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Abstract— Nowadays, vast amount of routing data, like se-
quences of points of interests, landmarks, etc., are available
due to the proliferation of geodata services. We refer to these
sequences asroutes and the involved points simply asnodes. In
this thesis, we consider the problem of evaluatingpath queries
on frequently updated route collections. We present our current
work for two path queries: (i) identifying a path between two
nodes of the collection, and (ii) identifying a constrainedshortest
path. Finally, some interesting open problems are described and
our future work directions are clearly stated.

I. I NTRODUCTION

The recent advances in geodata services have resulted in
the abundance of user or machine generated routing data,
i.e., sequences of points of interests (POI), landmarks etc. We
refer to these sequences asroutesand the involved points as
nodes. For example, consider people visiting Athens that have
GPS-enabled devices to track their sightseeing and to create
routes through interesting places. Web sites such as ShareMy-
Routes.com maintain a huge collection of such routes, with
POIs from all over the world. Note that in applications like the
above, the routes are not necessarily formed over an existing
graph. For instance people may create walking routes inside
a city park. In contrast, there exist applications where the
routes are constructed based on an existing graph, e.g., a road
network. For instance, a supplier/delivery service for picking-
up and delivering parcels creates and maintains every day a
vehicle route collection to satisfy customer requests.

Given the availability of large route collections, the interest-
ing problem of evaluating various types of graph-based queries
directly on the collections arises. We present our current work
for two of them. In both queries, we are looking forpaths
that connect nodes in route collections. Apath may contain
nodes from different routes of the collection, since reaching a
target node may require changing routes usinglinks, i.e., nodes
shared among routes. The first query, denoted byPATH(ns, nt),
identifies a path in the route collection from nodens to nt. For
the second query, called Fewer-Links Shortest Path (FLSP), we
consider that each node in a route of the collection is assigned
a time interval. In addition, we consider the costc for changing
between two routes, and the costm for moving among nodes
within the routes. In this setting,FLSP(ns, Is, nt, It) query
identifies the path fromns to nt under the temporal constraints
introduced by the time intervals that minimizes the costc of
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changing routes and the moving costm within the routes. Note
that if two paths have the same changing costc, we prefer the
one with the lowest moving costm.

In the example of touristic routes, given two nodes rep-
resenting POIs,ns and nt, PATH(ns, nt) query identifies a
sequence of interesting places that connectsns with nt. In
the context of delivery services,FLSP query is related to the
dynamic pickup and delivery problem with time windows [1].
A vehicle v that follows a router passes through nodes of
the collection, i.e., landmarks in a city, to pick up or deliver
parcels within a specific time interval. In contrast with most of
the existing work, we assume that a parcel may be picked up
and delivered by different vehicles. Specifically, two vehicles
v1 and v2 may exchange a parcel if their routesr1 and r2
respectively have a shared noden, i.e., a link, and the time
intervals for which vehiclesv1 and v2 are in n, match. In
this context, given a new customer request,FLSP(ns, Is, nt, It)
query identifies a way to pick up the new parcel from nodens

and deliver it tont under the temporal constraints introduced
by the time intervals, that minimizes the operational cost,i.e.,
the changingc and moving costm, without adding a new
route, but exploiting the existing ones.

In this thesis, we study the problem of evaluating path
queries on route collections that do not fit in main memory
and are frequently updated adding new routes. For instance,a
collection of touristic routes is updated as users continuously
share new interesting routes. The vehicle route collectionof a
supplier/delivery service is frequently updated as some ofthe
new customer requests may not be served using current routes
and therefore, new routes are included.

A route collection can be transformed to a graph and thus,
PATH and FLSP queries can be evaluated using graph-based
techniques following one of the two paradigms: (i) direct eval-
uation, e.g., graph traversal methods, and (ii) preprocessing
the graph to compute and store reachability information. The
latter techniques are the fastest, but they are mostly suitable
for graphs that are not frequently updated, or when the updates
are localized. In contrast, the former techniques are easily
maintainable, but are slow as they visit a large part of the
graph. In Section II, we discuss the existing work that follow
the two paradigms above.

Based on these observations, Section III presents our meth-
ods from [16] and [17] for answeringPATH queries directly
on route collections and our work forFLSP. Our framework



TABLE I

SUMMARY OF RELATED WORK ON EVALUATING PATH AND FLSP QUERIES ON GRAPHS.

category method graph type PATH FLSP maintenance

Direct evaluation
depth/breadth-first search all types yes no update adjacency lists
uniform-cost search/A* [2] all types yes yes update adjacency lists
Dijkstra all types yes yes update adjacency lists

Preprocessing the graph

2-hop [3] all types, yes yes not discussed
HOPI [4], [5] all types no no method in [4]
Geometry-based [6] and DAG no no not discussed
graph partitioning based 2-hop [7]
updatable 2-hop [8] DAG no no node-separation property
3-hop [9] DAG no no not discussed
Interval labelling [10] DAG computing ancestors no gaps in post order numbers
Dual Labeling [11] DAG no no not discussed
GRIPP [12] all types computing descendants not discussed not discussed
Path-cover [13] DAG no no not discussed
Graph embedding [14], [15] all types yes, using A* yes, using A* not considered,

structure remains fixed

combines the positive aspects of the two aforementionted
paradigms.

Finally, we conclude our discussion and propose future
research directions in Section IV.

II. EXISTING WORK

A route collectionP can be mapped to a directed graph. In
case ofPATH queries, we constructGPATH(N,E), such thatN
contains each node inP, andE has an edgen1→n2 for every
pair of consecutive nodesn1, n2 in a router. ForFLSP queries,
we constructGFLSP(N,E), whereN has a node of the form
(n, r) for each router containing noden of the collection,
andE contains edges with cost given by pair(c,m), of the
following two types: (i) an edge(n1, r)→ (n2, r) for every
pair of consecutive nodesn1, n2 in a router with c = 0 and
m equal to the moving cost fromn1 to n2 in r, and (ii) an
edge(n, r1)→ (n, r2) for each linkn between routesr1 and
r2 with c equal to the changing cost fromr1 to r2 andm = 0.

Then, it is straightforward to see thatPATH andFLSP queries
on P can be answered onGPATH and GFLSP respectively,
following one of the two paradigms: (i) direct evaluation, and
(ii) preprocessing the graph. Note thatPATH query is closely
related toREACH query, studied in the literature. However,
REACH(ns, nt) only determines if a path fromns to nt exists.
Thus, an answer toPATH(ns, nt) provides an answer also to
REACH(ns, nt), while the converse does not hold. In addition,
a method forFLSP queries provides an answer also toPATH
queries, but not in an efficient way. Table I summarizes the
existing work in terms of the graph type supported, and the
ability to answerPATH andFLSP queries and to handle updates.
Direct evaluation. The simplest way to evaluatePATH and
FLSP queries is to traverse the graph at query time exploiting
a search algorithm, e.g., depth-first or breadth-first search,
and uniform-cost or A* search [2] respectively. Furthermore,
especially for FLSP queries, we can exploit the Dijkstra
algorithm. This approach has minimum space requirements,
since it only stores the adjacency lists of the graph. In addition,
the adjacency lists can be easily updated. On the other hand,it
may need to visit a large part of the graph to answer a query.
Preprocessing the graph. As a different approach, we pre-
processGPATH or GFLSP to compute and store reachability
information for efficiently evaluatingPATH or FLSP queries

respectively. In case ofPATH queries, we exploit the transitive
closure (TC) of GPATH, i.e., the graphG∗

PATH
that has an edge

n1 → n2 if a path fromn1 to n2 exists inGPATH. Using the
TC a PATH query can be answered in constant time. However,
although efficient algorithms for computing theTC have been
proposed, the computation and storage cost are prohibitive
for large disk-resident graphs. Thus, various methods that
compress the reachability information have been proposed.

In [3], 2-hop identifies a set of nodes, called centers, that
best capture the reachability information of a graph as inter-
mediates. Then, each noden is assigned a listLin[n] with the
centers that can reachn, and anotherLout[n] with the centers
reachable fromn. In addition, the first-edge information is
included, i.e., the first node in the path fromn to a center
in Lin[n] and from a center inLout[n] to n. 2-hop can also
be exploited to identify the shortest path between two nodes,
and thus, for answeringFLSP queries. However, computing the
optimal 2-hop scheme is NP-hard, and while an approximation
algorithm is given in [3], it still requires the computationof
theTC. Thus, this approach cannot be applied to large graphs.
In addition, the work does not handle frequent updates.

HOPI [4], [5] exploits graph partitioning to reduce the
building cost of 2-hop. To deal with updates, it exploits the
method in [4]. However, HOPI cannot be used forPATH or
FLSP queries, as it can only identify elements that match XPath
expressions of the form://book//author (where “//”
is the ancestor-descendant operator) in an XML document
collection, but not to detect explicitly the actual path with
all nodes included.

Other efforts, e.g., [6], [7], [8], [9], [10], [11], [13], entirely
focus onREACH queries. They first transform the input graph
into a DAG by replacing each strongly connected component
with a “super” node. For example, [10] proposes an interval
labelling scheme based on the postorder traversing of DAG’s
spanning tree. Updates are handled by leaving gaps in pos-
torder numbers. Although not discussed,PATH queries can
be answered on DAG by computing the ancestors of a node.
However, all the above works cannot be adopted forPATH

queries onGPATH constructed from a route collection since,
due to “super” nodes, it is not possible to construct full paths.

Unlike the previous works, the GRIPP scheme [12] assigns
an interval label to each node of a graph (not necessarily a



DAG). Although, not discussed,PATH queries can answered
by computing the descendants of a node. On the other hand,
[12] does not deal with frequent updates.

Finally, [14], [15] use the graph embedding technique to
derive lower and/or upper bounds of the distance between two
nodes. These bounds are then exploited as heuristics by an A*
search for answering shortest path queries. Thus, this approach
can be used forFLSP queries onGFLSP graph. However, a
basic assumption of these methods is that the graph structure
remains fixed, whereas in our setting route collections and
GFLSP graphs constructed from them are frequently updated.

III. O UR FRAMEWORK

In this section, we present our methods for evaluating path
queries on route collections. First, we introduce our index
schemes on route collections, termed:P-Index, H-Index and
L-Index. Then, we present algorithms that exploit our indices
for efficiently evaluatingPATH and FLSP queries. Finally,
we discuss maintenance issues of the indices under frequent
updates of the route collections.

A. Indexing Route Collections

The P-Index [16] of a route collectionP, denoted by
P-Index(P), is an inverted index onP that associates each
node with the routes that contain it. Specifically, for each node
n in P, P-Index(P) retains listroutes[n] of 〈r : o〉 entries
for all routesr that includen, whereo indicates the position
of noden in r. Note that theroutes[n] list is sorted by the
route identifierr.

The H-Index [16] of a route collectionP, denoted by
H-Index(P), captures all possible transitions among the
routes inP via their links (shared nodes). In particular, for
each router in P, H-Index(P) retains list edges[r] of
〈r1, nl : o : o1〉 entries for every router1 that has a shared
node, linknl, with r. Elemento (resp.o1) denotes the position
of link nl in router (resp.r1). Note that theedges[r] list is
sorted primarily by router1 identifier, and secondarily byo.

Storing all possible transitions among the routes of a
collection in H-Index requires a lot of space and has a
large maintenance cost. To deal with this problem, we intro-
duce theL-Index [17] of a route collectionP, denoted by
L-Index(P), taking into account only the links contained in
each route. Specifically, for each router in P, L-Index(P)
retains list links[r] of 〈nl : o〉 entries for every linknl

contained in router at positiono. Note that thelinks[r] list
is sorted by the link node identifier.

Figure 1 illustrates a route collection and its indices.

B. EvaluatingPATH Queries

In [16], we introduce the path-first search (pfs) paradigm.
In particular,pfs traverses the nodes in a collection similar to
depth-first search. For each noden, it visits part of every route
r that contains it at once, i.e.,pfs visits all nodes that follow
n in r. Then, building upon thepfs paradigm, we propose
algorithmspfsP, pfsH and pfsL that exploit the reachability
information within the routes to efficiently evaluatePATH

r1 (A,B,C)
r2 (F,N,B,L)
r3 (T, B,N,M)

(a)

node routes list

A 〈r1 : 1〉
B 〈r1 : 2〉, 〈r2 : 3〉,

〈r3 : 2〉
C 〈r1 : 3〉
F 〈r2 : 1〉
L 〈r2 : 4〉
N 〈r2 : 2〉, 〈r3 : 3〉
M 〈r3 : 4〉
T 〈r3 : 1〉

(b)

route edges list

r1 〈r2, B : 2 :3〉
r2 〈r1, B : 3 :2〉,

〈r3, B : 3 :2〉,
〈r3, N : 2 :3〉

r3 〈r2, N : 3 :2〉

(c)

route links list

r1 〈B : 2〉
r2 〈B : 3〉, 〈N : 2〉
r3 〈B : 2〉, 〈N : 3〉

(d)

Fig. 1. (a) An example of a route collectionP, (b) P-Index(P), (c)
H-Index(P), and (d)L-Index(P)

queries. The algorithms mainly differ in the indexing scheme
from Section III-A they exploit to terminate the search.

ThepfsP algorithm exploits theP-Index in two ways. First,
it accesses the routes that contain a noden to visit the nodes
after it, by performing a linear scan onroutes[n]. Second, it
terminates the search when a route that contains the targetnt

of PATH(ns, nt) query after a noden is found. Given noden,
to perform this check, we joinroutes[n] androutes[nt] lists
of P-Index. The procedure is similar to a merge-join, as both
routes are sorted by the route identifier, that finishes as soon
as a common routerc with n before targetnt is found, or one
of the lists is traversed to the end. The answer toPATH(ns, nt)
query is given by the path from sourcens to noden and the
part of routerc from n to targetnt.

ThepfsH algorithm exploits theH-Index of a route collec-
tion as follows. Intuitively, an entry〈r1, nl :o :o1〉 in edges[r]
list of H-Index denotes that all nodes inr before linknl can
reach the nodes afternl in r1. Based on this, the key idea
of the pfsH termination condition is to check for every route
r that contains a noden, whether there is a router1 in the
collection such that: (i)r andr1 have a common linknc, (ii)
r containsn before link nc, and (iii) r1 contains targetnt

after link nc. Specifically, given a noden and a router that
contains it, we join listedges[r] of H-Index with routes[nt]
of P-Index for targetnt. The procedure is similar to a merge-
join as both lists are sorted by the route identifier, that finishes
as soon as a common routerc is found and conditions (i), (ii)
and (iii) are satisfied, or one of the lists is traversed to the
end. The answer toPATH(ns, nt) query is given by the path
from sourcens to noden, the part of router from n to link
nc, and the part ofrc from nc to targetnt.

The basic idea of thepfsL algorithm is to traverse the
collection considering only the links of each route while
ignoring all other nodes. Given a noden and a router that
contains it, we access the links aftern in r by sortinglinks[r]
according to the position of the links inr. Furthermore,pfsL
terminates the search after visiting a link that lies beforetarget
nt in a route of the collection. To this end, we first construct
a list T that contains every linknl before targetnt in a route
r of the collection, and the part of router from nl to nt. Note
that T list is sorted by the link node identifier. Then, given a
noden and a router that contains it, we joinlinks[r] list with
T looking for a common linknc such thatnc is beforen in
router. The procedure is similar to a merge-join as both lists



are sorted by the link identifier, that finishes as soon as such
a common linknc is found, or one of the lists is traversed
to the end. The answer toPATH(ns, nt) query is given by the
path from sourcens to noden, the part of router from n to
link nc, and the path ofnc to targetnt, stored inT .

C. EvaluatingFLSP Queries

We adopt the uniform-cost search [2] to give a first-cut
solution forFLSP queries. Similarly to thepfs paradigm, we
traverse the route collection visiting for each noden all nodes
that follown in every router of the collection. Building upon
this setting, we devise two methods, termedspP and spL, to
reduce the iterations performed by the search algorithm.

The key point of both methods is to compute a lower
bound of the answer toFLSP query, calledcandidate answer,
exploiting the indices of a collection. The candidate answer
is continuously being improved until it becomes the correct
answer. The role of a candidate answer is twofold: triggering
an early termination condition and pruning the search space.
Intuitively, we exclude a noden from the search when we
determine that expandingn cannot result in an answerp better
than current candidate answer. To perform this check, we
calculate lower bounds for changingc and movingm cost of
p and we compare them against the costs of current candidate
answer. We also use this check to early terminate the search.

The spP and spL methods mainly differ in the index they
exploit to compute a candidate answer.spP usesP-Index
whereasspL exploitsL-Index. The procedure for computing
a candidate answer is similar to the merge-join discussed for
pfsP andpfsL with the exception that we identify all common
entries (routes forspP or links for spL). In addition, similarly
to pfsL, spL considers only the links of each route.

D. Updating Route Collections

As discussed in Section I, we consider route collections that
do not fit in main memory and thus, all indices presented in
this thesis are stored as inverted files on secondary storage
and maintained by batch updates. Inverted files are more
efficient when their lists are stored in a contiguous way.
Therefore, dealing with each new route separately is not
an efficient method for updating the collection. A common
solution is to build inverted indices in memory consideringall
the new routes and to exploit them for evaluating the queries
in parallel with the disk-based indices. Each time a set of
new routes arrives, only the memory-based indices are updated
with minimum cost. Then, to reflect the changes in the disk-
based indices, there are three possible strategies: (a) rebuilding
them from scratch using both the old and the new routes, (b)
merging them with the memory resident ones and (c) lazily
updating index lists when they are retrieved from disk during
query evaluation. In our work, we adopt the second strategy.

IV. FUTURE WORK DIRECTIONS

We plan to extend our work in three directions: (i) address
other kinds of updates on route collections, (ii) evaluate
other types of queries mostly considering constraints, and(iii)
combine query evaluation with keyword search.

First, we plan to study the maintenance issues in cases apart
from adding new routes. For example, in the dynamic pickup
and delivery problem, new customer requests can be served by
inserting nodes in existing vehicle routes. This update method
will also change the time intervals of the nodes in the routes.

Second, we plan to evaluate queries similar to trip planning
[18] and optimal sequenced route [19] queries. Specifically,
consider a set of classesC such that each noden in a
route collection is an instance of a class inC, e.g., the
nodes in a touristic route are instances of classesC =
{Museum, Stadium,Restaurant}. An interesting query is
to find a path from a nodens to nt that passes first through
a Museum, then aStadium and finally aRestaurant.

Finally, we could also combine query evaluation with key-
word search. For example, instead of specific nodes, the source
and the target of a query could be given as a set of keywords,
or in the query discussed in the previous paragraph, we want
the path to pass through aRestaurant with a description
relevant to ”sea food, lobster” keywords.
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