Evaluating Path Queries over Route Collections

Panagiotis Bouros
supervised by Yannis Vassiliou

School Of Electrical and Computer Engineering,
National Technical University of Athens, Greece
lpbour @bl ab. ece. nt ua. gr
2yv@lbl ab. ece. ntua. gr

Abstract— Nowadays, vast amount of routing data, like se- changing routes and the moving castwithin the routes. Note
quences of points of interests, landmarks, etc., are avalite that if two paths have the same changing egste prefer the
due to the proliferation of geodata services. We refer to thee one with the lowest moving cost.

sequences asoutes and the involved points simply asnodes. In In th le of touristi i . - d
this thesis, we consider the problem of evaluatingath queries n the exampie of touristic routes, given two noaes rep-

on frequently updated route collections. We present our curent ~ fesenting POlsys and n;, PATH(n,,n:) query identifies a
work for two path queries: (i) identifying a path between two sequence of interesting places that connegtswith n;. In
nodes of the collection, and (ii) identifying a constrainedshortest the context of delivery serviceSLSP query is related to the
path. Finally, some interesting open problems are descritiband dynamic pickup and delivery problem with time windows [1].
our future work directions are clearly stated. .

A vehicle v that follows a router passes through nodes of

. INTRODUCTION the collection, i.e., landmarks in a city, to pick up or defiv

The recent advances in geodata services have resultedjqﬁcel_s V_V'thm a specific time interval. In contrast with m
the abundance of user or machine generated routing dé@ eX|s_t|ng work, we assume_that a parc_e_l may be plck_ed up
i.e., sequences of points of interests (POI), landmarksvic and delivered by different vehicles. _Spec!ﬂcally, two e
refer to these sequences rasitesand the involved points as V1 @ndv2 may exchange a parcel if their routes and
nodes For example, consider people visiting Athens that hay§SPectively have a shared nodei.e., a link, and the time
GPS-enabled devices to track their sightseeing and toecre"(ﬁfervals for V_Vh'Ch vehicles); and v, are inn, match. In
routes through interesting places. Web sites such as Slyare IS context_, given anew CL_Jstomer requestp (ns, L, ny, Ir)
Routes.com maintain a huge collection of such routes, withiery |d_ent|f|es away 1o pick up the new pafc‘?' frqm nege
POIs from all over the world. Note that in applications liket and deliver it ton; under the temporal constraints introduced
above, the routes are not necessarily formed over an existfy (he ime intervals, that minimizes the operational cbet,
graph. For instance people may create walking routes insighé changingc and moving costm, without adding a new
a city park. In contrast, there exist applications where tgute, t?“‘ expllomng the existing ones. .
routes are constructed based on an existing graph, e.gada ro In _th's thesis, we stu_dy the problem 9f_ evalu_atlng path
network. For instance, a supplier/delivery service fokizig- gueries on route collections thz_it do not fit in main memory
up and delivering parcels creates and maintains every da@'¥l aré frequently updated adding new routes. For instance,
vehicle route collection to satisfy customer requests. collection of touristic routes is updated as users contisiyo
Given the availability of large route collections, the iretst- share. new interesting routes. The vehicle route colleatioa
ing problem of evaluating various types of graph-basediqaersupp“er/de“very service is frequently updateq as somtnef
directly on the collections arises. We present our curreskw "eW customer requests may not be served using current routes

for two of them. In both queries, we are looking fpaths and therefore, new routes are included.

that connect nodes in route collections.path may contain _ A routé collection can be transformed to a graph and thus,
nodes from different routes of the collection, since reagha PATH _and FLSP queries can be evaluateq usn?g_ grgph—based
target node may require changing routes usiimks, i.e., nodes technlques following one of the two parad|gms". 0] dwegalev
shared among routes. The first query, denoteBATH(n, n;), uation, e.g., graph traversal methods, a_n_d (_") Prepracgss
identifies a path in the route collection from nadeto n,. For the graph to compute and store reachability informatiore Th
the second query, called Fewer-Links Shortest PElRE), we latter techniques are the fastest, but they are mostly Haita
consider that each node in a route of the collection is aesigrf®" 9raphs that are not frequently updated, or when the esdat
a time interval. In addition, we consider the cogbr changing are localized. In contrast, the former techniques are yeasil

between two routes, and the cestfor moving among nodes maintainable, _but are sIo_vv as they vi_sit_ a large part of the
within the routes. In this SettinggLSP(n, I, ns, I,) query graph. In Section Il, we discuss the existing work that fello

identifies the path from to n; under the temporal constraintsthe two paradigms above. . .
Based on these observations, Section Il presents our meth-

introduced by the time intervals that minimizes the cosif :))
ods from [16] and [17] for answerinBATH queries directly
The author is supported by the Greek State Scholarshipsdation (IKY). on route collections and our work f&.SP. Our framework

TABLE |
SUMMARY OF RELATED WORK ON EVALUATING PATH AND FLSP QUERIES ON GRAPHS

category [[method [graph type | PATH [FLSP [maintenance
depth/breadth-first search all types yes no update adjacency lists
Direct evaluation uniform-cost search/A* [2] all types yes yes update adjacency lists
Dijkstra all types yes yes update adjacency lists
2-hop [3] all types, yes yes not discussed
HOPI [4], [5] all types no no method in [4]
Geometry-based [6] and DAG no no not discussed
graph partitioning based 2-hop [7]
updatable 2-hop [8] DAG no no node-separation property
Preprocessing the graph/| 3-hop [9] DAG no no not discussed
Interval labelling [10] DAG computing ancestors no gaps in post order numbers
Dual Labeling [11] DAG no no not discussed
GRIPP [12] all types computing descendant§ not discussed not discussed
Path-cover [13] DAG no no not discussed
Graph embedding [14], [15] all types yes, using A* yes, using A* not considered,
structure remains fixed

combines the positive aspects of the two aforementiontezbpectively. In case afATH queries, we exploit the transitive

paradigms. closure 'C) of Gpam, i.€., the graphGy,; that has an edge
Finally, we conclude our discussion and propose future — no if a path fromn; to ny exists in Gpary. Using the
research directions in Section IV. T'C aPATH query can be answered in constant time. However,
although efficient algorithms for computing t&" have been
[I. EXISTING WORK proposed, the computation and storage cost are prohibitive

A route collectionP can be mapped to a directed graph. IfP" 1arge disk-resident graphs. Thus, various methods that
case ofPATH queries, we construcipary(N, E), such thaty COMpress the reachability information have been proposed.
contains each node iR, andE has an edge, — n for every In [3], 2-hop identifies a set of nodes, called centers, that
pair of consecutive nodes , n, in a router. FOrFLSP queries, best capture the reachability information of a graph asinte
we constructGrsp(N, E), where N has a node of the form mediates. Then, each nodeas assigned a lisL;,, [n] with the
(n,r) for each router containing noden of the collection, centers that can reaeh and anotheL,,:[n] with the centers
and E contains edges with cost given by p&ir,m), of the reachable fromn. In addition, the first-edge information is
following two types: (i) an edgén,,r) — (ns,r) for every included, i.e., the first node in the path fromto a center
pair of consecutive nodes,, n, in a router with ¢ = 0 and N Lin[n] and from a center inLy,[n] to n. 2-hop can also
m equal to the moving cost from; to n, in r, and (i) an be exploited to identify the shortest path between two nodes
edge(n,) — (n, ;) for each linkn between routes; and and thus, for answeringL.SP queries. However, computing the
75 with ¢ equal to the changing cost from to 7, andm = 0. optimal 2-hop scheme is NP-hard, and while an approximation

Then, it is straightforward to see tHatTH andFLSP queries algorithm is given in [3], it still requires the computatiaf
on P can be answered opiy and Grrsp respectively, theT'C. Thus, this approach cannot be applied to large graphs.
following one of the two paradigms: (i) direct evaluationda N addition, the work does not handle frequent updates.

(ii) preprocessing the graph. Note tHRtTH query is closely ~ HOPI [4], [5] exploits graph partitioning to reduce the
related toREACH query, studied in the literature. Howeverpuilding cost of 2-hop. To deal with updates, it exploits the
REACH(n,, n¢) only determines if a path from, to n; exists. method in [4]. However, HOPI cannot be used fo{TH or
Thus, an answer tBATH(n,,n;) provides an answer also toFLSP queries, as it can only identify elements that match XPath
REACH(n,, n¢), While the converse does not hold. In additiongxpressions of the form/./ book// aut hor (where 7/”

a method forFLSP queries provides an answer alsoRsTH is the ancestor-descendant operator) in an XML document
queries, but not in an efficient way. Table | summarizes tig®llection, but not to detect explicitly the actual path twit
existing work in terms of the graph type supported, and ti@l nodes included.

ability to answePATH andFLSP queries and to handle updates. Other efforts, e.g., [6], [7], [8], [9], [10], [11], [13], direly
Direct evaluation. The simplest way to evalua®ATH and focus onREACH queries. They first transform the input graph
FLSP queries is to traverse the graph at query time exploitirigto a DAG by replacing each strongly connected component
a search algorithm, e.g., depth-first or breadth-first $earevith a “super” node. For example, [10] proposes an interval
and uniform-cost or A* search [2] respectively. Furthermor labelling scheme based on the postorder traversing of DAG's
especially for FLSP queries, we can exploit the Dijkstraspanning tree. Updates are handled by leaving gaps in pos-
algorithm. This approach has minimum space requiremertder numbers. Although not discussediTH queries can
since it only stores the adjacency lists of the graph. Intamidi be answered on DAG by computing the ancestors of a node.
the adjacency lists can be easily updated. On the other itandjowever, all the above works cannot be adopted H&TH

may need to visit a large part of the graph to answer a quegyeries onGpary constructed from a route collection since,
Preprocessing the graph As a different approach, we pre-due to “super” nodes, it is not possible to construct fulhgat
processGpary OF Grrsp to compute and store reachability Unlike the previous works, the GRIPP scheme [12] assigns
information for efficiently evaluatin@PATH or FLSP queries an interval label to each node of a graph (not necessarily a

route | edges list

DAG). Although, not discusse®ATH queries can answered

by computing the descendants of a node. On the other hand, nzde | Z:Utf; et :; E:igggi
[12] does not deal with frequent updates. B | (r:2), (ra:3), g:zﬁza
Finally, [14], [15] use the graph embedding technique to: (4. B.0) . gfjgi rs | (raN:3:2)
derive lower and/or upper bounds of the distance between t\/\[@ g g: f,: JLW)) F | (r2:1) ©
nodes. These bounds are then exploited as heuristics by an A* @ f, E’”Zf? ‘ o
. - - r2:2), (r3:3) route | links list

search for answering shortest path queries. Thus, thisappr M | (r3:4) T 5.2

can be used foFLSP queries onGrrsp graph. However, a T | (rs:1) ro | (B:3),(N:2)
basic assumption of these methods is that the graph steuctur (b) ra | (B:2),(N:3)
remains fixed, whereas in our setting route collections and ()

Grisp graphs constructed from them are frequently updatedrig. 1. (a) An example of a route collectioR, (b) P-Index(P), (c)
H-Index(P), and (d)L-Index(P)
. OUR FRAMEWORK queries. The algorithms mainly differ in the indexing scleem
In this section, we present our methods for evaluating pafttom Section Ill-A they exploit to terminate the search.
queries on route collections. First, we introduce our index ThepfsP algorithm exploits the®-Index in two ways. First,
schemes on route collections, term@&dIndex, H-Index and it accesses the routes that contain a noade visit the nodes
L-Index. Then, we present algorithms that exploit our indiceafter it, by performing a linear scan omutes[n]. Second, it
for efficiently evaluatingPATH and FLSP queries. Finally, terminates the search when a route that contains the tayget
we discuss maintenance issues of the indices under frequefniRATH(n, n;) query after a node is found. Given node,
updates of the route collections. to perform this check, we joinoutes[n] androutes[n,] lists
of P-Index. The procedure is similar to a merge-join, as both
routes are sorted by the route identifier, that finishes as soon
The P-Index [16] of a route collectionP, denoted by as a common route. with n before target, is found, or one
P-Index(P), is an inverted index o that associates eachof the lists is traversed to the end. The answerADH(n,, n¢)
node with the routes that contain it. Specifically, for eaoden query is given by the path from soureg to noden and the
n in P, P-Index(P) retains listroutes[n] of (r: o) entries part of router, from n to targetn,.
for all routesr that includen, whereo indicates the position ThepfsH algorithm exploits thé{-Index of a route collec-
of noden in r. Note that theroutes[n| list is sorted by the tion as follows. Intuitively, an entryry,n;:0:01) in edges[r]
route identifierr. list of H-Index denotes that all nodes inbefore linkn; can
The H-Index [16] of a route collectionP, denoted by reach the nodes after; in r. Based on this, the key idea
‘H-Index(P), captures all possible transitions among thef the pfsH termination condition is to check for every route
routes inP via their links (shared nodes). In particular, for that contains a node, whether there is a route, in the
each router in P, H-Index(P) retains list edges[r] of collection such that: (i} andr; have a common link., (ii)
(r1,n; : 0: 01) entries for every route; that has a sharedr containsn before link n., and (iii) 71 contains targety,
node, linkn;, with . Elemento (resp.o1) denotes the position after link n.. Specifically, given a node and a route- that
of link n; in router (resp.r;). Note that theedges|r] list is contains it, we join listdges[r] of H-Index with routes[n]
sorted primarily by route-; identifier, and secondarily by. of P-Index for targetn,. The procedure is similar to a merge-
Storing all possible transitions among the routes of jain as both lists are sorted by the route identifier, thasfirs
collection in H-Index requires a lot of space and has as soon as a common routgis found and conditions (i), (ii)
large maintenance cost. To deal with this problem, we intrand (iii) are satisfied, or one of the lists is traversed to the
duce thel-Index [17] of a route collectionP, denoted by end. The answer t®ATH(n,,n¢) query is given by the path
L-Index(P), taking into account only the links contained irfrom sourcen, to noden, the part of route- from n to link
each route. Specifically, for each routén P, £-Index(P) n., and the part of. from n. to targetn;.

A. Indexing Route Collections

retains list links[r] of (n; : o) entries for every linkn, The basic idea of thepfsL algorithm is to traverse the

contained in router at positiono. Note that theinks|r] list collection considering only the links of each route while

is sorted by the link node identifier. ignoring all other nodes. Given a nodeand a router that
Figure 1 illustrates a route collection and its indices. contains it, we access the links aftein r by sortinglinks|r]|

according to the position of the links in FurthermorepfsL
terminates the search after visiting a link that lies befarget

In [16], we introduce the path-first searcpf{) paradigm. n; in a route of the collection. To this end, we first construct
In particular,pfs traverses the nodes in a collection similar ta list 7 that contains every link,; before target:; in a route
depth-first search. For each nodgit visits part of every route r of the collection, and the part of routefrom n; to n;. Note
r that contains it at once, i.epfs visits all nodes that follow that 7 list is sorted by the link node identifier. Then, given a
n in r. Then, building upon thefs paradigm, we propose noden and a route- that contains it, we joiinks|[r| list with
algorithmspfsP, pfsH and pfsL that exploit the reachability 7 looking for a common linkn,. such thatn,. is beforen in
information within the routes to efficiently evalua®ATH router. The procedure is similar to a merge-join as both lists

B. EvaluatingPATH Queries

are sorted by the link identifier, that finishes as soon as sucltFirst, we plan to study the maintenance issues in cases apart

a common linkn. is found, or one of the lists is traversedrom adding new routes. For example, in the dynamic pickup

to the end. The answer ®ATH(n,, n;) query is given by the and delivery problem, new customer requests can be served by

path from source:; to noden, the part of route: from n to inserting nodes in existing vehicle routes. This updatehogbt

link n., and the path ofi. to targetn,, stored in7. will also change the time intervals of the nodes in the rautes
Second, we plan to evaluate queries similar to trip planning

))) [18] and optimal sequenced route [19] queries. Specifically
We adopt the uniform-cost search [2] to give a first-Ciynsiger a set of classeS such that each node in a

solution forFLSP queries. Similarly to thesfs paradigm, we qyte collection is an instance of a class @ e.g., the

traverse the route collection visiting for each nodell nodes qdes in a touristic route are instances of clas€es—

th_at foIIan in every router of the collection. Building upon {Museum, Stadium, Restaurant}. An interesting query is
this setting, we devise two methods, terme® andspL, 10 {4 fing a path from a node, to n, that passes first through

reduce the iterations performed by the search algorithm. 5 1rseum. then aStadium and finally aRestaurant.

The key point of both methods is to compute a lower gingjly, we could also combine query evaluation with key-
bound of the answer tBLSP query, calledcandidate answer \yord search. For example, instead of specific nodes, thesour
exploiting the indices of a collection. The candidate amswgq the target of a query could be given as a set of keywords,
is continuously being improved until it becomes the corregl in the query discussed in the previous paragraph, we want
answer. The role of a candidate answer is twofold: triggerifne path to pass through Bestaurant with a description
an early termination condition and pruning the search spaggieyant to "sea food, lobster” keywords.

Intuitively, we exclude a node. from the search when we
determine that expandingcannot result in an answerbetter
than current candidate answer. To perform this check, w@l G. Berbeglia, J.-F. Cordeau, and G. Laporte, “Dynamickpp and

calculate lower bounds for changirgand movingm cost of gg'z'venrz q’ogéel’gs' European Journal of Operational Reseayciol.

p and we compare them against the costs of current candidate s. J. Russell and P. Norvidhrtificial Interligence: A Modern Approach,
answer. We also use this check to early terminate the search. Second Edition Prentice Hall, 2003.

. . . . [3] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick, “Reacligbiand
The spP and spL methods mainly differ in the index they distance queries via 2-hop labels,” BODA 2002.

exploit to compute a candidate answesP usesP-Index [4] R. Schenkel, A. Theobald, and G. Weikum, “Hopi: An effitie€onnec-
whereasspL exploits £-Index. The procedure for computing tion index for complex xml document collections,” EDBT, 2004.

. . " . . 5] R. Schenkel, A. Theobald, and G. Weikum, “Efficient creatand
a candidate answer is similar to the merge-join discussed fé incremental maintenance of the hopi index for complex xndutoent

pfsP andpfsL with the exception that we identify all common collections,” inICDE, 2005.
entries (routes fospP or links for spL). In addition, similarly [6] J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu, “Fast conagion

; ; of reachability labeling for large graphs,” BDBT, 2006.
to pfsL, spL considers only the links of each route. [7] J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu, “Fast cotimm

: ; reachability labelings for large graphs with high compi@sgate,” in
D. Updating Route Collections EDBT. 2008.

As discussed in Section |, we consider route collections thds] R. Bramandia, B. Choi, and W. K. Ng, "On incremental mairance
do not fit in main memory and thus, all indices presented in, of 2-hop labeling of graphs,” INVWW 2008.

. . . . R. Jin, Y. Xiang, N. Ruan, and D. Fuhry, “3-hop: a high-qumssion
this thesis are stored as inverted files on secondary Storab‘le indexing scheme for reachability query,” 8iGMOD Conferenge2009.

and maintained by batch updates. Inverted files are mg@te] R. Agrawal, A. Borgida, and H. V. Jagadish, “Efficient nagement of

efficient when their lists are stored in a contiguous way. tcrzrr\;‘iet:\éicr:%iggships in large data and knowledge baseSIGMOD
Therefore, dealing with each new route separately is N@ij H. wang, H. He, J. Yang, P. S. Yu, and J. X. Yu, “Dual labgli

an efficient method for updating the collection. A common Answering graph reachability queries in constant time,JGDE, 2006.

i i id i indi ; i ; [12] S. TriBl and U. Leser, “Fast and practical indexing aneérying of very
solution is to build inverted |qd|ces in memory c;ons@eraib . large graphs.” IFSIGMOD Conference2007.
_the new routes and to exploit th?m_for evaluatm_g the queri@s; r. Jin, Y. Xiang, N. Ruan, and H. Wang, “Efficiently ansing reach-
in parallel with the disk-based indices. Each time a set of ability queries on very large directed graphs,"SIGMOD Conferenge
new routes arrives, only the memory-based indices are agd 2008.

. _[14] A. V. Goldberg, H. Kaplan, and R. F. Werneck, “Reach foiE#ficient
with minimum cost. Then, to reflect the changes in the disk-" point-to-point shortest path algorithms,” Proc. of the 8th WS on Al-

based indices, there are three possible strategies: (@)diely gorithm Engineering and Experiments (ALENEX). SIAM, Riglphia
them from scratch using both the old and the new routes, (‘] 2006.
ily

. . . M. Schubert, M. Renz, and H.-P. Kriegel, “Route skyligaeries: A
merging them with the memory resident ones and (c) laz multi-preference path planning approach,”I®DE, 2010.

updating index lists when they are retrieved from disk dyirir(16] P. Bouros, S. Skiadopoulos, T. Dalamagas, D. Saclsartid T. K. Sel-
query evaluation. In our work, we adopt the second strategy. '2'%'09'5"""'“""“”9 reachability queries over path colleosd in SSDBM
IV. FUTURE WORK DIRECTIONS [17] P. Bouros, T. Dalamagas, S. Skiadopoulos, D. Saclsamdid T. K. Sel-
)))) lis, “Evaluating path queries over frequently updated eocllections,”

We plan to extend our work in three directions: (i) address KDBS Lab, NTUA, Tech. Rep., 2009.
other kinds of updates on route collections, (ii) evaluaié8l F.Li D. Cheng, M. Hadjieleftheriou, G. Kollios, and-8. Teng, “On

. . . . trip planning queries in spatial databases,"S8TD 2005.
other types of queries mostly considering constraints,(and [19] M. Sharifzadeh, M. R. Kolahdouzan, and C. Shahabi, “Eimimal

combine query evaluation with keyword search. sequenced route query/LDB J, vol. 17, no. 4, 2008.

C. EvaluatingFLSP Queries

REFERENCES

