
(12) United States Patent
van Antwerpen

USOO9262340B1

US 9.262,340 B1
Feb. 16, 2016

(10) Patent No.:
(45) Date of Patent:

(54) PRIVILEGED MODE METHODS AND
CIRCUITS FOR PROCESSOR SYSTEMS

(75) Inventor: Hans van Antwerpen, Mountain View,
CA (US)

(73) Assignee: Cypress Semiconductor Corporation,
San Jose, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 850 days.

(21) Appl. No.: 13/340,418

(22) Filed: Dec. 29, 2011

(51) Int. Cl.
G06F 2/14 (2006.01)

(52) U.S. Cl.
CPC G06F 12/14 (2013.01); G06F 12/1416

(2013.01); G06F 12/1458 (2013.01); G06F
12/1491 (2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,293,610 A * 3/1994 Schwarz 711 (164
6,349,057 B2 * 2/2002 Hotaka 365,185.04
6,349,355 B1 2/2002 Draves et al.
7,185,183 B1 2, 2007 Uhler
7,600,100 B2 10/2009 Jensen
7,661,105 B2 2/2010 Watt et al.
7,788,725 B2 8/2010 Rajendran

812

844-0

844-1

NM
Priv. Mode
Emulator

814 834

BUSBRIDGE iO
816-0

Peripheral OO

Peripheral OM

Flash

810

Read ACCel.

2004/0243783 Al 12/2004 Ding et al.
2005, 0132217 A1* 6/2005 Srinivasan et al. T13/200
2006.0143411 A1 6/2006 O'Connor
2007/0162759 A1* 7/2007 Buskey et al. T13, 182
2008/0244206 A1 10, 2008 Heo et al.
2009.0049220 A1 2/2009 Conti et al. 710,267
2009/0199048 A1* 8/2009 Aralakuppe Ramegowda

et al. T14.54
2009/0205050 A1* 8, 2009 Giordano et al. .. 726/26
2010/0106954 A1* 4/2010 Muchsel et al. 713/2
2011/O161672 A1 6/2011 Martinez et al.

FOREIGN PATENT DOCUMENTS

KR 2007107426 11, 2007

OTHER PUBLICATIONS

Lanfranco Lopriore, “Hardware/Compiler Memory Protection in
Sensor Nodes,” WWW.SCiRPorg/journal/ijcins, Aug. 2008, 6 pages.

* cited by examiner

Primary Examiner — Jared Rutz
Assistant Examiner — Stephanie Wu

(57) ABSTRACT

A system can include a processor coupled to a bus; a first
memory coupled to the bus, configured to limit access to a
privileged portion according to at least protection values; a
second memory coupled to the bus and having a privileged
Supervisory portion configured to be section erasable, access
to the second memory being limited according to at least the
protection values; and a boot sequence stored in the privileged
portion that configures the processor to decode values stored
in the Supervisory portion into the protection values for Stor
age in protection value registers.

18 Claims, 15 Drawing Sheets

836
M 800

RAM ROM

830 808

RAM Controller ROM Controller

BUS BRIDGE #1
816-1

Peripherali10 832-10

Peripherali1N 832-1N

U.S. Patent Feb. 16, 2016 Sheet 1 of 15 US 9.262,340 B1

120

122

126-0

126-1

120

EcoS
126 NM N-122

126-0 PROT.
t

ease LINVE 126-1

m my

120

126
122

REG
prot. 126-0

126-1

U.S. Patent Feb. 16, 2016 Sheet 2 of 15 US 9.262,340 B1

01 0 || 0 | X X IROM Reset
01 || 0 || 1 | X X | Flash DataLDST)

2(NMI), 0 | X | 0 || 0 || Flash User NM or Data
2(NMI) 0 | X || 0 || 1 || RAM User NMI
2(NMI), 0 | X | 1 | X || ROM system call
3.47 0 | X X || 0 || Flash UserException or Data
3.47 0 | x X | 1 || RAM UserException
any | 1 | X X X | Flash DebuglATE access

FIG. 2

U.S. Patent Feb. 16, 2016 Sheet 3 of 15 US 9.262,340 B1

312
SFLASH FLASH CTRL, CPUSS PRIV FLASH. SwsCall Table

PRIV FLASH FLASH.LIMIT 314-0
Supervisory Area, Priv. 308 Register, Priv, Code

Wector Table Boot Code ROM table when 314-1
SWSCallM SysCall1

no oriv, Flash Code
System Call Sy

M Handler ROM, Priv.

Handler
CODw in Flash

Reset

SwsCall0 SysCallN
SwsCall1 Code 310

ROMissile U. 310 314-N Rop
1000 0000 O

Flash, Privileged Code
304 Fixed Location Flash, Priv.

326 318 Uploaded DFT
Proc. SFLASH FLASH CTRL. Prod Code

Wector Table User's Main Code PRIV FLASH RAM. UserMode
0: Supervisory Area, Priv, 315 y
1: PCSP
2: NMI User's NMISR 320

Fault
User's Fault Hindler 322 15: Systick

16: Roo
User's ISR Code N-324-0

47. IRO3
Flash, UserMode User's SR Code
OOOOOOOO 324-1

Flash RAM, UserMode

306
PrOC.

Wector Table

2: 328

5: 330
16:

332-0
47:

2000 0000
RAM/Flash, UserMode

FIG. 3

U.S. Patent Feb. 16, 2016 Sheet 4 of 15 US 9.262,340 B1

propolicial nave on to PROT3:01 EnCOCinC NAME CPU Test

0000 VIRGIN
0001 || 0 OPEN Privilides Enforced User Mode Onl User Mode Onl
O01X PROTECTED Privilides Enforced Redisters Onl
O1XX KILL Privilides Enforced

1XXX nia BOOT

FIG. 4

TO

VIRGIN Yes Yes Yes

Yes Yes || Yes

Yes Yes

OPEN Yes Yes

Yes

DAP Yes Yes

PROTECTED CPU(PM Yes Yes Yes

CPU(UM UM, Exec Onl Yes
D

KILL Yes Yes Yes

Yes

DAP

BOOT Yes Yes Yes Yes

Yes Yes Yes Yes

DAP

FIG. 5

U.S. Patent Feb. 16, 2016 Sheet 5 Of 15 US 9.262,340 B1

600
MFG: Fabricate

VIRGIN
602 MFG (or CUST).

MFG: Clear to VIRGIN
Programming

CUST:
Erase

CUST: Programming

PROTECTED
606

CUST. Programming
(irreversible)

FIG. 6

M 710

MAN AREA

710-2

710-1
PRIVILEGED

SUPERVISORY
728

FIG. 7

US 9.262,340 B1 U.S. Patent

U.S. Patent Feb. 16, 2016 Sheet 7 Of 15 US 9.262,340 B1

V 900

MEMORY ROM Ctrler 940

INT LOGIC
950

ROM/Flash RAM
908,910,930 Priv, Mode

958 Emulator PROCESSOR
902

MEMORY
ROMFlash RAM
908,9101930 Priv, Mode

Erylator

SysFunction
L952
- - - - - - - -

FIG. 9B

900

MEMORY
ROM/Flash RAM
908,9101930

PROCESSOR
902

Call ID 946

Ctrl 948

prot(1) = priv

FIG. 9C

U.S. Patent Feb. 16, 2016 Sheet 8 of 15 US 9.262,340 B1

900

INT LOGIC
950

ROM Ctrller 940 MEMORY
ROMFlash RAM

908,19101930 Priv. MOde
958 Erylator PROCESSOR

902
Cal ID 946

Ctrl age

US 9.262,340 B1 U.S. Patent

U.S. Patent Feb. 16, 2016 Sheet 10 of 15 US 9.262,340 B1

1048. 1014

CpUSS SySred
privileged

Wdata
master

COde rod not rom CpuSS SySreqm
access to vec

rom acceSS en SyScallreq

CpuSS SySreqn)
master

CpuSS SySredo
WCata SyScallred

CpUSS SySred W

1040

COClerc
master
protO)

Sel COde rod not rom

rom ro
trans(1)

aCCeSS to VeC
addr

master rom acCeSS OK
rOm acCeSS en

FIG 10C

Om limit
prot(1)

PROT

U.S. Patent Feb. 16, 2016 Sheet 11 of 15 US 9.262,340 B1

//place SystemCall from user mode

void SystemCall(int16 cmd, int32 arg)

{
CPUSS ARG= arg;

CPUSS SYSREQ= cmd (1U<<31);
while(CPUSS SYSREQ 8 (1U<<31))

asm {WFI};

FIG 11

U.S. Patent Feb. 16, 2016 Sheet 12 of 15 US 9.262,340 B1

//allow NMI hander to copy itself from flash - in event of patch table

typedef void SystemCa||Function (int32 arg, bool Src);
SystemCall Function rom privileged SysCalTableSYSCALLCNT);
extern int flash privileged PatchTableCnt;
extern SystemCall Function flash privileged SysCallPatchTable;

//Must be non-privileged because we are not in privileged mode yet

void romisr Nmihandler()
-

// Can only get here form an NMI ISR (hardware interlocked)
CPUSS SYSREQ = PRIVILEGED;
if((CPUSS SYSREQ 8. SYSREQ)== 1)
{

//Call the right System Call routine
int16 cmd= CPUSS SYSREQ.COMMAND;
boo src= CPUSS SYSREQ.HMASTER
int32 arg=CPUSS SYSARG;
if(CPUSS PRIV FLASH. FLASH LIMIT < FLASH SIZE)
{

if(cmd < PatchTableCnt)
{

if(uint32)SysCall PatchTablecmd) < 0x10000000)
K

// Calling a patched routine in flash
// Jump to a copy of self in Flash
aS

-
<branch to Nmilander InFlash, ENTRY1>
ENTRY1:

(*SysCall PatchTablecmd)(argsrc);

//calling a ROM routine
(*SysCall PatchTablecmd)(argsrc);

FIG. 12A

U.S. Patent Feb. 16, 2016 Sheet 13 of 15 US 9.262,340 B1

if(Cmd < SYSCALL CNT)
{

(* SysCallTablecmd)(arg, Src);

// Clear both PRIVILEGED and SYSREQ flags
CPUSS SYSREQ=0;

//Must be non-privileged because we are not in privileged when exiting
//Must be exact source copy of NmiHandler() in ROM
void flash isr NmiHandlerIn Flash()

<same code as NmiHandler(). Z.

FIG. 12B

U.S. Patent Feb. 16, 2016 Sheet 14 of 15 US 9.262,340 B1

1300-A

SystemCall N
1302

Enable other INTs Per SystemCall N
1304

Execute INTN Execute INTX
NMI Handler NMHandler

1308 1312
SET CTRL BITS TO SystemCall X

PRIVILEGED 1312-0
1308-0

Call SystemFunction
Call SystemFunction |Ded in SystemCall X
|Ded in SystemCall N 1312-1

1308-1

CLEAR CTRL BITS TO
NONPRIVILEGED

1308-2

FIG. 13A

U.S. Patent Feb. 16, 2016 Sheet 15 Of 15 US 9.262,340 B1

1300-B
SystemCall N

1302

Enable other INTs Per SystemCall N
1304

Execute INTN Execute INTX
NMI Handler NMHandler

1308 1312
SET CTRL BITS TO SystemCall X

PRIVILEGED
1308-0

DISABLE ALL INTS
Call SystemFunction Except Those ASSociated
|Ded in SystemCall N with System Call X

1308-1

CLEAR CTRL BITS TO Call SystemFunction
NONPRIVILEGED |Ded in SystemCall X

1308-2 1312-1

FIG. 13B

US 9,262,340 B1
1.

PRIVLEGED MODEMETHODS AND
CIRCUITS FOR PROCESSOR SYSTEMS

TECHNICAL FIELD

The present disclosure relates generally to processor sys
tems, and more particularly to protection modes for processor
systems.

BACKGROUND

Some systems, such as microcontrollers, programmable
systems-on-chip, or application specific standard part
(ASSP) can include a processor that operates according to
code stored in one or more memory circuits. However, in
Some conventional systems, such processors do not have a
built-in privilege mode for limiting access to memory circuits
and registers of the system.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A to 1C are block schematic diagrams showing a
system and operations according to an embodiment.

FIG. 2 is a table showing vector relocation in a processor
system according to an embodiment.

FIG. 3 is a diagram showing vectors and handlers in a
processor system according to an embodiment.

FIG. 4 is a table showing protection modes for a processor
system according to an embodiment.

FIG. 5 is a table showing restrictions in a processor system
for different protection modes according to an embodiment.

FIG. 6 is a state diagram showing a processor system
protection policy according to an embodiment.

FIG. 7 is a diagram showing a processor System protection
policy implemented with a block erasable memory according
to an embodiment.

FIG. 8 is a block schematic diagram showing a processor
system according to another embodiment.

FIGS. 9A to 9D show a sequence of block schematic dia
grams illustrating privileged mode circuits and operations of
a processor system according to an embodiment.

FIGS. 10A to 100 are block schematic diagrams showing
privileged mode circuits and operations of a processor system
according to another embodiment.

FIG. 11 is a diagram showing a system call function
according to one particular embodiment.

FIGS. 12A and 12B are diagrams showing an interrupt
handler corresponding to the system call function of FIG. 11,
according to a particular embodiment.

FIGS. 13A and 13B are flow diagrams showing interrupt
handling of system call functions according to embodiments.

DETAILED DESCRIPTION

Various embodiments will now be described that include
processor systems, associated circuits, and methods for
enabling protected modes of operation. Such embodiments
can implement privileged modes of operation for systems
having processors that do not have such features built-in.

Referring now to FIGS. 1A to 1C, a processor system 100
according to one embodiment is shown in block Schematic
diagram. System 100 can include a processor 102, a vector
relocator 104, a system bus 106, a first memory 108, a second
memory 110, a test access port 112, a privilege mode emula
tor 114, and a bus bridge 116.

In some embodiments, the various parts of the system 100
can be formed in a same integrated circuit package 117. In a

10

15

25

30

35

40

45

50

55

60

65

2
particular embodiment, the various parts of the system 100
can beformed in a same integrated circuit Substrate. A system
100 can take various forms, including but not limited to: a
microcontroller, system-on-chip, or application specific stan
dard product (ASSP).

Further, in some embodiments, portions of system 100 can
beformed with programmable circuits. In one embodiment, a
vector relocator 104 and privilege mode emulator 114 can be
formed all, or in part, with programmable logic circuits.
A processor 102 can execute instructions stored in first or

second memories (108/110) (or other memories not shown).
In the embodiment shown, the processor 102 can be respond
to hardware related event, such as a reset or interrupts by
initiating requests to predetermined addresses. A vector relo
cator 104 can redirect vector calls from a processor 102
according to values stored in privileged registers. It is under
stood that a privileged registers can only be accessed when the
system 100 is in a privileged mode, as will be described
herein, and equivalents. Accordingly, a vector relocator 104
can alter addresses issued by processor 102 before such
addresses are applied to bus 106. When not servicing a vector
call, addresses and data can pass-through a vector relocator
104.
A bus 106 can be an address and data bus having control/

status lines, address lines and data lines. A bus 106 can
include one or more protection modelines that can signify a
privileged mode of operation. In one embodiment, a protec
tion modeline(s) can be driven according values established
by privileged mode emulator 114.
A first memory 108 can include a privileged section 118,

and in the embodiment shown can be system read-only
memory (ROM). First memory 108 can include hardware for
limiting access to its privileged section 118. In some embodi
ments, privileged section 118 can only be accessed in
response to predetermined events, such as a reset of the sys
tem 100 or one or more nonmaskable interrupts (NMIs). In
the embodiment shown, within privileged section 118 can be
a boot sequence 120 and a handler 122. A boot sequence 120
can be a sequence executed by processor 102 in the event of
a reset event. A handler 122 can service one or more prede
termined NMIs, as will be described in more detail below.
A second memory 110 can include a Supervisory section

124. A Supervisory section 124 can also be a privileged
memory region. Further, a Supervisory section 124 can have
limitations on how data is accessed. In particular, certain data
values can be written (e.g., programmed) to bit locations, but
other data values require block clearing of such values. In one
embodiment, a second memory 110 can be a flash type elec
trically erasable programmable read-only-memory, the
implements block erase. However, alternate embodiments
may include other types of memories that implement a block
type erase, or equivalent function. Sucha block erase function
can enable stored data to be cleared when Switching from a
higher protection state (i.e., a state that prevents access to
more locations) to a lower protection state.
A test access port 112 can enable access to the system 100

for testing and/or debugging. As will be described in more
detail below, a test access port 112 can allow free access,
limited access, or no access to various regions of the system
100 depending upon a protection mode.
A privilege mode emulator 114 can generate a privilege

mode indication based on privilege mode register values 126.
Such register values 126 can be programmed by operation of
handler 122, as described herein, or an equivalent. A privilege
mode emulator 114 can receive NMI signals, and generate its
own NMI signal(s). Control registers 126 can be privileged
registers for storing values that establish protection modes for

US 9,262,340 B1
3

system 100. In the embodiment shown, control registers can
include a protection mode register 126-0 and a privilege mode
register 126-1.
A bridge 116 can allow other portions of a system or other

devices to share bus 106. In the embodiment shown, control
registers 126 can be accessed via bridge 116.

It is understood that a system 100 can include various other
system circuit resources accessible via bus 106. Access to
Such system circuit resources can be limited based on a pro
tection mode of the system (i.e., established by values in
register 126-0). System circuit resources can include, but are
not limited to, other memories, and other registers, including
control registers.

FIGS. 1A to 1C show how protection modes of operation
can be established according to one embodiment.

Referring to FIG. 1A, in the event of a reset condition, a
system 100 can enter a boot state. In a boot (BOOT) state,
protection mode register 126-0 can output predetermined
protection values, established by hardware, that indicates the
BOOT state. Such BOOT state protection values can place
test access port 112 into a stalled State preventing access to
system 100 via such a port. In response to the reset condition,
a processor 102 can execute boot sequence 120. A boot
sequence 120 can result in processor 102 reading an encoded
protection mode value (EP) from supervisory section 124,
decoding Such a value, and writing the decoded protection
value (PROT) into protection mode register 126-0. Once such
a value is written into protection mode register 126-0, a pro
tection mode for the system 100 can be established. In one
embodiment, protected states established from decoded val
ues stored in supervisory section can be different from the
BOOT state. That is, a BOOT mode can be a transitory mode
used to establish a programmed protection level for the sys
tem 100.
An encoded protection value (EP) stored within supervi

sory section 124 can be altered to change a protection mode
for a system 100. However, as will be described in more detail
below, Such changes in protection mode can be restricted,
with changes to lower protection modes resulting in an era
sure of code subsequently programmed for the system 100.

FIGS. 1B and 1C show the changing of a protection mode
for a system 100. Referring to FIG. 1B, in response to an
NMI, a processor 102 can execute handler 122. A handler 122
can initiate a write to privilege mode register 126-1. If suit
able hardware conditions exist, a system function can be
executed that can enable a write to flash memory 110.

Referring to FIG. 1C, once in a privileged mode, accesses
to Supervisory section 124 can be allowed, Subject to protec
tion mode policies. In particular, returns to lower protection
states can result in an erasure of entire sections of flash
memory 110.
As noted above, embodiments can include a vector reloca

tor (e.g., 104) for remapping requests made by a processor
102. Such remapping according to one embodiment will now
be described.

FIG. 2 is a table showing vector relocation according to an
embodiment.

In FIG. 2, column “Vector indicates a vector called by a
processor. Column "MASTER’ indicates system bus signal
that can identify the origin of a request, with a 0 indicating a
processor call and a 1 indicating a call from elsewhere. Col
umns are shown for three configuration bits: CPUSS SYS
REQ.NO RST OVR, CPUSS SYSREQ.SYSREQ,
CPUSS SYSREQ.VECS IN RAM. Such configuration
bits can be stored in a privileged mode register (e.g., 126-1).
Column “GoTo” shows how a vector call can be redirected to
any of numerous other locations. In the embodiment shown,

10

15

25

30

35

40

45

50

55

60

65

4
a system can include a ROM, Flash Memory, and random
access memory (RAM). Column “Comments' describes the
type of vector. Values 0 and 1 indicate bit values, with X
indicating a don’t care value.

Configuration bit CPUSS SYSREQ.NO RST OVR can
indicate a non-reset indication bit. Thus, when Such a value is
false (O), vector calls to 0.1 can indicate a reset event, and the
system is directed to execute code in ROM. However, when
such a bit value is true (1), a vector call to 0.1 can be directed
to a location in Flash memory. Such a capability can enable
test routines to be executed in a flash memory.

Configuration bit CPUSS SYSREQ.SYSREQ can indi
cate a system call. A system call can access privileged sec
tions of a ROM under certain conditions (including an NMI).
Accordingly, when Such a bit value is set (e.g., 1), the vector
call for the NMI is directed to executable code in ROM.
However, when such a bit is not set, it is possible to re-direct
vector calls to Flash or RAM (e.g., appropriate user NMI
handlers can be stored in Flash or RAM).

Configuration bit CPUSS SYSREQ.VEC IN RAM can
indicate when a vector is stored in RAM. Accordingly, a
vector call can be re-directed to RAM of such a bit is set.

In this way, vector relocation can be accomplished, how
ever reset vectors and NMI vectors can be forced to secure
executable locations within a system ROM.

FIG. 3 is a diagram showing vector tables and correspond
ing handlers and responses according to an embodiment. FIG.
3 shows how vector handlers can be used, under suitable
conditions, to access privileged regions of a system.
FIG.3 shows a ROM vector table 302, a Flash vector table

304 and RAM vector table 306. In the embodiment shown,
reset vector calls are not redirected, and so will access ROM
vector table 302. In the reset case, ROM vector table 302 can
point to boot code 308. Boot code 308 can access a flash limit
register (CPUSS PRIV FLASH.FLASH LIMIT) and user
start address (SFLASH FLASH START) according to a
privileged flash access register (SFLASH FLASH CTRL.
PRIV FLASH). As shown in FIG. 3, registers
CPUSS PRIV FLASH.FLASH LIMIT and SFLASH
FLASH START can be located in a supervisory area of a
Flash memory, while register CPUSS PRIV FLASH.
FLASH LIMIT can be a privileged register.

Referring still to FIG. 3, NMI vectors calls can be selec
tively redirected according to register values. Referring back
to FIG. 2, if a system call is indicated (e.g., CPUSS SYS
REQ.SYSREQ=1), the ROM vector table 302 is accessed. A
corresponding system request hander 310 can be executed, or
alternatively, a copy of a handler 310' residing in Flash
memory can be executed. If a system does not include a
privileged area in the Flash memory, an appropriate system
call routine can be looked up from a privileged area of the
ROM 312, and the system call function (e.g., one of 314-0
to -n) can be executed. In the event the Flash memory includes
a privileged area, and a patched system call routine exists, a
handler 310/310" can look up the patched system call routine
from a privileged section of the Flash memory 316, the
patched system call function 318 can be executed. In the
particular embodiment shown, a selected system call function
(314-1) can upload test code to a RAM 315.

Referring still to FIG. 3, if an NMI vector call is not a
system call (e.g., CPUSS SYSREQ.SYSREQ=0), a user's
NMI handler 320 can be called from a non-privileged (e.g.,
user mode) section of Flash or RAM. As shown, vector calls
to the Flash memory vector table 304 can result in a suitable
user handler (e.g., fault handler322, interrupt service request
324-0/1) stored in the Flash memory or in RAM. In one
particular embodiment, vectors 0,1 in the Flash vector table

US 9,262,340 B1
5

304 can include start addresses for a user's main code (e.g.,
firmware) 326. Such start addresses can be used only if reg
ister SFLASH FLASH START has a particular value (i.e.,
SFLASH FLASH START-FFFF. FFFF), otherwise, an
address in register SFLASH FLASH START can be used as
a firmware start address.

Vector calls to the RAM vector table 306 can also result in
a suitable user handler (e.g., user NMI hander 328, fault
handler 330, interrupt service request 332-0/1) stored in the
Flash memory or in the RAM.
As noted above, a system according to embodiments can

include multiple protection modes, including a transitory
BOOT mode. System protection modes according to one
particular embodiment will now be described with reference
to FIGS. 4 and 5.

In FIG. 4, column NAME identifies different modes. Col
umn “PROT3:0' shows bit values in a protection value
register corresponding to the different modes. An “X” indi
cates a don't care value (i.e., bit value does not affect mode).
As shown, a most significant bit PROT3 can be “1” in the
transitory BOOT mode. A boot sequence can overwrite such
a bit value when any of the other protection modes (VIRGIN,
OPEN, PROTECTED, KILL) is established. Registers stor
ing protection values PROT3:0 are writable from a privi
leged mode only.
Column “Flash Encoding shows how a protection value

can be encoded in a Flash memory. Such encoding can ensure
that if a programming operation to a portion of the memory
(e.g., Supervisory section) is interrupted between an erase and
program action, the system can be placed in the OPEN mode.
While FIG. 4 shows such an encoding for a Flash memory,
embodiments utilizing other memories can be adjusted
accordingly (i.e., ifa memory erases to a 1 state, OPEN would
be encoded as 111).
Column “CPU” shows restrictions on a processor in the

different modes. Similarly, column “Debug” shows restric
tions on accesses from a debug access port, and “Test shows
restrictions on accesses from a test port.
As shown, in a VIRGIN mode, restrictions on accesses can

be removed. AVIRGIN mode represents a most open mode.
In one embodiment, a system can leave a fabrication facility
in a VIRGIN mode. Systems in a VIRGIN mode can still be
Subject to test, program, and if appropriate, repair steps.
A next more restrictive mode can be the OPEN mode. In an

OPEN mode, a processor can have access to privileged loca
tions only in a privileged mode. Accesses via debug and test
ports can only access nonprivileged (i.e., user) regions. In one
embodiment, following testing (and repair, if appropriate),
systems can be programmed with proprietary manufacturer
code. Any areas of memory (e.g., ROM. Flash memory and/or
RAM) that need to be protected can be identified in predeter
mined Supervisory sections of the Flash memory. Systems
can then be programmed into the OPEN mode to prevent
access to Such areas needing protection. In one embodiment,
systems can be shipped to customers in the OPEN mode.
The next more restrictive mode can be the PROTECTED

mode. In the PROTECTED mode, a processor can have
access to privileged locations as in the OPEN mode. How
ever, accesses via a debug access port are prohibited. Further,
access via a test port can be restricted to non-privileged reg
isters. Access to nonprivileged mode registers can enable
system calls (as described herein) to be made. In one embodi
ment, after a user (e.g., customer) programs a system with
user code, the system can be placed in the PROTECTED
MODE, providing protection to the user's code. According to
one embodiment, once in the PROTECTED mode, re-pro

10

15

25

30

35

40

45

50

55

60

65

6
gramming to a less restrictive mode (e.g., OPEN, VIRGIN) is
possible only by erasing all user code.
A most restrictive mode can be the KILL mode. In a KILL

mode no test or debug access is possible. It is noted that such
a mode prevents any failure analysis of the system by Such
restrictive access.
As noted previously, the BOOT mode can be a transitory

state, rather than a mode established by a manufacturer or
customer. In the BOOT mode, a processor has free access to
system locations, while debug and test ports are stalled.

FIG. 5 is another table showing restrictions on accesses of
a processor System based on different modes according to one
particular embodiment. In FIG. 5, column “Protection” iden
tifies a protection mode. A column “From' indicates a source
of an access. CPU(PM) represents a processor request in a
privileged mode. CPU(UM) represents a processor request in
a nonprivileged (i.e., user) mode. DAP represents a debug/test
access port.
The columns “To CPU PBB/ROMNFLASHASFLASHA

BUS Registers' show destinations of requests. “CPU PBB”
can be system regions of a processor. “ROM can be a system
ROM. “FLASH can be a flash memory having supervisory
sections. “SFLASH can be additional system flash memory.
"BUS Registers' can be storage registers in a processor sys
tem and can include both privilege registers and nonprivi
leged (user mode) registers. In the various columns, “Exec
Only' represents execution only accesses. That is, Such
accesses do not read data from Such a location, but rather
execute code residing at the location. (However, in some
embodiments, such executable code can be can be pro
grammed to read data from such locations). “UM stands for
user mode.

It is noted that in all protection modes other than VIRGIN,
a DAP port cannot access privileged registers. In some
embodiments, such a restriction prevents access to program
and erase registers in a Flash memory programming interface.
Accordingly, programming and/or erasing of a Flash memory
can be accomplished through system calls into the ROM.
As noted above, transitions between protection modes can

be restricted to ensure proprietary data is not accessible. A
protection mode policy according to one embodiment is
shown in a state transition diagram in FIG. 6.
A protection policy 600 can be implemented in supervisory

ROM code. As shown, upon completion of manufacturing, a
processor system can be in the VIRGIN mode 602. From the
VIRGIN mode, a processor system can be loaded with manu
facturers (mfg) proprietary code, and then programmed to
the OPEN mode 604 to restrict access to the mfg's proprietary
locations. A customer can program the processor System with
its own proprietary code. A customer can then program the
system to the PROTECTED mode 606 to restrict access to the
customer's code.
As noted above, it is also possible to program a processor

system to a KILL mode 608. According to protection policy
600, a KILL mode 608 can be irreversible. That is, once a
processor system is programmed into such a mode, it cannot
be programmed to any other protection mode.

Referring still to FIG. 6, from a PROTECTED mode 606,
a processor system can be returned to the OPEN mode 604.
However, such an action results in an erasure of customer data
(but not mfg. data). Similarly, from an OPEN mode 604, a
processor system can be returned to the VIRGIN mode 602.
However, such an action results in an erasure of manufacturer
data.

Referring to FIG.7, a protection policy for a Flash memory
according to an embodiment will now be described. Such a
protection policy can be implemented in supervisory ROM.

US 9,262,340 B1
7

A Flash memory 710 can include a supervisory region
710-0 and a main area 710-2. A privileged area 710-1 can be
created by restricting access based on restriction data 728
stored within Supervisory region. In one particular embodi
ment, restriction data 728 can be a per row bit mask that
identifies restricted rows within a Flash memory.

In one embodiment, according to a protection policy,
increasing a number of restricted rows can be accomplished
with system calls. Such system calls can increase to restric
tion data 728 by identifying additional privileged areas (710
1), and enabling data to be programmed into Such additional
privileged areas. However, reduction of protected rows is
only possible with a full erase that returns the Flash memory
710 to the OPEN, VIRGIN or an empty state.

Referring now to FIG. 8, a processor system 800 according
to a further embodiment is shown in block schematic dia
gram. A processor System 800 can be one implementation of
that shown in FIG. 1, and like sections are referred to by the
same reference character but with the first digit being an “8”
instead of a “1”. A system 800 can implement any of the
protection schemes noted above or equivalents.

FIG. 8 differs from FIG. 1 in that is shows a RAM 830 and
peripheral devices 832-00 to -1N connected to bus bridges
816-0/1. Further, a Flash memory 810 has a read accelerator
circuit 834 and program interface (I/F)836. RAM 830 shows
a RAM controller 838 and ROM 808 shows a ROM controller
840. A debug I/F844-0 and a program test interface 844-1 can
be connected to a test/debug access port 812.
A bus 806, in addition to data, address and other control

signals, can include protection signals protO. prot1, and a
bus master signal “master. Signal protO can indicate
whether an access is a code fetch or data read/write. Signal
prot1 can indicate whether a processor 802 is operating in a
privileged mode or nonprivileged mode. Signal “master can
indicate if the transaction originates from a processor 802 or
test access port 812.

Protection mechanisms of processor system 800 will now
be described.
As in the case of FIG. 1, a processor 802 can block all or

part of accesses via test access port 812 based on a protection
mode. In particular, when in a PROTECTED mode, accesses
to privileged regions can be blocked, and when in a KILL
mode, all access can be blocked. In one embodiment, a test
access port 812 can be a slave device with respect to control
via bus 806.

Within Flash memory 810, a read accelerator circuit 834
can block read accesses based on both a protection mode
(e.g., VIRGIN, OPEN, PROTECTED, KILL), as well as pro
cessor mode (e.g., privileged or user). A programming I/F836
can block programming accesses to Flash memory 810
according to a protection mode and registers that can distin
guish protected regions from nonprotected regions.

Within RAM 830, RAM controller 838 can block access to
protected regions based on a protection mode and processor
mode of operation (i.e., privileged or not).
Code within ROM 808 can implement protection policies

for programming and erasing Flash memory 810 as noted
above (e.g., erasing blocks when Switching to a lower protec
tion mode). Such actions are only accessible in a privileged
mode of operation. Access to ROM 808 can be prevented
except by a system call (execution of code from a reset con
dition or NMI). A ROM controller 840 can monitor all code
fetch accesses based on signal protO. As noted above. Such
a signal can indicate when an access is not a code fetch from
ROM 808. Accesses to addresses corresponding to reset and
NMI vector calls are always permitted. When such accesses
occur, a system call and privileged mode emulator 814 can

10

15

25

30

35

40

45

50

55

60

65

8
open up a ROM 808 for further code execution. In one
embodiment, this can include setting a ROM access enable
bit. Such a bit can be reset in the event a fetch is from
Somewhere other than the ROM 808.

Referring still to FIG. 8, peripheral devices 832-00 to -1N
can be connected to bus bridges 816-0/1. Access to peripheral
devices (832-00 to -1N) can be restricted based on both pro
tection mode, and mode of operation (e.g., privileged or non
privileged).
As noted above, a processor System can be placed into a

privileged mode in response to an interrupt and system call.
Implementation of Such privileged mode according to one
embodiment will now be described. It is noted that such an
implementation need not modify a processor. That is, the
following embodiments can enable the creation of a privi
leged mode of operation when such a feature is not built into
a processor.

FIGS. 9A to 9D are a sequence of block schematic dia
grams showing privileged mode operations according to an
embodiment. FIGS. 9A to 9D show items like those in FIGS.
1 and 8, and such like items are referred to by the same
reference character but with the first digit being “9.

FIGS. 9A to 9E show a privileged mode emulator 914
having a system call ID register 946 and a control register
948. Such registers can store control bits for establishing a
privileged mode of operation, as well as identification data,
which can identify a system function for execution in the
privileged mode. An interrupt multiplexer (MUX) 950 can
apply NMIs to processor 902. Such NMIs can originate from
Suitable hardware (not shown), and can also originate from
privileged mode emulator 914.
A ROM 908 can include a privileged region 918 which can

hold an NMI handler 954 and a system function 952. It is
noted that Such code can be stored in protected regions of
other memories. However, a vector table pointing to NMI
handler 954 resides in ROM 940.

FIGS. 9A to 9D also show a user (nonprivileged) memory
region 958 which can store a system call 956 for execution. It
is understood that a user memory region 958 can be part of
any suitable memory in the system 900, such as a user region
of a ROM 908, Flash memory 910, or RAM 930, as but
examples.

Referring to FIG.9A, it is assumed that a system 900 can be
in a user mode of operation, indicated by signal prot1 being
de-asserted (i.e., prot1=priv). In a switch to a privileged
mode of operation, a system call 956 can be made from a user
region 958. In this way, a switch to a privileged mode can be
started in a nonprivileged mode. Execution of a system call
956 can include the writing of values to registers 946 and 948
that can identify a particular system function for execution. A
system call 956 may then wait for a particular interrupt.

Referring to FIG.9B, in response to an appropriate inter
rupt (shown by circle 1), a processor 902 can jump to a vector
table in ROM 908 to execute an NMI handler 954 (shown by
circle 2). NMI handler954 can write control values to register
948 that can place the system into a privileged state (shown by
circle 3).

Referring to FIG. 9C, in response to control values in
register 948, system 900 can be in the privileged state. In such
a state, values in control register 948 can result in privileged
mode emulator 914 maintaining an interrupt through inter
rupt MUX 950. Also in response to control register 948,
signal prot1 on bus 906 can be asserted to the privileged
state (prot1 priv) indicating a privileged mode to other
system sections, including peripherals. At this time, NMI
hander 954 can call a system function 952 identified by data
in system call ID register 946.

US 9,262,340 B1

Referring to FIG.9D, at the conclusion of the NMI handler
954, registers 946 and 948 can be cleared, returning system
900 to a nonprivileged state. An interrupt through interrupt
MUX 950 is de-asserted, and signal prot1 on bus 906 can be
de-asserted.

In this way a system call in a nonprivileged state can utilize
an NMI and corresponding handler to enter a privileged state.

Referring now to FIGS. 10A to 100, a processor system
1000 according to another embodiment is shown in block
schematic diagram. System 1000 can include sections like
those of FIGS.9A-9D, and like sections are referred to by the
same reference character but with the leading digits being a
“10” instead of a “9. A system 1000 can implement any of
the protection schemes noted above or equivalents.

Referring to FIG. 10A, in one embodiment, a processor
system 1000 can be all or part of a programmable system-on
chip, and can include a programmable section 1060. A pro
grammable section 1060 can include programmable blocks
1062 and an interconnect fabric 1064. Programmable blocks
1062 can be programmed into various circuits according to
configuration data. Interconnect fabric 1064 can be pro
grammed to provide interconnection between programmable
blocks 1062. In one particular embodiment, either of privi
lege mode emulator 1014 or interrupt MUX 1050 can be
formed from programmable blocks (i.e., are part of 1062).

Referring still to FIG. 10A, in the system 1000 shown, a
privilege mode emulator 1014 can include registers CPUSS
SYSARG and CPUSS SYSREG. Register CPUSS
SYSARG can store a value “arg’ that can be an argument
corresponding to a system function called by a system call. In
one embodiment, arg can be a 32-bit value. A portion of
register CPUSS SYSREQ can store a system function ID
“cmd’, while another portion can store control bits “ctrl. In
one embodiment, cmd can be a sixteen-bit value. Control bits
“ctrl can provide output signal “syscallreq, which can serve
as an interrupt, and “privileged' which can serve as a mode
indicator for a bus line (prot1). In one embodiment, four
control bits can be provided.
A ROM controller 1040 can provide output values (RO

Maccdata) to privilege mode emulator 1014. Such values can
indicate when accesses are (or are not) to the ROM. A privi
lege mode emulator 1014 can use such values to determine
whether or not conditions exist for a privileged mode, or to
reset control bits (ctrl) to exit a privilege mode for improper
aCCCSSCS.

In addition, privilege mode emulator 1014 can provide a
ROM access enable signal "rom access en' that can enable
access to privileged ROM locations in a privilege mode.

Operations of system 1000 will now be described. As in the
case of FIGS. 9A to 9D, in a privileged mode, an NMI handler
can be executed in response to an NMI. The NMI handler can
maintain an NMI in an asserted State by writing to register
1048 to enable privilege mode emulator 1014 to assert
Syscallreq. In addition, privilege mode emulator 1014 can
restrict accesses to ROM (not shown) except for accesses
resulting from a NMI initiated system call, as described
herein. One exception to Such a restriction can be a reset
event, which can end up executing from the ROM, as
described above.
As shown previously in FIG. 2, when a configuration bit

CPUSS SYSREQ.SYSREQ is set, the NMI vector forces a
call from ROM. However, at the same time, other (user) NM's
can allow fetches from vector tables in other memories (e.g.,
Flash memory, RAM). Such a feature can allow system calls
to take priority over user NMI assertions. In one embodiment,

10

15

25

30

35

40

45

50

55

60

65

10
a register CPUSS SYSREQ can further include a DSI NMI.
Such a bit can be set to ensure a system call cannot be made
from within an NMI handler.

Referring to FIG. 10B, a portion of a privileged mode
emulator 1014 according to an embodiment is shown in a
schematic diagram. Signals “wdatai', “wdata can be
write data values. A "master” signal can indicate an access by
ROM (0), or some other source (1) (e.g., debug access port).
Signal “code rd not rom can be a signal from a ROM con
troller indicating that an access is not from the ROM. Signal
“access to vec' can also be generated by a ROM controller
to indicate that an access is a vector access. Signal "cpuss
sys req wr' can be a request to write to control register 1048
(only the control bit portion of control register 1048 is shown
in FIG. 10B).

Referring still to FIG. 10B, logic 1066 can ensure that a
privileged bit (cpuss sysreqI) cannot be set if an access is
not from ROM (i.e., master=1). Logic 1068 can ensure that
value rom access en (i.e., access to the ROM) cannot be set
if a code read is not from a ROM (code rd not rom=1).

Referring to FIG. 10C, a portion of a ROM controller 1040
according to an embodiment is shown in a block schematic
diagram. Signals “protO' can indicate a code fetch or data
read/write. Signal “sel can indicate a start of a transfer over
a bus. Signal “trans1” can indicate a type of transfer on a
bus. Signals addr can be address values on a bus. Value
“rom limit” can be a ROM address limit provided to 1072.
Value PROT can be a protection value as noted above (e.g.,
VIRGIN, OPEN, PROTECTED, KILL). Signal “code rd”
can indicate a code read is occurring. Signal “rom rd can
indicate a ROM read is occurring. Signal “rom access ok.'
can indicate that a current ROM access is permitted.

Referring still to FIG. 10C, section 1070 can compare a
received address to an address limit to determine if a vector
call is occurring. If such a condition is true, it can provide an
output of logic 1. In the embodiment shown, if an address is
less than 0000 0010, it can be determined to be a vector call.
Section 1072 can compare an address to a ROM limit. If an
address is less than a limit, section 1072 can output a logic 1.
Section 1074 can determine if a protection mode is low
enough to allow ROM access. In the embodiment shown, if a
protection mode is VIRGIN or BOOT, an output can be
asserted to logic 1.

Referring now to FIG. 11, a pseudocode example of a
system call (SystemCall) routine is shown. Such a System
Call routine can set registers to values to identify a system
function (with cmd and arg). In addition, it can set control bits
to asserted levels (1U-31). While such bits remain set, the
SystemCall can wait for an interrupt to initiate an interrupt
handler. A SystemCall sequence can also be performed with
a tester or debug probe. In such a case, a bit in CPUSS SYS
REQ can be set to indicate the source of the SystemCall.

Referring now to FIGS. 12A and 12B, a pseudocode
example of an NMI handler (NmiHandler) according to an
embodiment is shown. An Nimilandler both starts and ends in
a nonprivileged mode. In the embodiment shown, NimiHan
dler can only be entered from a system call NMI (NMIISR),
and thus is hardware interlocked. If appropriate hardware
signals are not generated, the NmiFHandler will call the system
function.
An NmiHandler can retrieve the system function informa

tion to ensure a correct system function is called (assigning
cmd. Src, and arg values). NmiHandler can then check for a
patched version of itself. If such version exists, it can jump to
a copy of itself in Flash memory (NmiHandlerinFlash). Upon

US 9,262,340 B1
11

conclusion of the Nimilandler, control bits can be reset
(CPUSS SYSREQ=0) to return the system to the nonprivi
leged mode.

Embodiments above have shown System Call routines that
can wait for particular interrupt(s) to trigger a desired NMI
handler for entering a privileged mode. In some embodi
ments, such System Call routines can be responsive to other
interrupts. Embodiments incorporating Such capabilities will
now be described.

Referring to FIG. 13A, one example of a System Call
routine 1300-A (hereinafter SystemCall N) responsive to
other interrupts is shown in a flow diagram. SystemCall N can
be called in a nonprivileged mode of operation, as described
above, or in an equivalent fashion. SystemCall N can be
initiated (1302). SystemCall N can then designate other inter
rupts that can be responded to (1304). SystemCall N can wait
for an interrupt (1306).

If an interrupt associated with SystemCall N is received
(INT N from 1306), SystemCall N can execute the intended
INT handler (1308). INT handler 1308 can place a processor
system into a privileged mode by setting control bits (1308
0), can call a SystemFunction identified by SystemCall N
(1308-1), and upon conclusion, clear control bits (1308-2) to
return to a nonprivileged mode.

However, if one of the other interrupts is received, that is an
interrupt declared in 1304 (INTX from 1306), the interrupt
handler associated with INTX 1312 can be executed. The
INTX interrupt handler 1312 can execute its own system call
routine (SystemCall X) 1302-0, which in the embodiment
shown, can call a system function identified in SystemCall X
1302-1. Upon completion of the INTX handler 1312, control
is returned to SystemCall N. Accordingly, interrupts remain
in the states established by SystemCall N (in box 1304).

In this way, a system call routine can implement a non
blocking wait for interrupt.

Referring to FIG. 13B, another example of a SystemCall N
1300-B is shownina flow diagram. SystemCall N1300-B can
include sections like those of FIG.13A, and such like sections
are referred to by the same reference character.

SystemCall N 1300-B can differ from that of FIG. 13A in
that all interrupts except those associated with intervening
SystemCall X can be disabled (1314). Further, control is not
returned to SystemCall N 1300-B. That is, the intervening
interrupt (INT X) can block completion of SystemCall N
13 OO-B.

In this way, a system call routine can implement a blocking
wait for interrupt.

While embodiments above have a shown processor sys
tems implemented as microcontrollers, ASSPs or program
mable and/or nonprogrammable systems-on-chip, in one
very particular embodiment, Such processor Systems can
form all or part of a PSoC(a) programmable embedded sys
tem-on-chip manufactured by Cypress Semiconductor Cor
poration of San Jose, Calif., having an ARMR) CortexTM
processor embedded therein.

It should be appreciated that in the foregoing description of
exemplary embodiments of the invention, various features of
the invention are sometimes grouped together in a single
embodiment, figure, or description thereof for the purpose of
streamlining the disclosure aiding in the understanding of one
or more of the various inventive aspects. This method of
disclosure, however, is not to be interpreted as reflecting an
intention that the claimed invention requires more features
than are expressly recited in each claim. Rather, as the fol
lowing claims reflect, inventive aspects lie in less than all
features of a single foregoing disclosed embodiment. Thus,
the claims following the detailed description are hereby

10

15

25

30

35

40

45

50

55

60

65

12
expressly incorporated into this detailed description, with
each claim standing on its own as a separate embodiment of
this invention.

It is also understood that the embodiments of the invention
may be practiced in the absence of an element and/or step not
specifically disclosed. That is, an inventive feature of the
invention may be elimination of an element.

Accordingly, while the various aspects of the particular
embodiments set forth herein have been described in detail,
the present invention could be subject to various changes,
Substitutions, and alterations without departing from the
spirit and scope of the invention.
What is claimed is:
1. A system, comprising:
a processor coupled to a bus;
protection registers coupled to the bus, the protection reg

isters configured to store first protection values and Sec
ond protection values;

a first memory coupled to the bus, the first memory includ
ing a privileged portion;

a second memory coupled to the bus, the second memory
including a privileged Supervisory portion, wherein the
first protection values are configured to limit access to
the privileged portion and the privileged Supervisory
portion according to a first protection mode and the
second protection values are configured to limit access
to the privileged portion and the privileged Supervisory
portion according to a second protection mode;

a boot sequence stored in the privileged portion that con
figures the processor to decode first values stored in the
Supervisory portion into the first protection values;

an interrupt handler configured to place a processor into a
privileged mode to access second values stored in the
Supervisory portion to decode the second values into the
second protection values; and

a privileged mode emulation circuit comprising a storage
element accessible by a system call to the privileged
portion of the first memory in response to a nonmaskable
interrupt (NMI) to the processor, the storage element
having a privileged mode output coupled to a signal line
of the bus, wherein the values of the storage element
establish the privileged mode for the system.

2. The system of claim 1, wherein:
the processor, first memory and second memory are

formed in a same integrated circuit package.
3. The system of claim 1, wherein:
the processor, first memory and second memory are

formed in a same integrated circuit Substrate.
4. The system of claim 1, wherein:
the first memory comprises a read-only-memory (ROM);

and
the second memory comprises an electrically program

mable and block erasable read only memory.
5. The system of claim 1, further including
at least one access port for testing or debugging the system;
the second memory further includes a nonprivileged por

tion;
a privileged mode register that establishes a privileged
mode of operation;

the privileged portion of the first memory and the privi
leged Supervisory portion comprise privileged regions
of the system;

in response to the protection value being an open value,
the processor is configured to have access to the privileged

regions only in a privileged mode of operation, and
the access port does not have access to the privileged

regions but has access to the nonprivileged portion; and

US 9,262,340 B1
13

in response to the protection value being a protected value,
the processor is configured to have access to the privileged

regions only in a privileged mode of operation, and
the access port does not have access to the privileged

regions or the nonprivileged portion.
6. The system of claim 1, wherein:
at least one system circuit resource that is accessible or not

accessible according to the protection values.
7. The system of claim 1, wherein:
the second memory is writable and erasable only in the

privileged mode.
8. The system of claim 1, further including:
a vector relocator configured to
redirect first hardware initiated vector calls only to execut

able routines in a privileged portion of the first memory,
and

redirect second hardware initiated vector calls to locations
in any of the first memory, the second memory or a
random access memory (RAM) coupled to the bus.

9. A method for establishing protection modes in a proces
Sor System, comprising:

in response to a reset condition of the system, establishing
a first protection mode comprising executing a boot
sequence stored in a privileged portion of a first memory
that decodes first encoded protection data stored in a
privileged portion of a second memory to generate first
decoded protection data;

restricting access to the first and second memory according
to the first protection mode:

in response to an interrupt, using a privileged mode emu
lation circuit comprising a storage element accessible by
a system call to the privileged portion of the first
memory in response to a nonmaskable interrupt (NMI)
to the processor, the storage element having a privileged
mode output coupled to a signal line on a bus to establish
a second protection mode and to indicate the second
privileged mode on the bus, the bus coupled to the pro
cessor, and

after restricting access to the first and second memory
according to the first protection mode, selectively
restricting access to the first and second memory accord
ing to the second protection mode; wherein the second
memory is section erasable to one value.

10. The method of claim 9, wherein:
the decoded protection data can indicate at least an open

state or a protected state; and
in the open state
enabling a processor of the system to execute code stored in

a privileged region of the first memory in a privileged
mode but not a user mode, to access privileged regions of
the second memory in a privileged mode but not the user
mode, and access privileged registers in a privileged
mode but not the user mode, and

preventing test port accesses to the code stored in the first
memory, to privileged portions of the second memory,
and to privileged registers; and

in the protected state
enabling processor accesses as when the open state is indi

cated, and
preventing test port accesses to the first memory, to the

second memory, and to the privileged registers.
11. The method of claim 10, wherein:
the decoded protection data can further indicate a virgin

state or a kill state; and

5

10

15

25

30

35

40

45

50

55

60

14
in the Virgin state
enabling processor accesses to execute code stored in the

first memory, to access privileged portions of the second
memory regardless of mode, and to access privileged
registers regardless of mode, and

preventing test port accesses to the first memory, and
enabling test port accesses to privileged portions of the
second memory, and to the privileged registers;

in the kill state
enabling processor accesses as when the open state is indi

cated, and
preventing test port accesses to the first memory, to the

second memory, and to both privileged and nonprivi
leged registers.

12. The method of claim 10, wherein:
the second memory selectively writes one logic value to bit

locations in a program mode and block erases groups of
bit locations to a second logic value; and

the encoded protection value corresponding to the decoded
open value includes only the second logic value.

13. The method of claim 9, further including:
selectively restricting access to at least one system circuit

resource according to the decoded protection data.
14. An apparatus comprising:
a privileged mode emulation circuit configured to couple

with a processor and a first memory through a bus, the
privileged mode emulation circuit comprising a storage
element accessible by a system call to a privileged por
tion of the first memory in response to a nonmaskable
interrupt (NMI) to the processor, the storage element
having a privileged mode output coupled to a signal line
of the bus, wherein the values of the storage element
establish a privileged mode for the system, wherein the
privileged mode emulation circuit is configured to
couple with protection registers and a second memory
through the bus, the protection registers configured to
store first protection values and second protection val
ues, the second memory including a privileged supervi
sory portion, wherein the first protection values are con
figured to limit access to the privileged portion and the
privileged supervisory portion according to a first pro
tection mode and the second protection values are con
figured to limit access to the privileged portion and the
privileged supervisory portion according to a second
protection mode.

15. The apparatus of claim 14, wherein the privileged por
tion is configured to store a boot sequence that configures the
processor to decode first values stored in the supervisory
portion into the first protection values.

16. The apparatus of claim 14, wherein the privileged mode
emulation circuit is configured to couple with an interrupt
handler through the bus, the interrupt handler configured to
place the processor into the privileged mode to access second
values stored in the Supervisory portion to decode the second
values into the second protection values.

17. The apparatus of claim 14, wherein the first memory
comprises a read-only-memory (ROM), and the second
memory comprises an electrically programmable and block
erasable read only memory.

18. The apparatus of claim 14, wherein the second memory
is writable and erasable only in the privileged mode.

