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Abstract

Some new conservative finite difference schemes are presented for an initial-boundary value problem of Schrodinger
equation with wave operator. They have the advantages that there are some discrete energies which are conserved respec-
tively. The existence of the solution of the finite difference schemes are proved by Leray—Schauder fixed point theorem.
And the uniqueness, stability and convergence of difference solutions with order O(4> + %) are proved in the energy norm.
Results of numerical experiment demonstrate the efficiency of the new scheme.
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1. Introduction

In paper [1] and its references, the following initial-boundary value problem of Schrédinger equation with
wave operator is discussed:

Uy — Uy + ot + BX)g([uu=0 (X, <x<X;,0<t<T), (1.1)
u(x,0) =uo(x),u,_g =i (x) X1 <x<Xy), (1.2)
u|x:X| :u|)c:Xr =0 (0<t< T)’ (13)

u

2 2 . . .
where u, = % e = 5, Uy = %, u(x,t) is a complex function, « is a real constants, f(x) and ¢(x) are real func-
tions, and i = —1.
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Computing the inner product of (1.1) with u, and then taking the real part, we can obtain the following
conservative law:

Xr
a7, + sl + ; B()Q(|ul*) dx = Const, (1.4)
1

where O(s) = ; g(
An implicit nonconservative finite difference scheme was proposed in [1], which needs lots of algebraic oper-

ators. An explicit conservative finite difference scheme were constructed by us in [2], but which is conditionally
stable and needs another scheme to begin computing. It is known that the conservative schemes are better than
the nonconservative ones for cubic nonlinear Schodinger equation. Zhang et al. [3] point out that the noncon-
servative schemes may easily show nonlinear blow up, and they presented a conservative scheme for nonlinear
Schrodinger equation. In [4] Li and Vu-quoc said “in some areas, the ability to preserve some invariant prop-
erties of the original differential equation is a criterion to judge the success of a numerical simulation”. In [5-
13] the conservative finite difference schemes were used for a system of the generalized nonlinear Schrédinger
equations, Regularized long wave equations, Sine—Gordon equation, Klein—-Gordon equation, and Zakharov
equations, respectively. Numerical results of all the schemes are very good. Thus, the purpose of this paper is
to construct some new conservative difference schemes which are unconditionally stable and more accurate,
and prove the convergence of difference solutions.

The paper is organized as follows. In Section 2, a new conservative schemes (i.e. Scheme A) is proposed,
and the existence of difference solution is proved by Leray—Schauder fixed point theorem. In Section 3, the
discrete conservative laws of the difference scheme is discussed. In Section 4, some prior estimates for numer-
ical solutions are made. In Section 5, the convergence and stability for the new schemes are proved, and the
proof of uniqueness of the difference solution is given. In Section 6, we construct some other conservative
schemes and discuss there discrete conservative laws respectively. In the last section, various numerical results
will be discussed.

2. Finite difference scheme and existence of difference solution

In this section, we describe a new difference schemes for problems (1.1)—(1.3). As usual, the following nota-
tions are used:

x:X1+jh t, = nt, j=0,1,...,J, n=0,1,...,N=[T/1],

where # = %% and 1 denote the spatial and temporal mesh sizes respectively, u = u(x;,t,), U ~u(x;,t,).
veL— v vr—yn yrt—pn yr—yrt
ny 1 J ny J-1 ny _ _J J . J J
(V/‘)x* h ) (Vj);‘c* h ’ (Vj)t* T ) (Vj)if T )
1 - >
V=3 + 0, Wy =h3 UL =0 1V = max |V,

J=1

and in the paper, C denotes a general positive constant which may have different values in different
occurrences.
We consider the following finite difference scheme for problems (1.1)—(1.3):

Scheme A
n h2 1 n+1 n—1 : n hz n Q(|U7+1‘2) - Q(|U;l_1|2)
Ui+ 13 Ui =5 (U + Uj ) +ia(U); + i (U + U F = U
Ur.‘H _~_U,771
x%zo, j=12,....0-1;, n=1,2,...,[T/1], 2.1)
Uj') = uo(x_/')v (Uﬁ.)); = ul()c_/-)7 j=0,1,2,...,J, 22)

Up=U3=0, n=0,1,2,...,[T/1,
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where f; = f(x;). From (2.1) and (2.2), we obtain

21U}~ () = )] g [0 = 7)) — U} 0+ () + o 5)
O(UI) - (U} = 2w (x,)P)
UL =10} = 220 ()

+ 5, (U} = tuy(x))) = 0. (2.2)

Now we are going to prove the existence of difference solutions U"*! for the finite difference systems (2.1)—
(2.3). For any mesh function ¢ which define on [Xj, X;], and (j)\x:Xl = ¢l,_y, = 0, we define a mesh function @
as follows:

h2

(@ - U = (U - U D]+ 15

J

(@ = U}) = (U} = Uf e = S (= U)) = (U} = U} )

1ocrh2

FIL,— U + (U - U+, - U + (U - U

Q(|(l’>j|2) _ Q(‘U}?*l|2) [(¢j _ U;’) - (Uj _ U;—l)]

+5
L e [ 2

=0, j=1,2,....0—1; n

L2, [T/

(2.4)

where @| _ _x, = P|,_x, = 0. It defines a mapping @ = T(¢) of H' into itself. Obviously, the mapping T(¢) is
continuous for any ¢ € H'. In order to obtain the existence of the solutions for the finite difference systems
(2.1)—(2.3), it is sufficient to prove the uniform boundedness for all the possible fixed point @ for the mapping
AT with respect to the parameter 0 < 4 < 1 by Leray—Schauder fixed point theorem. Then the fixed point @ of
the mapping A7 satisfy that

- h2 n MHU" n— it n n n—
[(@; = U}) =AU} = U} 1)]4’12[(‘15 Up) = 4U; = U )]s — - (&= U)) = (U} = Uj D
ilot _ ioth? . ; e
t (@, —U))+ (U] - Uj 1)]+T[(¢1*Uj)+(Uj*Uj N
L, 009 —o(UP) [(@, - Up) — (U — U]
+ I8, J / / I ~=0, j=12,....0-1; n=1,2,...,[T/1].
ST 2 ’ o

(2.5)
Computing the inner product of difference equation (2.5) with (¢ — U ) =[(® — U") + (U" — U"")], and

then taking the real part in the resulting formula, we obtain

S 2y Ul
At*h

n||2 n n
| —U"| ——||‘15—U|| +—H‘I’—U|| += B,O(19,)

\

=1
1
< (2~ DRe((U" — U"1), @ — U") + AU — U™ 1||2< I Re((vr— U2 ), @, - U2)
/lhz Jt2h &
2o — o+ o - o 4 2 ZﬁQ (Ui

1 n||2 n n—112 n n— h2
Sglle-vir+lv"-u P+ v -+

Un Un 1 Q) —_y"
i I+ 0, - v

2
T n n—1 n— ]
+5||U U || +— E ﬁQ U (2.6)
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according to || P, — U”H <@ - U"|>, under the conditions of Theorem 5.1, formula (2.6) implies that
2 2 O 2
lo —U"|I” < Collu" = U 270y B,0(U5 ), (2.7)
=1
where C; = 28/3 + 27°. It implies that

J—1
2]l < [Cillu” = U 1P + 2Ry o)UY+ U (2.8)

=1

This means that ||®|| is uniformly bounded with the parameter 0 < 1 < 1 respectively. Thus the solution of the
finite difference systems (2.1)—(2.3). The uniqueness of difference solution will be proved in Section 5.

3. Discrete conservative laws of new scheme

To obtain the discrete conservative laws, we introduce the following lemmas:

Lemma 3.1. For any two mesh functions U, V;, there is the identity

Ui(Vi)e=— . (U), V), = Uo(Vo), + Us(Vy)s- (3.1

Lemma 3.2. For all mesh functions U; satisfied Eq. (2.3), the following equalities hold:

Re(U3, Uf) = (IIU?HZ);, (3:2)

Re(U" +U§Zx‘7U” =—(IU31) (3.3)

Re(Ug;: Ul) = ——(II A (3.4)

Re(Uly, Up) = — | U%]1™. (3.5)
Proof.

1
—Re(Ur-uUrur+urt') = (||U”|| )2

Re(Up, Up) = -

t’

1
Re (Un+1 + Uz 1 Un) — 2_Re(Uz;l + U;:)—:l, Un+l _ Unfl)
T 2

1
= -5 Re(Uy + UL U - U

T

1 n 2 n—112 n||2
= =5 T = U = = (Ul

n n n n 1 n (|2
RC(U Ui) = —RC(UVW Ux?) = _§<||szH )?’

xxtt?

Re(U”,

xxt?

Uy) = —Re(U%, U) = || UG,
This completes the proof of Lemma 3.2. [

Theorem 3.1. The difference scheme (2.1)—(2.3) admits the following invariant:

E'=||U| +5 (IIU"II TP = TP +ZZ/3 o(usP) +o(uy P = = E" (3.6)
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Proof. Computing the inner product of difference equation (2.1) with 2U?, and then taking the real part in the
resulting formula, we obtain

U1+ (IU2IP); = h(H ULIP); + kY Blo(U )] =0, (3.7)

j=1
where Lemma 3.2 and the boundary conditions (2.3) are used. Let

E"= Uyl +5 (IIU”II +UF) - IIU ¥ +22ﬂ (U1 + (U P)l.

Then Eq. (3.6) is gotten from (3.7). Theorem 3.1 is now proved. [J

4. Some priori estimates for the difference solution

In this section, we will estimate the difference solution. First, three lemmas are introduced from [2,14].

Lemma 4.1. Suppose that uy(x) € H(l)[Xl,Xr], u(x) € Ly, f(x)>0, Q(s) > 0, s € [0, +00], f(x), ¢'(s) € C", there
is the estimation for the solution of the initial-boundary value problems (1.1)—(1.3),

full o < C, el <C0 0l < C. (4.1)

Lemma 4.2 (Discrete Sobolev inequality [14]). For any discrete function u, = {u;|j=0,1,...,J} in the real axis
and for any given ¢ > 0, there exists a constant K dependent on ¢ and n such that

anll . < el G ) [ + K]
Lemma 4.3 [14]. Suppose that discrete function w(n) satisfies the recurrence formula

Wy — Wy g A'L'Wn + BTanl + Cn‘c7

where A, B and C, (n=1,...,N) are nonnegative constants. Then

2(4+B)T
{2y el < (Wo +TZC )
where T is small, such that (4 + B)t <XL(N > 1).

Lemma 4.4. Suppose that uy(x) € Hy[X1, X,], u1(x) € Ly, B(x) >0, O(s) >0, s € [0, +oc], B(x), ¢'(s) € C'. Then
the following estimates hold:

or<c, ui<c U <C (4.2)

Proof. Using Young’s inequality, we obtain

W h3 J-1 e ”
_E” H ':1[( —22 /+1 U)]
> S W f WSy = - S @3
=0

then from (3.6) we obtain

2 n 2 n n n n n
UL+ (HU P+ 107 < U7+ (IIU I+ 1P - HU s

>
J
gzﬁ (L") + 0( U] = C. (4.4)
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From (4.4) we obtain

lwi<c, uil<c
from |U7|| < C, we obtain (see [2]) ||U"|| < C. It follows from Lemma 3.2 that
U < C.

Therefore Lemma 4.4 is proved. [

5. Convergence and stability of the difference scheme

Now, we consider the convergence of the difference schemes (2.1)—(2.3). First, we define the truncation error
as follows:

n h2 n 1 n+1 n—1 h2
E’/J;:(u) 12( )xxtt_i(u' +u )x}+ ( ) +1aﬁ( )XX[

+ﬁ Q(| n+l|) (|un 1| ) l’l+1+un 1
1 = a1 2

(5.1)

According to Taylor’s expansion, we obtain
Lemma 5.1. Assume that u € C**, then the truncation errors of the difference schemes (2.1)~(2.3) satisfy

_ 2, 2

Er; =0(h" + 7). (5.2)
Remark 5.1. For the introduction of the items of % (U}) 57 and i 1oc— (U}) 5 in the schemes (2.1)~(2.3), it is easy
to know that the Scheme A is more accurate than the Scheme Cin Sectlon 6 which is without adding the items
above by Taylor’s expansion.

Theorem 5.1. Assume that uy(x) € H(l)[Xl,Xr], u(x) € Ly, P(x)>0, O(s) >0, s € [0,+00], p(x), ¢'(s) € C" and
u € C*, then the solution of the difference problem (2.1)«2.3) is unique.

Proof. Let ¢" = W" — U", where W" and U" are two solutions of the difference Scheme A with initial value W°,
W' and U°, U' respectively, and wo, wt, U, Ut satisfy

. <K, <K, U <K, U], <K.
By Lemma 4.4, there exists a constant C(K), such that
Wl < CK),  [[U"]|, < C(K).
Then €”" satisfies that
n h2 ﬂ l n h2 n
(&) + 15 (D =5 (€7 + &) g i), + i T ()
W’?‘Fl + W}’-lfl Ui?+] + Un 1
+ﬁjG(W;)%—ﬁ,G(Uj)%
n h2 Vl 1 n n— h2
= (6) 12( )rxtt 2(€'+1 +€j 1) +10{( ) +1aﬁ( )xxt
n+] n—1 n+1 n—1
+ € ur 4+ Ut
+ BGI) L + BIGO) - GUp) L, (53)
where
Ut A U! 2
o(ony = 20U = QU1 )

+1,2 —12
[ e (%
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Computing the inner product of (5.3) with 2¢/, and then taking the real part, we obtain

n n h2 n - n\( _n n—1\=n
(Ilef1P); + Cllex®); —E(HEX,HZ);+Re{hZﬁ/G(Wj)(€,-“ +e7)g

j=1
J—1
+ Re{h BIG) — GUM(UT! + U;’l)E?} =0. (5.4)
J=1

Similarly to the proof in [2], we can obtain that

J—1

Re{h BG4 o >} < Ol + 1€ P + 1 + e ). (5.5)
=
J—1

Re{h BIGOV) — GUDI(U + U;?l)e;"} < e + e IF + e + ). (5:6)
=1

and
1R < Cllle P + € + e 1P). (5.7)

Substituting (5.5) and (5.6) into (5.4), then adding the results with the formula (5.7), we get

2
el = 1 1P + 21 = e 1) + e = e 1P = e+ 2 e
<C(lle T + el + e+ e + e P, (5:8)
and let
n+1 n| 2 hz n2
0" = 11 + 5 (I + e 1)+ 1P e P

it is easy to see that

0" > el +5 (€I + 1) + e, (59)
then we get

Q-0 <C(Q -0, (5.10)
It follows from Lemma 4.3 that

0" < 0" exp(CT). (5.11)
According to 0° = 0, we obtain

0'<0. (5.12)

From (5.9) and (5.12), using Lemma 4.2, we get ||¢||oo = 0, i.e. W" = U". Therefore the proof of Theorem 5.1 is
completed. [

Theorem 5.2. Under the conditions of Theorem 5.1, the solution of the difference problem (2.1)—(2.3) converges to
the solution of problem (1.1)~(1.3) with order O(h* + t*) by the || - ||oc nOFmM.

Proof. Let

no_ n n
e =u; — Uy
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Subtracting (2.1) from (5.1), we obtain
n 1 n

B = (@) (e~ (€ + &) )+ i ()
+BG( ) n+1;_ u 1 ﬁG(Un) Uﬂ+1;‘U;1
D @) (€ i) i ()
+ B,Gu )¥+ B1G(u)) — G(Uj)}w.

Computing the inner product of (5.13) with 2¢?, and then taking the real part, we obtain

J1 7 7 v h2 7 J71 n 71 J1— —n
2Re(E",€) = (11 + (e = 15 (el + Re{hZﬁjGw,»)(ej“ +¢ 1>e;}
j=1

+Re{h
J

Similarly to the proof in [2], we obtain

n _n n2 n—1112 7112
2Re(Er, €&) < | Er(|” + llef " + [lef I,

Re{h

<~

-1

BIG() — GUMI(U + U_;?‘)é;’}.

~

—1

B

n n n—1\=n n—112 n 2 ni2 n—1112
B,Gu)) (e + ¢ l)es} < C(lle 17+ lle™ MIE + e 117 + ller =117,

<

-1

Re{” B,(G() — GU(U + U;”>e%’} <l P+ e I + el + e 1P,

J=1

and
ni2 n—112 n2 n—112
lle"ll; < C(ller™ 17 + lle"I” + lle"[I%).
Substituting (5.15)7(5.17) into (5.14), then adding the results with (5.18), we get
2 2 , B , W 2
7 n—1 n+1 n—1 n n—1 7 n—1
lef1* = lley™"I1* + 5 (H PP = e ) + el = Hle =15 lewll” + g5 lles i
<tC(|E” + Hei’ P eI+ ller 1P+ lle 1 + e 11%),
let
n+1 n 2 h2 n (|12
= lleflI* +5 (Ile I+ 1l 1% + lle”| LR
it is easy to see that
7 71 7 2
*II gl +5 (He I+ [l 1) + [l
then we get

B' — B! <1||EF|)? + Cu(B"— B"Y).
It follows from Lemma 4.3 that

<B° + TZ |EF|| ) exp(CT) < C(B® + (K + %)%).

k=1

1787

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)
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According to
B =0(W + 1),
we get
B < C(h* +1%)°.
It follows from the definition of B” and inequality (5.20) that
lefl <O +7°), |l <O +7), &'l <Ok + ).
Thanks for Lemma 4.2, we obtain
le"ll, < O + 7).
Then the convergence is proved. [

Similarly, we can prove the stability of the difference solution, i.e.

(5.23)

Theorem 5.3. Under the conditions of Theorem 5.1, the solution of the difference schemes (2.1)+(2.3) is

unconditionally stable for initial data by || - ||oo nOrm.

6. Some other conservative finite difference schemes

In this section, we will construct some other new conservative finite difference schemes for the problems

(1.1)—(1.3), and discuss there discrete conservative laws respectively.

Scheme B
n+1)2 n—12 n+1 n—1
Q(|Uj+ | )7Q(‘Uj | ) Uj+ +Uj _
U = 5P 2
j=12,....0-1;, n=1,2,...,[T/1],
U?ZMO(X./% (Uq)i:l’”(xj)v j=0,1,2,....J

J

Ur=0"=0, n=0,12,...,[T/1.

(U';)ﬁ - (Uj)xx + iO((U;.')? + ﬁ/

Theorem 6.1. Scheme B admits the following invariant:
J

+3) Blo(u) + o(urt ) =

Jj=1

l\)\b

E' = Ul +5 (IIU"II ) - IIU

Scheme C
n+1)2 n—1)2 n+1 n—1
o(ur™ ) —o(|U; ") U™ + Uj

1
Un . —= (U + U +ia(U), + B;
( /)tt ( J Jj )xx ( j)t J |U;'+l|2—|U7_1|2 2

2
j=12,....0-1;, n=1,2,...,[T/1],
U? :u()(xj)7 (U?)f :ul(xj)7 j:O,l,Z,...,J

Ur=0U"=0, n=0,12,...[T/1.

:07

Theorem 6.2. Scheme C admits the following invariant:

J
E' = Ui +5 (||U"|| +lUP) Z o(UI) + QU ) = -+ = E.

I\Jlb
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Scheme D

Uy P s Py
L G ot G JRR
(Uj)t?_(Uj)xz+la<Uj>i+ﬁ' |U,_,+1|2_|U,_,,1|2 (Uj +Uj ):Oa
J J

j=12,...,0-1, n=1,2,...,[T/1], (6.9)
Uj.) = up(x;), (U?)Z = u; (x;), j=0,1,2,...,J, (6.10)
Uy=U,=0, n=0,1,2,...,[T/1]. (6.11)

Theorem 6.3. Scheme D admits the following invariant:
n n n ‘L'2 n |Un+1‘ + |Un|
E' = Ul +5 (||U P+ 10 = S sl +hZﬂQ<— = =E (6.12)

Scheme E

[T o) losP+uy!|
o) o)
(UD)a— 75U + U ) g +10(U7), + B (U7 +U;) =0,

( n+1)2 n—12

2 [T
j=12,...,0-1, n=1,2,...,[T/1], (6.13)
U?:uo(xj), (U?);:ul(x_,-), j=0,1,2,...,J, (6.14)
Uy=U,=0, n=0,1,2,...,[T/1]. (6.15)

Theorem 6.4. Scheme E admits the following invariant:

Ut + P
— WU+ P + 102 )+ Q(% —-J (6.16)
Jj=
Scheme F
B e R OUU) — 0y Uy 4 U
(U ) 12(U )xxt; - (U])x} + la(U ) +1aE(U )xxi + ﬁj ‘lj]’f+l|2 _ |U;j;711|2 ’ 2 ’ = 0’
j j
j=L2...J—-1; n=12...,[T/1, (6.17)
U?:uo(xj), (U‘?)izul(xj), j=0,1,2,...,J, (6.18)
Up=U,=0, n=0,1,2,...,[T/1]. (6.19)
Theorem 6.5. Scheme F admits the following invariant:
2
n n n T n rl n
=1UI1* +5 (||U I+ Uz ) -5 U P =S +2 Zﬁ (U1 +o(us' )]
Y (6.20)

Scheme G

. . (u;'“;w ) 3 Q(w +;U" ')
Ui+ 75 (U))gi — (U)) 5 +ia(U7); (Ui + B;

xxtt +io—
PRSE E DA

(U U =0, j=12.0 -k n=1,2,..,[T/1, (6.21)
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Imaginary part of U

Imaginary part of U

—-0.05

L
-0.2 -0.1

L L L
0 0.1 0.2

Real part of U

L L
0.5 0.6 0.7 -0.2

L
[ 0.1 0.2

Real part of U

0.5 0.6 0.7

Fig. 1. Comparison of phasic picture of U computed by two schemes: (left) # =7 =0.02, —X; = X, =40, t = 1 and (right) s =7 =0.01,
-Xi=X,=40,r=1.

0.7

0.6

0.5

18]}

0.3

0.2

01

T
S1
S2

0.3F

S o.esf

0.15F

.
T
— s

—20 -15

-10 -5 0
X

Fig. 2. Comparison of |U| computed by two schemes: (left) # =1t =0.01, —X; = X, =20, t =5 and (right) &/ =t =0.01, —X; = X, = 20,

t=10.

Table 1

Value E” of two schemes at difference time

In

t=h=0.01

Scheme 2

Scheme 1

t=h=0.02

Scheme 2

Scheme 1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

9.12172399599931
9.12172399599925
9.12172399599931
9.12172399599931
9.12172399599930
9.12172399599933
9.12172399599940
9.12172399599936
9.12172399599936
9.12172399599936

9.12172399599931
9.12172399599925
9.12172399599931
9.12172399599931
9.12172399599930
9.12172399599933
9.12172399599940
9.12172399599936
9.12172399599936
9.12172399599936

9.11504169913676
9.11504169913672
9.11504169913676
9.11504169913676
9.11504169913673
9.11504169913675
9.11504169913674
9.11504169913674
9.11504169913673
9.11504169913672

9.11504169913676
9.11504169913672
9.11504169913676
9.11504169913676
9.11504169913673
9.11504169913675
9.11504169913674
9.11504169913674
9.11504169913673
9.11504169913672
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U?:uo(x_,-)7 (UY), = ui(x;), j=0,1,2,...,J, (6.22)

J

Uy=U,=0, n=0,1,2,...,[T/1]. (6.23)

Theorem 6.6. Scheme G admits the following invariant:

n n 1 n n Tz n h2 n J |U"l+1|2 + |Un‘2
E" = U+ 5 (U2 + U P = SR = S INULP + - po| ———5—1 | = =E.
2 2 12 5 2
(6.24)
Scheme H
n h2 n 1 n+1 n—1 : n : h2 n
(Uj)tf+E(Uj)x}t?_5(Uj + U} )xx+1°‘<Uj)i+1“E<Uj>xﬁ

Q(U',?*'Z;U;Z) B Q<072+2U71|2>
+ B, Ut 4+ urhy =0,
n+12 n—112 J J ’
|Uj ‘ - |Uj |

(6.25)
Uj.) = uo(x;), (U?);:ul(ij j=0,1,2,...,J, (6.26)
Uy=U,=0, n=0,1,2,...,[T/1]. (6.27)
Theorem 6.7. Scheme H admits the following invariant:
., X 1 : . 1’12 : J |Ur_l+1|2 + IUn|2
E = U3 + 3 (U2IF + U2 ) - 2 o P +hZﬁjQ<% = =P (6.28)
=1

Similarly, we can prove the existence and uniqueness, the stability and convergence of difference solution of
Schemes B-H. Finally, we can easily prove that all lemmas and theorems in this paper hold for the periodic
initial-value problem for Schrodinger equation with wave operator.
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0.4

0.2

Imaginary part of U

~0.6 0.4 -0.2 0 0.2 0.4 06 0.8 1 1.2
Real part of U

Fig. 3. Phasic picture of U, h =1 =0.02, — X, = X, =40, ¢ € [0,20].
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Fig. 4. Movement of soliton |U| with & =1 =0.02, —X; = X, = 40.
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Fig. 5. Value |U| computed by two schemes with # = 0.02, t = 0.04, —X; = X, =40, 1 = 10.

7. Numerical experiment

In this section, we just consider Scheme A and the scheme in paper [2]. In computations, we chose the
parameters as

a=F=1,  ux)=(1+ixe 0" 4 (x)=0.

and let ¢(Ju|?) = |u|* as an example. We note the scheme in paper [2] as Scheme 1 (S1), and Scheme A as
Scheme 2 (S2).

It is clear from Figs. 1 and 2 that the two schemes both are good in computation when the ratio 2 < 1, and
they almost have the same accuracy. It is easy to see from Table 1 that both of the two schemes are well con-
servative, thus both of them can be used to computing for a long time. In Fig. 4, we give the movement of the
soliton | UJ, and in Fig. 3, we give the phasic picture of U. The major advantage of scheme 2 is its unconditional
stability which is numerically proved by Fig. 5. Obviously, the scheme in paper [2] is unstable, but the Scheme
A can get a reasonable result when the ratio 2> 1. Thus, from the numerical experiments the Scheme A is
usable. Similarly, we can show that Schemes B-H are also stable by the numerical experiments.
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