener agent L starts to read, starting preferentially from the 
end of the file, so as to be certain that information on “old” 
jobs may not be taken into consideration. 
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With regard to the prophet agents PHA, it is envisioned that 
for each job, an agent of this type may be represented, whose 
behavior is defined by a class ProphetBehavior, with the 
target of returning to the Nash agent NA the pair 
(nunetlistComplexity, lambda). 
The computations performed by a prophet agent PHA may 

include receiving at the input the parameters of the job from 
the Nashagent, creating an instance of the class Database, and 
starting two queries via the instance of step 2 and extracting 
nu and lambda, respectively. Moreover, the computations 
may include creating an interpreter agent IA and awaiting 
therefrom the value of the netlistcomplexity (for this purpose, 
it indicates where the TOPCIR file is located), and returning 
to the Nash agent NA the parameter of nunetlistComplexity 
(average completion time) and lambda (average interarrival 
time). 
An instance of the interpreter agent IA is created for ana 

lyzing the netList TOPCIR file associated to each job. The 
behavior of the agent is defined by a class InterpreterBehavior 
with the target of calculating the netlistComplexity and send 
ing the value to the prophet agent that has made request. 
The computations performed by an interpreter agent IA 

may include identifying all the dependent files starting from 
the file TOPCIR, counting the number of nonzero rows of the 
file, and calculating the netlistComplexity. 

Preferably, within the agent there exists an array of the type 
private final String wordSearch ={“...tran”, “pss”, “...hb', 
“...dc”, “...ac. "..noise', which describes the set of the key 
words to be sought for defining the netlistComplexity. When 
ever in a file one of the keywords in the set given above is 
found, the associated weight is taken from the underlying 
array private final double weightWord ={0.8,0.5,0.5,0.5, 
0.8, 0.8}. 

In each file that is analyzed, starting from the file TOPCIR, 
if the same keyword were to be identified a number of times, 
for the system this would be equivalent to finding it just once. 
The typical modalities of interaction between the agents 

described (L=Listener, PRA prisoner agent: PHA prophet 
agent; IA interpreter agent) are described in FIG. 3, where it 
will be appreciated that the return messages are entered for 
the sole purpose of facilitating reading of the diagram. 

Reading of FIG.3 starts from the prisoner agent PRA, who, 
in 50, asks the listener L for the information on the last, say, 
6 jobs submitted to the grid as contained in the respective file 
of analysis LSB.event(). 

51 expresses then the request, made by the prisoner agent 
PRA to the prophet agent PHA, of the values 
nunetlistComplexity, lambda for the individual job amongst 
the ones considered. The prophet agent PHA, in 54, passes the 
request of netlistComplexity on to the interpreter agent IA, 
while 55 expresses the reading of the file NetList correspond 
ing to the job by the interpreter agent IA queried. 

54 and 55 correspond then to the definition, by the prisoner 
agent PRA, of the payoff matrix and to retrieval, once again 
by the prisoner agent PRA, of the corresponding Nash equi 
librium. 

Finally, FIG. 4 illustrates the high-level purposes (goals 
and Sub-goals) of the various components i.e., of the agents 
described above. In particular, at the level of (sub)purposes or 
Subgoals the following functions are envisioned, receiving 
information on the last 6 jobs submitted (101), calculating the 
netlist complexity (102), calculating the non-functional 
attributes (103), creating the payoff matrix (104), with the 
qualitative purpose of sending in due time to the Nash agent 
NA the values computed (106), and seeking Nash equilibrium 
(105). 
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12 
The foregoing has the final purpose 200 of defining a 

scheduling algorithm (for example, of an HTC type). 
The Nash-equilibrium search by the prisoner agents PRA 

applied on the matrix of the Prisoner's Dilemma can be exem 
plified (always assuming, as it is reasonable to do, that the 
jobs of the grid and the nodes WN can be distributed in 
homogeneous classes) by the pseudocode reproduced here 
inafter. The pseudocode refers to the scheduling of a grid job 
via optimal allocation of the resources with the choice of a 
class of homogeneous nodes WN. 

Begin 

Calculate NF-attributes values a for matrix (4.a); 
Calculate payoff values u(x) for matrix (4.b) using 
formulas (4.1, 4.2): 
Calculate Z max = max(u(x) was) for i = 1,..., c. 
for each matrix M 

f* fixed payoff component for agent j and j and 
playing with agent 2 moving on X-axis of matrix 
(4.b) to verify if exists a better strategy for 
him:*. 
for each WN, e {WN, WN,... 

if (u(x)ww12 u(x) is N2) then 
ffixed payoff component for agent 2 and and 
playing with agent moving on y-axis of 
matrix (4.b) to verify if exists a better 
strategy for him:*/ 
if (u(x)wy11 > u(x) was 1) then 

/*fixed payoff component for agent j andja 
and playing with agent moving on Z-axis of 
matrix (4.b) to verify if exists a better 
strategy for him:*/ 

if (u?X) is >= Z max then 
s'= u(x)wn 11, u(x)wn 12, u(x)ww13): 

end if 
else 

/* given i' > i 
if (u(x) was 1 > u(x)wn; 1) then 

if (u(x) was >= Z max then 
s'= u(x) was 1, u(x) way 12, u(x)wN3; 

end if 
end if 

else 
i? given i' > i 
if (u(x) up > u(x)tryp) then 

if (u(x) was 1 > u(x)wn; 1) then 
if (u(x) was >= Z max then 

s'= u(x) was 1, u(x) was 2, u(x) was: 
end if 

end if 
end if 

end if 
end For 

end For 
returns 
End 

The approach described herein enables the intrinsic limi 
tations represented by the intrinsically heterogeneous and 
complex infrastructure linked to Grid Computing techniques 
to be overcome. 

Moreover, the approach described herein is suited to the 
provision of an efficient middleware capable of making dis 
tributed applications so as to improve the performance, 
increase the rate of execution, and automate the user-request 
procedures. The users do not therefore have to make any 
hypothesis or estimate of the characteristics of the jobs 
entrusted to the grid (for example: usages in terms of memory 
or CPU). The concomitant access to distributed and shared 
resources of calculation is based upon a “Resource Negotia 
tion' procedure. 

This job-allocation mechanism can be based upon an 
approach of automatic negotiation, overcoming the approach 
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(implemented by the user) of manual booking, the approach 
leaving to the users of the grid the choice and the estimation 
of the resources used, with consequent risk of overestimating 
or underestimating resources and thus waste of grid 
SOUCS. 

Of course, without prejudice to the principle of the 
approach, the details of implementation and the embodiments 
may be varied, even significantly, with respect to what is 
described and illustrated herein, without this implying any 
departure from the scope of the approach, as defined by the 
annexed claims. 

That which is claimed: 
1. A method for Scheduling execution of jobs using 

resources of a computational grid comprising: 
identifying an equilibrium threshold between the resources 

and the jobs, with the equilibrium threshold being used 
to identify below which Pareto-optimal strategies are 
applied and above which Nash-equilibrium strategies 
are applied; 

if below the equilibrium threshold, then scheduling the 
execution of the jobs using the resources of the compu 
tational grid according to the Pareto-optimal strategies; 
and 

if above the equilibrium threshold, then scheduling the 
execution of the jobs using the resources of the compu 
tational grid according to the Nash-equilibrium strate 
g1eS. 

2. A method according to claim 1, wherein the equilibrium 
threshold comprises a temporal threshold in terms of duration 
of execution of the jobs. 

3. A method according to claim 1, wherein the resources of 
the computational grid include at least one of central process 
ing unit (CPU) resources and memory resources. 

4. A method according to claim 1, wherein the Pareto 
optimal strategies include an allocation of the jobs to the 
resources of the computational grid by reaching a condition in 
which a job condition of one of the resources of the compu 
tational grid cannot be improved without worsening a job 
condition of another of the resources of the computational 
grid. 

5. A method according to claim 1, wherein the Nash-equi 
librium strategies include an allocation of the jobs to the 
resources of the computational grid by reaching a condition in 
which the resources of the computational grid have no interest 
in abandoning their own allocation strategy if all other 
resources of the computational grid have adopted their allo 
cation strategy. 

6. A method according to claim 1, wherein the Nash-equi 
librium strategies include evaluating a Nash-equilibrium as 
record of equilibrium strategies including optimal responses 
of the resources of the computational grid obtained by an 
intersection of sets of optimal strategies for each resource. 

7. A method according to claim 1, further comprising: 
producing a model of the computational grid including 

agents representing the jobs, and capable of making 
moves corresponding to a choice of a given resource for 
carrying out a given job; and 

evaluating a Nash-equilibrium according to a threshold of 
the payoff of the agents. 

8. A method according to claim 7, further comprising iden 
tifying a profit as a threshold of a likelihood of optimizing a 
probability of a completion time of a given job for one of the 
agents. 

9. A method according to claim 8, further comprising 
evaluating the profit on a basis of a payoff matrix with asso 
ciated attributes for each job. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

14 
10. A method according to claim 9, wherein the attributes 

comprise at least one of an estimated service time for a given 
job by a resource of the computational grid, a length of a 
queue for rendering a service, and an estimated interarrival 
rate of the jobs. 

11. A method according to claim 1, further comprising 
determining, for each of the resources of the computational 
grid, a utility function unique to each of the jobs. 

12. A method according to claim 11, further comprising 
determining the unique utility function based upon a plurality 
of utility components representing weights associated to 
respective attributes for a given job. 

13. A method according claim 11, further comprising: 
classifying the jobs and the resources of the computational 

grid in homogeneous classes; and 
creating an adaptation between the homogenous classes of 

the jobs and the classes of the resources of the compu 
tational grid by increasing a computational throughput 
of the computational grid to a threshold. 

14. A method according to claim 12, further comprising: 
creating, for the jobs, respective profitagents, for acquiring 

information based upon a completion time of respective 
jobs and information based upon an interarrival time of 
respective jobs; 

creating a main agent for Scheduling execution of the jobs 
using the resources of the computational grid, the main 
agent receiving from respective prophet agents the infor 
mation based upon the completion time of the respective 
jobs and the information based upon the interarrival time 
the respective jobs; and 

creating a payoff matrix file for a set of the jobs that have 
arrived last at the computational grid and finding a cor 
responding Nash equilibrium. 

15. A scheduler device for scheduling execution of jobs 
using resources of a computational grid and comprising: 

a processor configured for identifying an equilibrium 
threshold between the resources and the jobs, with the 
equilibrium threshold being used to identify below 
which Pareto-optimal strategies are applied and above 
which Nash-equilibrium strategies are applied; 

said processor being further being configured for schedul 
ing the execution of the jobs using the resources of the 
computational grid according to the Pareto-optimal 
strategies if below the equilibrium threshold and sched 
uling the execution of the jobs using the resources of the 
computational grid according to the Nash-equilibrium 
strategies if above the equilibrium threshold. 

16. A scheduler device according to claim 15, wherein the 
equilibrium threshold comprises a temporal threshold in 
terms of duration of execution of the jobs. 

17. A scheduler device according to claim 15, wherein the 
resources of the computational grid include at least one of 
CPU resources and memory resources. 

18. A scheduler device according to claim 15, wherein the 
Pareto-optimal strategies include an allocation of the jobs to 
the resources of the computational grid by reaching a condi 
tion in which a job condition of one of the resources of the 
computational grid cannot be improved without worsening a 
job condition of another of the resources of the computational 
grid. 

19. A scheduler device according to claim 15, wherein the 
Nash-equilibrium strategies include an allocation of the jobs 
to the resources of the computational grid by reaching a 
condition in which the resources of the computational grid 
have no interest in abandoning their own allocation strategy if 
all other resources of the computational grid have adopted 
their allocation strategy. 
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20. A scheduler device according to claim 15, wherein the 
Nash-equilibrium strategies include evaluating a Nash-equi 
librium as record of equilibrium strategies including optimal 
responses of the resources of the computational grid obtained 
by an intersection of sets of optimal strategies for each s 
eSOUCe. 

21. A computational grid comprising: 
a plurality of resources for carrying out jobs; and 
a scheduler device comprising a processor configured for 

identifying an equilibrium threshold between the 
resources and the jobs, with the equilibrium threshold 
being used to identify below which Pareto-optimal strat 
egies are applied and above which Nash-equilibrium 
Strategies are applied: 

said processor being further being configured for schedul 
ing the execution of the jobs using the resources of the 
computational grid according to the Pareto-optimal 
strategies if below the equilibrium threshold and sched 
uling the execution of the jobs using the resources of the 
computational grid according to the Nash-equilibrium 
strategies if above the equilibrium threshold. 

22. A computational grid according to claim 21, wherein 
the equilibrium threshold comprises a temporal threshold in 
terms of duration of execution of the jobs. 

23. A computational grid according to claim 21, wherein 
the resources of the computational grid include at least one of 25 
CPU resources and memory resources. 

24. A computational grid according to claim 21, wherein 
the Pareto-optimal strategies include an allocation of the jobs 
to the resources of the computational grid by reaching a 
condition in which a job condition of one of the resources of 30 
the computational grid cannot be improved without worsen 
ing a job condition of another of the resources of the compu 
tational grid. 

25. A computational grid according to claim 21, wherein 
the Nash-equilibrium strategies include an allocation of the 35 
jobs to the resources of the computational grid by reaching a 
condition in which the resources of the computational grid 
have no interest in abandoning their own allocation strategy if 
all other resources of the computational grid have adopted 
their allocation strategy. 

26. A computational grid according to claim 21, wherein 
the Nash-equilibrium strategies include evaluating a Nash 
equilibrium as record of equilibrium strategies including 
optimal responses of the resources of the computational grid 
obtained by an intersection of sets of optimal strategies for 45 
each resource. 
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27. A non-transitory computer-readable medium for 

scheduling execution of jobs using resources of a computa 
tional grid, the computer-readable medium comprising: 

a first computer executable module for identifying an equi 
librium threshold between the resources and the jobs, 
with the equilibrium threshold being used to identify 
below which Pareto-optimal strategies are applied and 
above which Nash-equilibrium strategies are applied: 

a second computer executable module for scheduling the 
execution of the jobs using the resources of the compu 
tational grid according to the Pareto-optimal strategies if 
below the equilibrium threshold; and 

a third computer executable module for scheduling the 
execution of the jobs using the resources of the compu 
tational grid according to the Nash-equilibrium strate 
gies if above the equilibrium threshold. 

28. A non-transitory computer-readable medium accord 
ing to claim 27, wherein the equilibrium threshold comprises 
a temporal threshold in terms of duration of execution of the 
jobs. 

29. A non-transitory computer-readable medium accord 
ing to claim 27, wherein the resources of the computational 
grid include at least one of CPU resources and memory 
eSOl CeS. 

30. A non-transitory computer-readable medium accord 
ing to claim 27, wherein the Pareto-optimal strategies include 
an allocation of the jobs to the resources of the computational 
grid by reaching a condition in which a job condition of one 
of the resources of the computational grid cannot be improved 
without worsening a job condition of another of the resources 
of the computational grid. 

31. A non-transitory computer-readable medium accord 
ing to claim 27, wherein the Nash-equilibrium strategies 
include an allocation of the jobs to the resources of the com 
putational grid by reaching a condition in which the resources 
of the computational grid have no interest in abandoning their 
own allocation strategy if all other resources of the computa 
tional grid have adopted their allocation strategy. 

32. A non-transitory computer-readable medium accord 
ing to claim 27, wherein the Nash-equilibrium strategies 
include evaluating a Nash-equilibrium as record of equilib 
rium strategies including optimal responses of the resources 
of the computational grid obtained by an intersection of sets 
of optimal strategies for each resource. 
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